Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
- 1 : I
- 2 : II
- 3 : III
- 4 : IV
- 5 : 1
- 6 : 2
- 7 : 3
- 8 : 4
- 9 : 5
- 10 : 6
- 11 : 7
- 12 : 8
- 13 : 9
- 14 : 10
- 15 : 11
- 16 : 12
- 17 : 13
- 18 : 14
- 19 : 15
- 20 : 16
- 21 : 17
- 22 : 18
- 23 : 19
- 24 : 20
- 25 : 21
- 26 : 22
- 27 : 23
- 28 : 24
- 29 : 25
- 30 : 26
- 31 : 27
- 32 : 28
- 33 : 29
- 34 : 30
- 35 : 31
- 36 : 32
- 37 : 33
- 38 : 34
- 39 : 35
- 40 : 36
- 41 : 37
- 42 : 38
- 43 : 39
- 44 : 40
- 45 : 41
- 46 : 42
- 47 : 43
- 48 : 44
- 49 : 45
- 50 : 46
- 51 : 47
- 52 : 48
- 53 : 49
- 54 : 50
- 55 : 51
- 56 : 52
- 57 : 53
- 58 : 54
- 59 : 55
- 60 : 56
- 61 : 57
- 62 : 58
- 63 : 59
- 64 : 60
- 65 : 61
- 66 : 62
- 67 : 63
- 68 : 64
- 69 : 65
- 70 : 66
- 71 : 67
- 72 : 68
- 73 : 69
- 74 : 70
- 75 : 71
- 76 : 72
- 77 : 73
- 78 : 74
- 79 : 75
- 80 : 76
- 81 : 77
- 82 : 78
- 83 : 79
- 84 : 80
- 85 : 81
- 86 : 82
- 87 : 83
- 88 : 84
- 89 : 85
- 90 : 86
- 91 : 87
- 92 : 88
- 93 : 89
- 94 : 90
- 95 : 91
- 96 : 92
- 97 : 93
- 98 : 94
- 99 : 95
- 100 : 96
- 101 : 97
- 102 : 98
- 103 : 99
- 104 : 100
- 105 : 101
- 106 : 102
- 107 : 103
- 108 : 104
- 109 : 105
- 110 : 106
- 111 : 107
- 112 : 108
- 113 : 109
- 114 : 110
- 115 : 111
- 116 : 112
- 117 : 113
- 118 : 114
- 119 : 115
- 120 : 116
- 121 : 117
- 122 : 118
- 123 : 119
- 124 : 120
- 125 : 121
- 126 : 122
- 127 : 123
- 128 : 124
- 129 : 125
- 130 : 126
- 131 : 127
- 132 : 128
- 133 : 129
- 134 : 130
- 135 : 131
- 136 : 132
- 137 : 133
- 138 : 134
- 139 : 135
- 140 : 136
- 141 : 137
- 142 : 138
- 143 : 139
- 144 : 140
- 145 : 141
- 146 : 142
- 147 : 143
- 148 : 144
- 149 : 145
- 150 : 146
- 151 : 147
- 152 : 148
- 153 : 149
- 154 : 150
- 155 : 151
- 156 : 152
- 157 : 153
- 158 : 154
- 159 : 155
- 160 : 156
- 161 : 157
- 162 : 158
- 163 : 159
- 164 : 160
- 165 : 161
- 166 : 162
- 167 : 163
- 168 : 164
- 169 : 165
- 170 : 166
- 171 : 167
- 172 : 168
- 173 : 169
- 174 : 170
- 175 : 171
- 176 : 172
- 177 : 173
- 178 : 174
- 179 : 175
- 180 : 176
- 181 : 177
- 182 : 178
- 183 : 179
- 184 : 180
- 185 : 181
- 186 : 182
- 187 : 183
- 188 : 184
- 189 : 185
- 190 : 186
- 191 : 187
- 192 : 188
- 193 : 189
- 194 : 190
- 195 : 191
- 196 : 192
- 197 : 193
- 198 : 194
- 199 : 195
- 200 : 196
- 201 : 197
- 202 : 198
- 203 : 199
- 204 : 200
- 205 : 201
- 206 : 202
- 207 : 203
- 208 : 204
- 209 : 205
- 210 : 206
- 211 : 207
- 212 : 208
- 213 : 209
- 214 : 210
- 215 : 211
- 216 : 212
- 217 : 213
- 218 : 214
- 219 : 215
- 220 : 216
- 221 : 217
- 222 : 218
