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H. Bateman. Inversion of a Definite Integral.

The Inversion of a Definite Integral.
By

H. Batemaxn of Cambridge (England).

The following paper is intended as a contribution towards the solution
of a problem proposed by Abel*). Let f(s) and x(s, ) be twoO given
functions and ¢ a given path of integration, it is required to determine
if possible, a function ¢ (¢) such that

6] £(s) = { =(s, ) (t) dt.

This problem is not soluble in general because a function defined
by a definite integral is usually subject to certain restrictions depending
on the nature of the function x(s, £), accordingly there are two goals to
be aimed at: we must first find necessary or sufficient conditioms to be
satisfied by the function f(s) in order that the equation may e soluble,
and then we must give a method of determining the functiom qo (#) when
it is known to exist. )

Fredholm has remarked**) that the above equation may be considered
as a particular case of the more general equation

V() = 11(s) = 9() + 4 [ #(s, 1) 9(¢) ¢

in which the parameter 4 is finally made infinite, but it is difficult to
find conditions that the formula which he gives for the solution of this
equation should have any meaning when 4 tends to infiniky; also this
method requires that the function f(s) should be given for ~walues of s
lying between a and b.

We must therefore seek another method of determining the funection ¢
which will lead more directly to the conditions to be imaposed on f.

¥ Collected Works, Vol. II, p. 67.
**) Acta Math. 1908.
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This is what I have endeavoured to do in § 1, the results are not very
satisfactory, but the method is one of direct caleulation and so can be
used to give in a descriptive way a sufficient criterion for the existence
of a solution; also when the function x(s, ¢) is subject to certain restrictions
the method will certainly lead to the solution if it exists.

In § 2 a particular integral equation is considered and the solution
is obtained by means of Potential Theory. The result is then used to
reduce the solution of a more general integral equation to that of an
integral equation of the second kind.

In § 3 the partial integral equation

ff(S, z) %z, t)dx =ff(x, t) (s, ) dx

is dealt with, it appears that if x(s,t) is the Green’s function for the
differential equation L,(u) =0, then any solution f(s, #) of this integral
equation is also a solution of the partial differential equation

Ls (u) = Lt(%)
The solutions of a partial differential equation of this kind can therefore
be divided into groups, each group being associated with a Green’s
function for a particular set of boundary conditions and every member
of the group being a solution of the corresponding integral equation.
In § 4 some instances are given in which the series

¥, () ¥, {t)
>

represents the fundamental function x(s, ¢) even though it is non-uniformly
convergent in the neighbourhood of certain points. It follows then that
when the series is multiplied by v,(s) and integrated term by term we
shall obtain a correct result. ﬁ

It is known that a series which is non-uniformly convergent for
values of s in the neighbourhood of a point-¢ can be integrated term.
by term when the radius of non-uniform convergence for this point is
finite*). It would be interesting if a series of the above type could be
shown to satisfy this condition, or if some definite criterion for tEé
legitimacy of the integration could be obtained. S

It may be worth while to mention a very general class of series
which can be mtegrated through a point of discontinuity.

Let w,(s)---4,(s)--- be a system of functions such that any

* E. W. Hobson. The integration of series. Acta Math. 1903. o
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function f(s) with only a finite number of discontinuities can be expanded
in the form

2 ¥a(8) f f(8) @ () dt.

Construct the expansion 21/;,,(3) a,(t) for the discontinuous function
0

F(s) = +1(5) s>

0 s=t¢
—2(s) s<t
then ,
) = = [9.() 1) ds + [ @u(9) 2(5) ds
and a 13

2 0.t) = — 21(0) 9, (2)-

The expansion for f(s)y(s) is

OO = D) [FO ) ea(t)at

= — 5 D . @) a, (00 + 5 D 9.6) [T/ (1) a, (1) a.
Now ’ ‘
D) 0s) =+ 1(5) s>1,
=—z(s) s<?

and the series 2%(3) a,(8)f (t) is non-uniformly convergent in the

neighbourhood of ¢=1s (since it is discontinuous), but still it can be
integrated through this point, for the equation obtained by integrating

term by term is
) x(s) =
1 e i
+ $16) + @z + £ [rOamat—% [rormar,
and this is evidently satisfied.

