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552 H. F. BricEFELDT.

The Finite, Discontinuous, Primitive Groups of Collineations in
Three Variables.*)
By
H. F. Bricurerpr of Stanford University, California, U.S. A.

A complete enumeration of all finite, discontinuous groups of col-
lineations in three variables was first attempted by C. Jordan in his
well-known paper Mémoire sur les équations différenticlles lindaires &
ntégrale algebrique, Jowrnal fiir die reine wund angewandte Mathematik,
84 (1878), p. 89. It appeared, however, shortly afterwards, that Jordan
had overlooked two important groups, viz.: the G4, discovered by Klein
(Mathematische Annalen, 14 (1879), p. 428), and the Gy, discovered by
Valentiner (Copenhagen, Videnskabernes Selskabs Skrifter, 6. Raekke,
1889). No other groups have since been added to Jordan’s list. It seems
therefore desirable to have a new and rigorous proof of the fact that
Jordan’s groups together with the G and the G form indeed a complete
set of the finite, discontinuous groups of collineations in three variables.
This is the theorem to be proved in the present paper.

1. We consider only finite groups of linear projective transfor-
mations of the plane (z:y:7), and we call such groups Collineation-groups
in three variables. We represent them by isomorphic groups of limear
homogeneous substitutions of determinants wnity in three variables (z, y, 2),
which groups we call Linear Groups (or groups, simply, where it cannot
" be misunderstood). The isomorphism will be 1:1 or 1:3, actording
as the linear group does not or does contain the group F' of similarity-
substitutions of order 3:

x"_"w) yl—_‘?/y ZI‘_“-zi
Filod=02, =0y, =z
¥ =o'z, y=0oY =0 =1, w==1.

*) For a bibliography of this subject consult Wiman: Endliche Gruppen linearer
Substitutionen, Encyklopddie der Mathematischen Wissenschaften, Bd. I, pp. 528-—530.
See also two papers by the author, On the Order of Lineor Homogeneous Groups,

Tramsactions of the American Mathematical Society, vol. 4 (1908), pp. 387—897, and
vol B (1904), pp. 310—825,
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Thus, to the three linear homogeneous substitutions
o =0(a,x + by + ¢2), Y = 0(a,2 + byy + ¢;2),
7 =0(asx + byy + ¢2), =1,
will correspond the one collineation
2y d = (o @+ by + c,2): (a2 + by + 638) : (4% + by + ¢52).

2. We say that the group is primitive if it does not leave invariant
a point or a triangle. A finite group leaving invariant a point will also
leave invariant a straight line not passing through the point and vice
versa (the group is completely “educible’®). We call such a group
intransitive®). A group which leaves invariant the triangle of reference
is said to be written in monomial form**¥). Its substitutions merely
permute among themselves the variables x, y, #, in addition to affecting
them with certain constant factors, A substitution or a group which
leaves invariant each of the vertices of the triangle of reference, is said
to be written in canowical form. The variables z, y, # are merely mul-
tiplied by certain constants by the substitutions of such a group. A sub-
stitution S of finite period =

r=a2+by+cz, Y =aux+by+cz, F=a,2+by+ce

can always be transformed, by a proper choice of new variables 2y, ¥,
2y, into the canonical form:¥*¥)

@ =02, Y =0y, & =0
The quantities 6,, 6;, 0, called the multipliers of S, satisfy the
equation 6"=1. We have the equation

[S]=0;+ 0,+ ;= a, + by + ¢5-
The quantity [S], so defined, shall be called the weight of S.