- 223 : 219
- 224 : 220
- 225 : 221
- 226 : 222
- 227 : 223
- 228 : 224
- 229 : 225
- 230 : 226
- 231 : 227
- 232 : 228
- 233 : 229
- 234 : 230
- 235 : 231
- 236 : 232
- 237 : 233
- 238 : 234
- 239 : 235
- 240 : 236
- 241 : 237
- 242 : 238
- 243 : 239
- 244 : 240
- 245 : 241
- 246 : 242
- 247 : 243
- 248 : 244
- 249 : 245
- 250 : 246
- 251 : 247
- 252 : 248
- 253 : 249
- 254 : 250
- 255 : 251
- 256 : 252
- 257 : 253
- 258 : 254
- 259 : 255
- 260 : 256
- 261 : 257
- 262 : 258
- 263 : 259
- 264 : 260
- 265 : 261
- 266 : 262
- 267 : 263
- 268 : 264
- 269 : 265
- 270 : 266
- 271 : 267
- 272 : 268
- 273 : 269
- 274 : 270
- 275 : 271
- 276 : 272
- 277 : 273
- 278 : 274
- 279 : 275
- 280 : 276
- 281 : 277
- 282 : 278
- 283 : 279
- 284 : 280
- 285 : 281
- 286 : 282
- 287 : 283
- 288 : 284
- 289 : 285
- 290 : 286
- 291 : 287
- 292 : 288
- 293 : 289
- 294 : 290
- 295 : 291
- 296 : 292
- 297 : 293
- 298 : 294
- 299 : 295
- 300 : 296
- 301 : 297
- 302 : 298
- 303 : 299
- 304 : 300
- 305 : 301
- 306 : 302
- 307 : 303
- 308 : 304
- 309 : 305
- 310 : 306
- 311 : 307
- 312 : 308
- 313 : 309
- 314 : 310
- 315 : 311
- 316 : 312
- 317 : 313
- 318 : 314
- 319 : 315
- 320 : 316
- 321 : 317
- 322 : 318
- 323 : 319
- 324 : 320
- 325 : 321
- 326 : 322
- 327 : 323
- 328 : 324
- 329 : 325
- 330 : 326
- 331 : 327
- 332 : 328
- 333 : 329
- 334 : 330
- 335 : 331
- 336 : 332
- 337 : 333
- 338 : 334
- 339 : 335
- 340 : 336
- 341 : 337
- 342 : 338
- 343 : 339
- 344 : 340
- 345 : 341
- 346 : 342
- 347 : 343
- 348 : 344
- 349 : 345
- 350 : 346
- 351 : 347
- 352 : 348
- 353 : 349
- 354 : 350
- 355 : 351
- 356 : 352
- 357 : 353
- 358 : 354
- 359 : 355
- 360 : 356
- 361 : 357
- 362 : 358
- 363 : 359
- 364 : 360
- 365 : 361
- 366 : 362
- 367 : 363
- 368 : 364
- 369 : 365
- 370 : 366
- 371 : 367
- 372 : 368
- 373 : 369
- 374 : 370
- 375 : 371
- 376 : 372
- 377 : 373
- 378 : 374
- 379 : 375
- 380 : 376
- 381 : 377
- 382 : 378
- 383 : 379
- 384 : 380
- 385 : 381
- 386 : 382
- 387 : 383
- 388 : 384
- 389 : 385
- 390 : 386
- 391 : 387
- 392 : 388
- 393 : 389
- 394 : 390
- 395 : 391
- 396 : 392
- 397 : 393
- 398 : 394
- 399 : 395
- 400 : 396
- 401 : 397
- 402 : 398
- 403 : 399
- 404 : 400
- 405 : 401
- 406 : 402
- 407 : 403
- 408 : 404
- 409 : 405
- 410 : 406
- 411 : 407
- 412 : 408
- 413 : 409
- 414 : 410
- 415 : 411
- 416 : 412
- 417 : 413
- 418 : 414
- 419 : 415
- 420 : 416
- 421 : 417
- 422 : 418
- 423 : 419
- 424 : 420
- 425 : 421
- 426 : 422
- 427 : 423
- 428 : 424
- 429 : 425
- 430 : 426