Hence the series Zzp,,(s) a,(t)f'(t) can be integrated through its
0

point of discontinuity ¢ = s.
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The remainder of this section is devoted to.the consideration of the

equation ,

15) = 9(s) — [ #(s, 1) 9 (8) dt

as b varies and it is shown that if the solution ¢(s) is known for all values
of b within a range a to a + 4, and f(s) is independent of b, then the
function x(s,¢) can be uniquely determined. The proof depends upon =2
theorem due to Volterra and assumes that the limitations stated in his
theorem are satisfied.

In conclusion I should like to thank Prof Hilbert for the interest
he has taken in the work and for some useful suggestions.

§ L
The conditions to be satisfied in order that the integral equation
of the first kind may be soluble.
Only a few cases are known in which a general formula has been
given for obtaining the function ¢(¢) from the equation

€y Fs) = [ GG, t) p(t) dt

and in these the expression for ¢ takes one of two forms. In the classical
cages given by Fourier, Riemann and Hankel the function ¢ is
expressed as a definite integral similar in form to the original one, but
when G(s, ) is the Green’s function corresponding to certain boundaxy
conditions for a self-adjoint linear differential equation of the second
order and f(s) satisfies the same boundary conditions and possesses a
continudus second derivate, Hilbert has shown that ¢ is given by
operating on f with the given differential equation.

In order to solve (1) by means of a definite integral we may seek
a relation of the form '

3
- d

(@) JG(s, t) F(t, ) dt = 7 H(s, 2).

A solution will then be given by

90 = [ Ft, )z

provided
H(s, #y) — H(s, ) = f(s).
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Let us now suppose that the function G(s, ¢) is finite and integrable (in
which we include the conditions for a change in the order of integration)
for ¢e<t<d and a <s<b and that f(s) is also finite and integrable
for these values of s, then we can construct two such functions F and
H as follows.

Forming the symmetrical function

3) x(s,t) = dG(s, MG, r)dr

we write

F(5) = [5(s, ) F() Aty + - -, £,(8) = [5(s, 1) fo_y (1) 8,
@ 9.(t) = f CRIAOLE
F(t, 2) = g, (8) — & 9,8 + T 95 — -

H(s,2) = () — 5 () + 5 i) — & fo(®) + -

“These series are absolutely and uniformly convergent for all finite values
of x, for if G and f are the maximum values of | G(s, £)| and |f(s)| for
the given values of s and ¢ we have

If©I<[b—al@rfle—dl, g6 <|b—al*|c—dr @i,

and so the series converge like exponential series.
Observing now that

d a b
S 66,00, = [G(s, 8) at[ Gu, )f, () du
[ c , a
=) f ) du=£,,,()
we find that ‘
a

®) f G(s, ) F(t,5)dt = — 2 L (H(s, 2)},
an equation of the required form.

‘We must now see whether this relation can be used to obtain a
solution of equation (1). If we write

(6) p(t) =2 fM Ft, ) dw

Mathematische Annalen. LXIIT. 34
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and substitute in the equation we get
d d M
M e et =2[ 66 k[ F, )iz
[4 ¢ 0

= —bf% H(s, z)dz
— H(s, 0) — Hi(s, M) = f(s) — H(s, 1).

Two courses are now open to us, we may either write W(s) instead of
f(s) in equation (1) and endeavour to determine f(s) so that
f(s) — H(s, M) = ¥(s)

or we may try the effect of putting M = oo, in which case the method
will succeed if the function f(s) is such that the quantity H(s,«) is zero for
2z infinite and the processes which have been gone through are legitimate.

Every step can be examined directly if the functions f(s) and G (s, )
are known, hence we can determine if a particular function f(s) will
lead to a solution, but for most purposes it is convenient to have a
definite criterion.

