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On some formulae in Elliptic Integrals.

Von A. Caviey in Cambridge.

I reproduce in a modified form an investigation contained in the
memoir, Zolotaretf, Sur la méthode d'integration de M. Tchébychef,
Annalen t. V (1872) pp. 560—580.

Starting from the guartic
(@, b, ¢, d,e) (2, N, =a-2—0a - —p.-2—p -2-—-90,
we derive from it the quartic
(ay, by, ¢y dyy &) (@), V= @ — o 2 —fy & — 7y % — 0y,
where, writing for shortness
A= —ca+ ﬁ +y— ()\’
p= a—f+y—7d,
ve— adfp—p—0,
the roots of the new quartic are

051=9+‘;;,
1 .
ﬂ]=6+ ;u’
34
yv="0-+3,>
61=67

6 being arbitrary: the differences of the roots a,, Biy vi, 0 are, it
will be observed, functions of the differences of the roots e, B, vy, 0.

We assume @, — @ = 1, nevertheless refaining in the formulae
@, or a (each meaning 1), whenever, for the sake of homogeneity, it
is convenient to do so. The relations between the remaining coeffi-
cients b,, ¢,, d, ¢, and b, ¢, d, ¢ are of course to be calculated from
the formulae — 4b = Za, 6¢ = Zaf, &e. and the like formulae
— 4b, = Za,, 6¢, = Za, B, &e. We thus have
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370 A. Cavrgy.
—A4b, =46 + } 2%&}
— £p2 : u“
Gey =66 +%62’§+%2129
— 3 362 3
—4d =467+ §0° ZEY | 49 312 + Lapv,
o= 081+ 300 BB 4 10* B2 4 164pv,

'

where I 2% — 1 52242,

i luvy
Writing for shortness

C=ac—b?, I=ae—4bd-+ 3¢,
D=a*d—3abc+4-203, =ace—ad*—b2e+42bed —c3,
E=a%—~—40bd-+6abc —3bY(=a? I—3("), Bx:‘“_?é:%‘?_gf ,
we have

Fi = —4 (49,

R = 48C,

Zip = 24C-48(b 4 0y,

Apv = 32D,

I = 64 (— a2l + 120?,
where the last equation may be verified by means of the formula
(ZAp)? = ZAu? 4+ 24uv Z1.
And we hence obtain

a; = 1,

b—=—6 — B,

¢ = 624 2Beo —20,
d,=~“~93————31392+ 66 — D,

o' - 4B6% — 1200 + 4 Do,

|

And consequently
(ar, by, ¢, dy, €) (x,, )= (1,— B, —2C,— D, 0) (x, — 6, D4
Henee also
I=a,e, —4b,d, + 3¢2, = — 4BD 4 120% = a’I;
Jy=a,c,6, —a,d,? —b2e,+2b,¢c,dy — ¢}, =— D*4-8C* —4BCD,
= — D?*4 8C3 + C (a1 — 1207,
= 0?CI — 403 — D?,
== a3,
where, as regards this last equation a?CI — 4C% — D = ¢*J, observe

that C, D are the leading coefficients of the Hessian H and the
cubicovariant ® of the quartic function U, and hence that the identity
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— ®? = JU* — IU?H + 4H3, attending only to the term in 2°
becomes — D?=q3J — a? CI+44 03, which is the equation in question’.
We thus have I, =1, J,=J; viz. the fanctions (a, b, ¢, d, ¢) (z, 1)°,
{a“ by, ¢, dy, ¢) (2, 1)%, are linearly transformable the one
into the other, and that by a unimodular substitution z, — oz - g,
Y1=9¢x -+ 6, where 96" — 9’6 =1. It may be remarked that we
have (a, b, ¢, d, ¢) (x, 1)'= (1,0, C, D, E) (z + b, 1)%; and hence
the theorem may be stated in the form: the quartic functions
(1,0, C, D, E) (z, 1)}, and (1, — B, — 2C, — D, 0) (x,, 1), are
transformable the one into the other by a unimodular substitution: or
again substituting for E its value a®1 — 302, = —4BD + 9(?,
the quartic functions (1, 0, C, D, — 4BD -+ 90?) (z, 1)* and
(1, — B, —2C, — D, 0) (x,, 1)* are linearly transformable the one
into the other by a unimodular substitution. In this last form B, C, D
are arbitrary quantities; it is at once verified that the invariants I, J
have the same values for the two functiogs respectively; and the theorem
is thus self-evident.
Reverting to the expressions for o, 8,, y,, 8, we obtain
o, — 0, == %5 By —yy = ‘2—:;‘;, (¥?— ), = a-;la_'ﬁa\:_'},:

51—‘31:1&4- 71_a1=_f_(12_1’2), :.:ﬂ‘—ﬂta

24’ vl Bi—ao, ’
e, v 9 y—0 a—
g} "_61 =5 & — =m(@‘ ““12),='T__—67—@-
Hence also

@« —8 - —y, p—8.-p—w, y—0.-a—8
=0 —08 By —py, b—0 -y —0a, y—0 a—§
which agrees with the foregoing equations I, = I and J = (since
I, J are functions of the first set of quantities and 7, J, the like func-
tions of the second set; in fact I =5 (P*+ @* 4 R?, and J =
4z (@ — B) (R —P) (P— @), if for a moment the quantities are
called (P, @, R).
d
We consider now the differential expression P ey
x—o-—f-x—y -c—05"?
to transform this into the elliptic form, assume
2 e—By—0, 2y ¥T%

y—a f—0 - y—29"’

