Journal für die reine und angewandte Mathematik
- 1 :
- 2 :
- 3 :
- 4 :
- 5 : 1
- 6 : 2
- 7 : 3
- 8 : 4
- 9 : 5
- 10 : 6
- 11 : 7
- 12 : 8
- 13 : 9
- 14 : 10
- 15 : 11
- 16 : 12
- 17 : 13
- 18 : 14
- 19 : 15
- 20 : 16
- 21 : 17
- 22 : 18
- 23 : 19
- 24 : 20
- 25 : 21
- 26 : 22
- 27 : 23
- 28 : 24
- 29 : 25
- 30 : 26
- 31 : 27
- 32 : 28
- 33 : 29
- 34 : 30
- 35 : 31
- 36 : 32
- 37 : 33
- 38 : 34
- 39 : 35
- 40 : 36
- 41 : 37
- 42 : 38
- 43 : 39
- 44 : 40
- 45 : 41
- 46 : 42
- 47 : 43
- 48 : 44
- 49 : 45
- 50 : 46
- 51 : 47
- 52 : 48
- 53 : 49
- 54 : 50
- 55 : 51
- 56 : 52
- 57 : 53
- 58 : 54
- 59 : 55
- 60 : 56
- 61 : 57
- 62 : 58
- 63 : 59
- 64 : 60
- 65 : 61
- 66 : 62
- 67 : 63
- 68 : 64
- 69 : 65
- 70 : 66
- 71 : 67
- 72 : 68
- 73 : 69
- 74 : 70
- 75 : 71
- 76 : 72
- 77 : 73
- 78 : 74
- 79 : 75
- 80 : 76
- 81 : 77
- 82 : 78
- 83 : 79
- 84 : 80
- 85 : 81
- 86 : 82
- 87 : 83
- 88 : 84
- 89 : 85
- 90 : 86
- 91 : 87
- 92 : 88
- 93 : 89
- 94 : 90
- 95 : 91
- 96 : 92
- 97 : 93
- 98 : 94
- 99 : 95
- 100 : 96
- 101 : 97
- 102 : 98
- 103 : 99
- 104 : 100
- 105 : 101
- 106 : 102
- 107 : 103
- 108 : 104
- 109 : 105
- 110 : 106
- 111 : 107
- 112 : 108
- 113 : 109
- 114 : 110
- 115 : 111
- 116 : 112
- 117 : 113
- 118 : 114
- 119 : 115
- 120 : 116
- 121 : 117
- 122 : 118
- 123 : 119
- 124 : 120
- 125 : 121
- 126 : 122
- 127 : 123
- 128 : 124
- 129 : 125
- 130 : 126
- 131 : 127
- 132 : 128
- 133 : 129
- 134 : 130
- 135 : 131
- 136 : 132
- 137 : 133
- 138 : 134
- 139 : 135
- 140 : 136
- 141 : 137
- 142 : 138
- 143 : 139
- 144 : 140
- 145 : 141
- 146 : 142
- 147 : 143
- 148 : 144
- 149 : 145
- 150 : 146
- 151 : 147
- 152 : 148
- 153 : 149
- 154 : 150
- 155 : 151
- 156 : 152
- 157 : 153
- 158 : 154
- 159 : 155
- 160 : 156
- 161 : 157
- 162 : 158
- 163 : 159
- 164 : 160
- 165 : 161
- 166 : 162
- 167 : 163
- 168 : 164
- 169 : 165
- 170 : 166
- 171 : 167
- 172 : 168
- 173 : 169
- 174 : 170
- 175 : 171
- 176 : 172
- 177 : 173
- 178 : 174
- 179 : 175
- 180 : 176
- 181 : 177
- 182 : 178
- 183 : 179
- 184 : 180
- 185 : 181
- 186 : 182
- 187 : 183
- 188 : 184
- 189 : 185
- 190 : 186
- 191 : 187
- 192 : 188
- 193 : 189
- 194 : 190
- 195 : 191
- 196 : 192
- 197 : 193
- 198 : 194
- 199 : 195
- 200 : 196
- 201 : 197
- 202 : 198
- 203 : 199
- 204 : 200
- 205 : 201
- 206 : 202
- 207 : 203
- 208 : 204
- 209 : 205
- 210 : 206
- 211 : 207
- 212 : 208
- 213 : 209
- 214 : 210
- 215 : 211
- 216 : 212
- 217 : 213
- 218 : 214
- 219 : 215
- 220 : 216
- 221 : 217
- 222 : 218
- 223 : 219
- 224 : 220
Scan
Volltext
Seite 206 : 202
PrimzahldifFerenzen *).
Von Walter Knödel in Wien.
1 . Emleitung. P. Erdös und A. Rényi haben 1949 die Abschätzung (1)
^Mof . < , „ - fJ ; <^^h^'«^^«^^
gegeben [1]. Dabei ist p^ die /г-te Primzahl (Pq = 2) und d^ = p^ — p^_^ für n ^ l; die Ci sind positive Konstante. Schmetterer und ich haben 1951 bemerkt, daß
1
dn dn+i zwischen den gleichen Größenordnungen liegt, deß also
( 2 )
^'3 1лгт2
log^ X
< 2;
Pn<^
1
1
< c,
^ 10g2 X
log log X
Ctfi (л^п + 1
gilt ; doch haben wir das Resultat nicht veröffentlicht. Im folgenden soll gezeigt werden:
Satz 1. Die Summen
1
und
S^ { x )
2
Pn< *
1
dn dfi+i
besitzen die gleiche Größenordnung:
( 3 )
1
1
dn d„+i
Die Beweise sind elementar und verwenden die Methode von Brun. Dabei ergibt sich als Nebenresultat
Satz 2. Die wahre Größenordnung çon
^ d '
wobei der Strich am Summenzeichen Summation über alle d^ ^ d^-u n^2 bedeutet^ ist
X
- <
log^a ;
, 1 X
* ) Vorgetragen auf der Spezialtagung für Zahlentheorie, Mathematisches Forschungsinstitut Oberwolfach, В.—6. Januar 1955.
Seiten
Inhaltsverzeichnis
Export
Einzelbilder herunterladen
Bilddaten
Info
Titel
Metadaten
Übergeordnetes Werk
Jahr
Digitalisierungsdatum
Verlag
Sprache
Aktuelles Element
Primzahldifferenzen.
Bereitgestellt von
Hilfe
Über TIFY
TIFY ist ein schlanker und für Mobilgeräte optimierter IIIF-Dokumentenbetrachter, veröffentlicht unter der GNU Affero General Public License 3.0.