It has been shown by Hilbert¥) that if a symmetrical function x%(s, ¢)
is such that to every small positive quantily & and every continuous
function g(s) there corresponds a function %(¢) for which

e

Sls6 =[x nwatfas<e

a a

then any function f(s) which is defined by an equation of the form

£s) = [ x(s, O) (1) dt

can be expressed in an absolutely and uniformly convergent series of the
funetion, ¥,(s) which satisfy the homogeneous equations

$a(8) = 4, f #(s, £) 0, (¢) di (n=1,2,--2).

This theorem suggests a type of function for which the integral
equation of the first kind may be soluble and we accordingly consider
a function f(s) which can be expanded in absolutely and uniformly con-
vergent series .

*) Gottinger Nachrichten 1904. Erste Mitteilung; following E. Schmidt (Inangural-
Dissertation, Gottingen 1905) the first supposition for x(s, t) can be left.
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®) £) =2 RO

where the quantities 1, are supposed to be arranged according to their

absolute values.*)
Multiplying by x(s, ¢) and integrating term by term we have

L6 =D 206, s 0 = 35 0l

Therefore

m-—-1

H(s,0) = 2(-— 1y 2 2;, %,(5)
+Z’(—1\r a 212, ¥, (9)-

Now corresponding to any small quantity & we can choose m so that

D leta )] <e

also .
(4,0 > 14, if #>m,
therefore
Z 121' d"‘n( )|< "27"
Hence
x’
1y 2o 12, ,(s) <2 ;,——ﬁ;<sel
Thus
me—1
H, x>=-=2c S
where
n<e&- e"—;;.
Making ¢ tend to zero we have
© a*
©) H(s,2) = D c,e  9,(9)- .
1

* It is known that the quantities 1, are all real.
34*
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Similarly it can be shown that

F(t,2) = [ (s, ¢) R(s, @) ds

where

(10) R(s, 7) = 20——9 Mp(s),

Now let & be any arbitrary finite small positive quantity, then a number

m can be found so that
PALRAO RS =

‘and a large quantity M can be chosen so that

m M2

Slese 5,9 <&

1
Then will
M2

m~1 M2 ' o
[ IDl=| Do Bu,6)+ e mul) <f+i<e
1 m i

accordingly we have the following theorem.
“If f(s) cam be expamded in an absolutely and wuniformly convergent
series of the functions ,(s) then a function @(t) can be determined so

that f G(s, t) o (t)dt differs from f(s) by a gquantity less than w.
If however we wish to make f G(s,t) p(t) dt exactly equal to f(s)

it is necessary to make M mﬁmte and then it is by no means certain
that the integral for ¢(¢) has a meaning. Two points remain to be settled.

(1) We must show that the function F'(, x) given by formula (10)
can be integrated with regard to x up to z =

(2) We must show that the order of mtegra,tion in the double in
tegral

. fd G(s, at [ e;4"(15, x)dw
- c 0

can be inverted.
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The general case is rather difficult to deal with, accordingly we shall
content ourselves by showing that if the function ¢(f) has a certain
form our method does certainly lead to its determination.

Let us assume that the function ¢(f) can be expanded in an ab-
solutely and uniformly convergent series of the functions g,(f) which
satisfy the homogeneous equations

1a(8) = o f (s, £) 2 ()

where

h(s, ) =fG(r, s) G(r, t)dr.

Then since

£s) = G(s Hoat

and

o0

o(t) = > tu1a()

1

it follows that

(11) Ft z)= Z i{; e_f‘?aﬁxn(t).
1
For

) = [ &, ) f,(du
=jG(u, t)dufdG(u, fv)d'vfG(w, v) f(w)dw
gjb(}(u, t)duf;(u, v)dy f;(w, v)dwfdG(Wﬂ)‘P(’)d’

= J1(t,v)do [ B(v, P p(r)ar.
Similarly
9.(0) = _f 1t 0)g,_1 () do

hence



A
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a,() = S 1(t, vyav [ h(z, ar 2 @0 2a(7)

- a
= 2 Ff:' xn(t)
1 n

and

L4

5.0 = 3 i

1
which lead to the required result.
We must now determine 2 f F({, 2)dz and to do this we must in-
0

tegrate the series (11) term by term and this will be legitimate if the
following sufficient conditions are satisfied.