(where a is of course not the coefficient, = 1, heretofore represented
by that letter: as a will only occur under the functional signs sn, cn,
dn, there is no risk of ambiguity). And then further

asn®u—dsn’a

X = —ps—3—
sn? u—sn?a

Formiug the equations
24*
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k? sn?a=——g:§, k? Sn4a=~%§%‘:‘§)
we deduce without difficulty
sn? ¢ = ::g ) :ﬁ::: = ;c:z )
cn?a=z:(§, zﬁ.z = i:lg
dﬂ?a=—;‘—zg; %2:-3":_—:‘5%:
1 — F2sntq= 0" 5‘)3(:gj’—ﬁ—gy—~3)’ = B_l_(%—;?a

the use of which last equation will presently appear.
We hence obtain

2snu cnudnudu=_(a_5)sn2a£;)§’

t—a-x—f-x—y-x—0
snu ecnu dnu = spa enadn a0 (wfajz ==,

and consequently

__(e—d)sna dx
2du= cnadna Vo—az—fa—ya—0’
or, reducing the coefficient,
dx —9

VoTaw—Boyob  Vy—ap_s
which is the required formula.
We next have
4en?a cn? a dn2 a 4-f—0y—a Pi—
29, . — vy
sn®2a = (1—ksn*a) 12 P oy —0y
in virtue of the foregoing values
1
7’1“‘“1—“—(5""6)(7’“‘“)&‘3(‘71 0=—2%-
Moreover
E?— e—B.y—d __ _ ey—fi-y—3y
y—af—0o’ y1—ey-f— 0y

Hence the like formulae with the same value of %2, and with 24 in
place of a, will be applicable to the like dlﬁerentlal expression in z;:

viz. assummg
~ z ___oysn®u —0ysn?2a
™ " sn?uw, —sn®2a

we have
dx, —2
Va,—ay-a— By 21— vy -2, — 8, V‘)’l -0y 51*81
We have thus the integral of the differential equation
dm, dax

Vamaro—bro—ria—0  Ve—aepo-yad

du, .
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(the two quartic f'unc:tions .being of course connected as before) viz.
assuming z, @; T ullCt{OIls of u, u, respectively as above and recollecting
that y, — @, - By — Or=¥ —«-f—§, we have du, = du; and
therefore u, = + 1 an arbitrary constant); the required integral
is thus given by the equatious

) 2 (1 xy—4 : :
smlu _ x—0 i‘_‘,“,{ii) = "2 _—'v (fthe constant of integration).
e - o sn?2u Xy— 0oy

Using the formula
_ sn?y —sn? f
sn (w4 1) = snwenfdnf—snf-cnudnw’

we obtain
{(x—&) sn? @ — (r — o) snzf}2

GO 29 e - i T
& — {Z/a,—a-a:——ésnacnf nf— x—ﬂw—ysnfcnadna}

which is the general integral.
We obtain a particular integial of a very simple form by assuming

[ = a, viz. this 1is

a2 2 .
S .t N = S
Zy— ay sn cen?adn?a {V‘”_a.w_d\_yw-ﬁ.x“y}w
this is
20y V1% y—of—49

n—er 118 {Vamer—s—Ve—pu—y)¥
or writing y — « - f — 0=y, —a- B,—6,, reducing and inverting,
we have

okl B Y Al —a z_d—Vr—B-z—p?
@y — 9y f1— 0, yi—0 {]/‘p ww—d—ys—p-o 7} !

which may also be written in the equivz‘mlent forms

oy —B __ v e a0
M =y Wa— B e Vo —yre—a}
et (N WY (V7 e sty SN 70 gy § L)
x— 0y o — &, B — 0, {Vm—yw 0 —)yx—oa-x {3}

In fact from the first equation we have

— 8By — Oy — O
=S et (5, —8) (r — 8)

— Yz =z =0V F—p.x—y A
where the expression on the right hand side is
0,2—0,(es+B+¥ 1) 40,0, 4-yp, — 20 4-2(at - p+-8) —ad— Py +2/ X,
X having here the value
X—=z—-—a-z—p - 2—p-2—0,
Wiriting for a moment
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P=ad+ By, Py =9, + 87,

Q=p0+yea, Q@ =p9,+ v,

B=yd+ af, By =yp0; + o,
then by what precedes @, — R, Ry — P, P, — @, are equal to
Q—R, R— P, P—¢ respectively; that is P,—P=@, —Q=R, —R,
=(suppose) Q, a function symmetrical in regard to «,, B,, y,; «, 8, »:
the equation therefore is

8B, oy .
BRI 8,0, — ey —B1— 7)) — 20 Falat-p-Hy+0)+2) K,
or the relation is symmetrical in regard to e, 8y, »; «, 8, y: and
the first form implies therefore each of the other two forms.

Cambridge, 8 May 1877,