- 431 : 427
- 432 : 428
- 433 : 429
- 434 : 430
- 435 : 431
- 436 : 432
- 437 : 433
- 438 : 434
- 439 : 435
- 440 : 436
- 441 : 437
- 442 : 438
- 443 : 439
- 444 : 440
- 445 : 441
- 446 : 442
- 447 : 443
- 448 : 444
- 449 : 445
- 450 : 446
- 451 : 447
- 452 : 448
- 453 : 449
- 454 : 450
- 455 : 451
- 456 : 452
- 457 : 453
- 458 : 454
- 459 : 455
- 460 : 456
- 461 : 457
- 462 : 458
- 463 : 459
- 464 : 460
- 465 : 461
- 466 : 462
- 467 : 463
- 468 : 464
- 469 : 465
- 470 : 466
- 471 : 467
- 472 : 468
- 473 : 469
- 474 : 470
- 475 :
- 476 :
- 477 :
- 478 :
- 479 :
- 480 :
- 481 :
- 482 :
- 483 :
- 484 :
- 485 :
- 486 :
- 487 :
- 488 :
Scan
Volltext
Seite 469 : 465
Jacobische Polynome und vierdimensionale Potentialgleichnng.
Von
F . Hund in Rostock.
Vorgelegt von R. Courant in der Sitzung vom 9. März 1928.
Bei der quantenmechanischen Behandlung des symmetrischen Kreisels durch Reiche und Rademacher ^) traten als funktionen folgende Funktionen der Euler sehen Winkel d^, tj (f atf :
( 1 ) «=. sin'^-Jcos'-J.F^-^, 1 + Q+s + d, 1 + d, sm^|-)-e'^''^ + ^4
WO Q, 6, T ganze Zahlen sind und p^O, s = |(9 + т|, d = |б--т| ist; F bedeutet die hypergeometrische Reihe oder das Jacobische
Polynom OJl+s + dj 1 + d, sin^-^j in der üblichen Bezeichnung^).
In diesem Zusammenhang erweist sich das Funktionssystem (1) als Verallgemeinerung der Kugelflächenfunktionen oder der Funktionen
( 2 ) PJcos^»)^?^6cp
\ y ^ ^ ^ Sin
( wo P^ die Legendreschen Polynome sind) für den Raum der Eulerschen Winkel d", ф, (p. Da das Funktionssystem (2) sehr leicht aus den ganzen rationalen Lösungen der dreidimensionalen Potentialgleichung JV = Q gewonnen werden kann, so liegt die Vermutung nahe, daß sich auch die Funktionen (1) durch eine fache und symmetrisch gebaute Differentialgleichung mit mehr als drei Variabein definieren lassen.
Dies ist in der Tat der Fall, wenn man sich auf den kreisel (Kreisel mit drei gleichen Trägheitsmomenten) beschränkt,
s -\- d bei dem der Eigenwert nur von ; == q-\-----^— abhängt.
1 ) F.Reiche (mit einem mathematischen Anhang von H. Rademacher), Zs. f. Phys., 39, 444, 1926.
2 ) Vgl. z. B. Courant-Hilbert, Methoden der mathematischen Physik I, S. 74, Berlin 1924.
Seiten
Export
Einzelbilder herunterladen
Bilddaten
Info
Titel
Metadaten
Übergeordnetes Werk
Jahr
Digitalisierungsdatum
Sprache
Bereitgestellt von
Hilfe
Über TIFY
TIFY ist ein schlanker und für Mobilgeräte optimierter IIIF-Dokumentenbetrachter, veröffentlicht unter der GNU Affero General Public License 3.0.