1°. The series u,(x) + uy(«) + -+ should be uniformly convergent in
an arbitrary interval.

20, f u,dz should exist for all values of n.

3. 2 f u,(x)dz should converge for values of ¢ within the range

n=1a
of integration.
4%, A number p can be found independent of  and such that

Zr" ﬁ,,(x)dw

a=1 x

<&

for all k's greater than p. )
The first three conditions are evidently satisfied on account of the

uniform convergence of the series 2 a,1,(f). The fourth condition will

1
be satisfied if p can be found independent of » such that

r »2

D a,e ()

n=1

<&

for all ’s greater than p. Now since the series 2 a,%,(f) is absolutely
1

convergent we can determine a number m such that
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Dllen®)] <5

and then

r

2

m

22
aye g, (f)

2
ae 4,0 | <5

<3

also we can determine a number p such that

m »#2

> ae #ig, (0

1

&
<%

if % > p, and then we shall have

r »2

D ae g, (t)

n=1

<t +i<e

All the conditions being satisfied the integration term by term may
be effected and we have

x2

2 [Ftoyia=2 [ D' = e M aa(0) do
0 0 1"

zj?%%@=¢@=

Hence the proposed method is in this case successful. It can also
be used in some cases when the limits of integration are infinite pro-
vided the functions g,(f), f-(s), are defined by the equations

9, () =fG(u, t)dufG(u, v)dvfG(w, v) f(w)dw
0,0 = [ 6w Hiu [ G 0) g, (0) dv

fu(s> =IG(S, U) dv fG(’w; ”)f,,_l(;ﬂ)dw.

For example if

70 =0f Ty(st) Vst p(f)dt
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where J, denotes the zeroeth Bessel function, it has been shown by
Hankel*) that

p(t) = of :}o(St) Vstf(s)ds
and our function F(¢, z) is found to be
ze—® t[::To(st) Vstf(s)ds
0
and so the method leads to the correct result.
§ 2.

Solution of a particular equation.

We shall now consider the particular integral equation

+1
f(s)=/—-——1(ﬂf———; r=153-) (1<s<+1)
A — 2ts 492 '

and shall show that if f(s) is regular within the unit circle |s| =1, the
solution is given by

n-—-1

o) = 1= (1= 2 [[nf{t+3YT— 8 cose)

27

+2{t+ YT —Beosa} 4 {t+4)1—cose)]sin*~lade.

Let #,, &y, - -+, @,, be a system of rectangular coordinates in a
space of » + 2 dimensions and r* =22+ 2+ -  +27,9=1 a unit
hypersphere situated in this space.

The equations

Vy = f(a; + i2)

- )

define a potential function for points inside and outside the hypersphere
respectively. This potential function is continuous at the boundary and
so will be due to a boundary distribution @, the conditions of being con-
tinuous within the hypersphere and of vanishing at infinity being fulfilled
since £(s) is regular for |s| < 1.

*) Mathematische Annalen, Bd. 8 (1875), p. 482. The function f(s) must of course
be such that the improper integral has a meaning.
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Poisson’s equation for the space we are dealing with is
Fr .'13‘2 SR o a xg ‘i‘ '{Q =

where 4 is n times the total area of the bounda.ry of a unit hypersphere. The
corresponding equation for determining the surface density is accordingly

v,
on,

oV, —
+~a—n;+la-—0

where the normals are drawn into the two portions of space separated
by the boundary.
Substituting the above values of ¥ for the boundary » =1, we
find that
Ao = nf (z+ izy) + 2(z, + i25) [ (2, + i2,).

The potential at the point (s, 0,0, - - -) when calculated by direct integra-

tion is
V= /\m__.____" d.‘g___n_.
(1-—-2.1:,3—}-&”)7
Put
#;, == cos 0
Zy = 8in 6 cos @
Zg ==smesmqacosx
%,y -~sm051n<psmx - €OS ®
Zypp=8inOsingsing .- sino
then
dS =sin"0 -sin"'p-..dldyp - -do
accordingly
7 27 2n 2n .
* 27 R R
V=/fm 9 sin 'pGdgjq/:/-\--sin"‘zx---dx---dw.
. (1-—280080—'—82)?
0 0 0 0
and

Sx 2

l—nffs1n"081n"*1¢td0d¢ff -gin*~fy...dy---do.

Now by an easy “calculation we find that

n 2n
S fsinn 6 sinr=1 920 dgp — 22
00

hence our equation becomes
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Tt 2n

n lesin®@sin* " lop.dody
fs) =V = H// L -
o . (1—2800894—82)2
0

7
f(s) =/ ¢ (cos 6) sin 6 40
4 (1—2sc050+s’)_2—

¢(cos 0) = '43? sin®—1 Bflo‘ sin"~1 @ -de.
0

<

i e if

then

Putting cos 6 =% and substituting the value of 1 ¢ obtained above, we have

o) =1 (1 - t”) 7 f[nf(t—{—zy 1—#% cos &)
+2(t+o]/1—tzcos @) F (t+iY/1—fcose)|sin*~Lada

which is the formula stated.
If we put =1, q:(t) P, (t) where P, is the Legendre polynomla.l

we find that f(s) = 2m+1

s®, and our formula gives

2r

¢(#)=P,0) = %'f(t—i—l/t—é—:_l— cos &))" de

which is Laplace’s formula for P, (f).
Our formula may also be written in another form. If we differentiate

the equation 1

f(S) — (P(t)dt
(1 —2ts 4+ 8%

©|3

+1

2(s) =nf(s) + 2sf'(s) = / A—sV 9@ dt -
a— 2ts+32)2

accordingly the solution of .

Ao / n(l_ss)wz p(t) dt
(1—2ts+s? ?
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is given by

®

-1
(1——~t’)T 27 -
() =" fx(t-i— VBT cos ) sin" ' &-de.
0

The result may be obtained by another method which also applies
when % is an even integer.

n—1
s
The fanction L =82 = tzz +5- only differs by a constant factor from
1 —2¢ 2 T
26 ( s+ 5%

Z where G is the Green’s function for the hypersphere, and the formula

7T
V"“jfx (x, + Vr¥— . cos o) sin"1a- de
[

represents a potential function which is a function of # and z, only and
which takes the value

k4
fz(s) sin"~le - de
0

at the point (s, 0,0, ).
" The values which this potential function takes at points on the
hypersphere will be given by

L4
| 40) =./1x(t + V#=T1cosa)sin" e de
0

and Green's formula V= %—? V() ds gives us the required relation,
hence we have the following theorem:
If y(s) ds regulor within the unit circle |s| =1, the integral equation

+1

% () =/w&“:f—?m—g p@®dt  (n=1,238,--,00)

4 (1—2ts-+s%) &

is satisfied by

n—1
_a—e?* 7 — .
o) = wg—“fx(t +V#—1 cos &) sin*~*e - do.
0
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The previous relation may be deduced from this; hence if
+1

f(s)rz/AMT (1=1,2,3,-) (—1<s<+1)
(1—2ts L 572

then

n-1 T

o)== (1—t2)7f[nf(t + VFZT cos )
0
+ 2@+ VE—T1cosa)f (t+ VEE—1 cos a)] sin"~'e- de.

An interesting case occurs when »n =2, for if s+ —2— = 22 the first

equation may be written
+1

F(2) =sf(s) =—;—fzqi_(_t)t dt

. 21
and the second equation gives

9(f) = [(t + VY —1cos a) f(t + V& —1 cos oc)]

The function F (z) is in general a many-valued function of the form
Ly
differ by 2¢m we see at once how the above formula will give the
correct result. )

The formula which we have obtained may be used to make the
solution of an integral equation of the first kind depend upon that of
an integral equation of the second kind.

Let +1

x@%z/ G@@+—4ﬂ:f%ﬁ}¢@dt
(1—2ts4s?) 2
-1

then if 7

n

(t)—-——~———— Jx(t—}-vtz I cos @) sin"~1 ¢ - de

we shall have

$(t) = 9(t) + [ 2G5, 9) 9 (0) dt

where
n—1 1

f(r(s—l-]/ — T cos e, t)sin* e de.

”(s, (1-—s)
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Now this is an integral equation of the second kind and so can be
solved by Fredholm’s method provided the determinantal fumction ¢ is
not equal to zero.

§ 3.
A partial integral equation.
The theory of the integral equation of the second kind

b
) F&) =96 —1[x(s,0) 9(t) s
is closely connected with that of a certain partial integral equation
b 5
@) Sx(s, @) F(@, 8) do = [u(z, 1) (5, 2) da.

This equation has many remarkable properties, for instance if f(s, ¢) and
9(s, t) are two solutions then the function

ks, ?) =ff(37 %) g(z,?) dx

is also a solution.
For if we multiply both sides by g(r,s) and integrate with regard
to s between a and b we have, assuming that the order of integration

can be reversed,
b

S f g, 5) x(s, @) F (w, 8) dsdw = [ x(z, 9 h(r, ©) dz

a a a
or

f:/’u(aﬂ, $)g(s, x) f(z,§) dsdx = | #(z, ) h(r, z) dz

since g(r,s) is a solution of (1).
Hence

.[‘”(”’ s) h(s, t) ds =g/ﬁx(w, O h(r, =) dz

which proves the proposition.
The function #x(s,?) itself is evidently a solution of (2) hence we
can form at once a number of other solutions, namely
b

%x(s, 1) =‘fn(s, z) %(x, t)dz,

/1

xun(s, f) =fx(s, z) xx(x, t) dz,
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The solving function K(s,?) of the equation (1) is also a solution
for we have the equations

x(s, t) =K (s, t) — 4 | (s, r) K (r,?) dr,

K(s,t)= u(s,t) + Zl[‘bK(s, r) x(r, t) dr.

Again, if we seek a solution of the form @(s) ¢¥(f) =f(s,?) we find ab
once that we must have

9@ —1 b%(s; 1) ¢(t) dé =0,

(t) — 4 fx(s, 1) 9(s) ds = 0

and it is known®) that these equations are satisfied by functions ¢(s)
and ¢ (s) when A is one of the roots of the determinantal equation

0(4) =0.
Now let us consider the particular case in which the function x is the

Green’s function corresponding to boundary conditions I ... IV *¥)
for the self-adjoint linear differential equation of the second order

L,(u) = 0.
It is then evident that a function f(s,?¢) which satisfies the integral
equation

3) [ 66,9 (@t dw= [ G, s, ) da

must satisfy the same boundafy conditions as G (s, ).
For instance if we take boundary conditions I, viz.

G(a,2)=G(@®,z)=0
we have, putting s = a in the above equation,

0= [ G, 80,2 do.

But if ¢(f) is a function which has a continuous second derivate and
which satisfies the given boundary conditions, the solution of the equation

o) = Gz, f() da

* Plemelj, Zur Theorie der Fredholmschen Funktionalgleichung. Monatshefte
fiir Mathematik und Physik. XV. Jahrg., p. 93 u. p. 337).
*n Of. Hilbert, Gott. Nachr. 1904, Zweite Mitteilung.
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is given by f(2) = — L.{@(x)} and this solution is unique, accordingly
we must have [(0,z)=0.

If we refer to the definitions of the functions G (s,?) in Hilbert's
paper it is easy to see that they are all solutions of the partial differential
equation
(4) L(w) = L,(w).

We can now show that a continuous solution of equation (3) is also a
solution of this partial differential equation. If we write

9, 8) = [ G(s,2) (2, 8) do = [ G(z, 1) {5, ) dw

we have
f(s,t)=—L,gp(s, t)
b

= —fG(x, ) L,f(s, x) dz.

But since f(s, f) satisfies the given boundary conditions we have

14
(s, 9= _‘Q['G(x: t)L,-f(s, ) dz
therefore ’ ‘

0 =fG(x, ) [L,f (s, x) — L,f (s, x)] d=.

b
Now the equation 0= f G(z, %) ¢ (%) dt only possesses one solution viz.
¥ (¥) = 0, hence we have
L,f(s,8)— L, f(s,8) = .
Thus corresponding to each Green’s function for IL,(u)=0 there is a

group of solutions of the partial differential equation, and if £ (s, ?), g(s, )
are any two members of this group the function

h(s, t) =ff(s, %) g(z,t) dx

will also belong to the group.
If 9,(s) is an ‘Eigenfunktion’ belonging to the function G{s, 1) the
quantity 9,(s) v,(f) is a solution of (3) and se

ff(s’ ) b, (2) ¥, (8) da

is a solution and is of the form @(s)¥.(), hence we must have
@ (8) = pata(s), that is
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b tn(s) = [ £ (s, %) 0,() da.

This equation shows that the functions v,(s) are also Eigenfunctions for
the ‘Kern’ f(s, ?).

There are other types of integral equations which are satisfied by
certain groups of solutions of a partial differential equation. For example
we can show that if F(z,y,2) is a solution of Laplace’s equation

kd 27z
%fF(x,y,z—l—ipcosO)dO==?1;J"F(x+gcos¢p, y+osing, 2) do
1] 7]

provided the integrals have a meaning.

In other words the integral of a solution of Laplace’s equation round
a circle of radius ¢ is equal to the integral of the same solution multi-
plied by a certain definite function, along an axis drawn through the
centre of the circle and perpendicular to it, the integration extending
from the centre of one point sphere passing through the given circle to
the centre of the other.

A gimple proof of this relation may be obtained by remarking that
each integral represents the solution of

o*v o'V , &V, 10V
EE R T TR T

which reduces to F(2,y,2) when 9 =0, and this solution is known
to be unique.

The two paths of integration appear to be related in some way to
the characteristics of the differential equation

2 2 2
%;}: %% + %—},—7 =0;

if the relation could be expressed in a more definite form it might
suggest how similar integral equations could be obtained for more general
partial differential equations.

§ 4.
Construftion of an integral equation possessing assigned solutioms.
The problem of determining a function x(s, ¢) so that the equation

-

9 () =1 [ x(s,8) p(t) dt

may be satisfied for a given set of functions ¢,(s) and for a given set
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of values of 4, has been considered by Hilbert. If the functions 9,(s)
possess the orthogonal properties,

fzpm(s)z,b(s)ds—() m+n
=1 m=n
and the series 2% ¥,(8) ¥, (t) is uniformly convergent it will furnish

a solution of the problem. It is however not necessary for this series to
be uniformly convergent as the following example will show.

Choosing the Legendre polynomials for our given set of functions
we remark that they satisfy the equations

ds{(l——sz’) ir }+ n(n+Du =

and so we can obtain a simple function developable in the form

D 4,P,(5) P,(t)

by finding a suitable solution of the partial differential equation

d on
%{(1 )38} {<1 tg)é'f}'
Assuming a solution of the form x = F(s*+1#*) we obtain
1
V1—s*—1¢*

‘We shall now show that the function
1
1—s2—1t?

=0 sS+E>1
gives us a solution of our problem.
If we integrate the expansion

P, (st+V{IA=)1—8) cos ) = ”(8>P"(t)+22g+::§: Py (s)Pu(t) cosm e

%(s, 1) =

x(s, 1) = sS4

between 0 and = we obtaix}

7
P, (st+ VT =1 =) cos &) du=n P, (5) P, ()-
0
Putting 2 = st + /(1 —s®) (1—#) cos « this relation gives
P, (x)dx .
S = —xP,(5) P, (1),

— st — ¢4 2stx
Mathematische Annalen. LXIIL 35
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the integral being taken over the values of z between —1 and 4+ 1 for
which the quantity under the square root is positive.
When ¢ = 0, this gives

f = "@d” . =z P,(s) P, (0)
—Vi=g

which shows that with the above function %(s, #) the fanctions P,(s) are
solutions of the homogeneous integral equation.

The corresponding expansion is obtained by making use of a theorem
of Darboux’s.*)

Sufficient conditions that a function f(s) may be expanded in a
convergent series of Legendre polynomials for values of s lying between
—1 and +1 are that

+1
(1) The integrals 2";_ dsf(s) P,(s) should have a meaning, this

<1

requires that if f(s) becomes infinite within the range it should
become infinite to an order less than unity.

(2)If P,(s) becomes infinite at one of the points 41 it should

. B 3
become infinite to an order less than e

(8) f(s) should satisfy the conditions laid down by Dirichlet for a
function developable in a Fourier series, i e. it should only have
a limited number of maxima and minima and of discontinuities
within the range.

When these conditions are satisfied the series

S p ) (09 P ds

0

will converge to the value f(s) at all points where f(s) is continuous,
and to the value

5 D Fs+0) + F(s—0)]

at any point where f(s) is discontinuous.
Applying this theorem to the function

=

) =(1—s2—a?— 4+ 2stx) * 1—s'—u2— 4 2si2>0
= 1—8—22— 4 2st2 < O

*) Approximation des fonctions de trés grands nombres, Journ. de Math. (8 série)
tome IV, (1878), p. 893.
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we obtain the series
5 D@n+1) P,(5) P,(t) P,(a).
0

Putting # = 0 the expansion becomes
1

¢! ——82—-t2)_ T 1>s442

1-8...2n—1
e At DR, P, 0= 1<s+8

4../ (’" rs3
the particular case when ¢ = 0 has already been given by Heine.¥)

Other expansions may be obtained in a similar way, for instance if
PR 52

A X 121 X
n\&) aX - ”__—Q_s_—‘:: 2 D2
fl/l——s’—t’ f]/1 z P,(0) Vi—s—¢ =* P}(0) Pu(t).
-Vi-g -Vi-g -Vi-£
The left hand side becomes on changing the order of integration
+Vi- d +V1i-¢# i
P $ 8
f n@)ia [t f P,(0) ds [
“m’ C_ViZe
+V1 x* d
8
f P@) d”f Vi—g e~
—Vica

hence if 4K is the period of the Jacobian elliptic functions
2n—1) 1—s?
2(4n+1) 3 42( Z;W P,.(s) P,,(t) = V;:__?K( T_.%) $#> 1

= 11—32K(Vg;) sE< B2

Putting # =0 we have the expansion
’ S (2n—1
K'(s)= %Z(—l)"(4%+1) W%;%TL P, (S).
0
If the solution of the integral equation of the second kind

f(s) = o(s) —J #(s, %) @(¥) dt

is known for values of b contained within the interval a to a + 4, the
function x(s,t) can be uniquely determined.

*) Handbuch der Kugelfunctionen Bd. 1, p. 85.
35*
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For when b =a we have @(s) = f(s), and so the equation may be
written

b
(5,0) — 9(s, a) = [ p(t, B) (s, £) dt
and is therefore of the form ’

F(b) — Fla) = [0, 1) w(t) at.

Now Volterra*) has shown that if in an integral equation of this

kind F(b) and F”(b) remain finite and continuous for values of b between
o and a + 4, and the functions

ot b) and g—gz = H(t, b)
are always finite for b > ¢> @, a+ A>b>a, and are integrable, and
if the lower limit of the absolute value of ¢(b,d) is different from zero,
there will exist one and only one finite and continuous function ¢ (f) which
satisfies the functional equation for values of b between @ and a+ A4 and
this function will be given by

b ©
F'@ 1 ’
() = 2o ——ma'fF (x);’ S,(x, by dz

where

H(z,b
S (=, b) = ‘P((Zi b))

8@ 8) = [ 8i_;(@, §) 8,_, (& ) di.

Applying this theorem to our equation we see that the function %(s, )
can be uniquely determined provided the above conditions are satisfied.

Gottingen, March 6% 1906.

*) Sopra alcune quistioni di inversione di integrali definiti. Annali di Mate-
matica 1897.