3. The more fundamental phraseology and theory of abstract groups
and permutation-groups will be supposed known.t) In particular, it may
be mentioned that an abelian group consists of mutually commutative
substitutions, and that a simple group contains no invariant subgroup.
The only simple groups whose orders are < 504 are the following: the
alternating permutation-groups in 5 and 6 letters, of orders 60 and
360 respectively; a group of order 168 and one of order 504{t). The

*) Maschke, Mathematische Annalen 52 (1899), p. 363.
**) Maschke, American Journal of Mathematics 17 (1896), p. 168.
*¥) See Moore, Mathematische Annalen 50 (1898), p. 216 for proof and
references.
4) Consult Burnside, Theory of Groups, Cambridge University Press, 1897;
and Weber, 4lgebra, Bd II, Braunschweig (Vieweg und Sohn), 2°¢ edition, 1899.
1) Burnside, Theory of groups, pp. 371—375.
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usual way of executing a consecutive set of linear substitutions ABC. ..
in the order from left to right will be adhered to here. For instance,
if we restrict ourselves to two variables z, y, and 4 is the substitution
¢ = a2 + by, y'=ca +dy, B the substitution o = ;7 + byy,
Y = ¢ + dyy, so that

&’ = (a,ay + bics)x + (ayby + bydy) 9,
Y'= (o0 +dc)z + (eyby + dydy)y,

we write instead but one accent in the two substitutions 4, B (i. e. B as
above, A:9'=a,x+ by, ¥ =e¢,z + dy), and then indicate the order
in which the two substitutions are executed by the symbol A4B.

By the order of a group (i. e. total number of substitutions of the
group) shall be understood the order of the corresponding collineation-group,
unless otherwise stated.

4. A list of the finite, non-abelian, groups of linear homogeneous
substitutions, of determinants =1, in two variables z, y, will be useful
for later references and is therefore given here. Each group is represented
by a set of substitutions that generate it.¥)

1%, The Dihedral group of order 2n:

{S: ¥=cx, y=0oaly, a"=1;
T: 2=y, y=—u—
20, The Tetrahedral group of order 12 (as a collineation-group;

of order 24 as a linear group. When written as a linear group, it
contains the group of similarity-substitutions in two variables: z =z,

Y=y; &' ==y =—y:
§: &=y, Y=—um
T: =iz, y=—1iy, E=-—1;
l U: o= (—1—Da+41+0)y,
V=5 (l+dot5(-1+y.
8% The Octahedral group of order 24 (as a collineation-group; of
order 48 as a linear group):

S, T and U of 29

;1 : , 1 .
V: & =ﬁ(1k—!—z)z, y =V§(1-—z}y.

*) See Klein, Vorlesumgen 4iber das Ikosaeder (Leipzig 1884), pp. 36 —42;
Weber, Algebra, Bd. II, pp. 269 —287 (204 edition, 1899).
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4°. The Icosahedral group of order 60 (as a collineation-group; of
order 120 as a linear group):
8: o=y, Y =—z;
T: ¥ =eaz, y=ealy, =1, asl;
U: «

4

— E—@+eady), y= a-_}a;i(—— (@ +a= ) z—y).

5. The arrangement of the analysis is as follows:
I Preliminary Theorems.

IL. The Order is not Divisible by any Prime > 1.

IIl. The Order is a Factor of 2%-3%.5%.7% It is shown that, if
the order is divisible by 2% or 3* etc., then will the group considered
contain a certain invariant subgroup H, and will not be primitive unless
the order of H is of the form 3% The primitive groups containing in-
variant subgroups of this order are the ‘Hessian’ group of order
216 = 2%. 3% and some of its subgroups (art. 23). The Theorem III is
therefore established.

IV. Awailiary Theorems. In any case where the order is divisible
by 3.5, 3%.7, 5% 7% or 5.7, the group has an invariant subgroup H
and is therefore not primitive. Hence, the order is a factor of one of
the numbers 2%.38% 28.3%.5, or 25.3%2. 7.

V. Classification of the -Primitive Groups. The results are as
follows:

A. Primitive groups having invariant intransitive subgroups
(none).
B. Primitive groups having invariant monomial subgroups:

1%, The Hessian group of order 216 as a collineation-group, of

order 648 as a linear group:

S: =y, ¢y =2z, d =z

T: o=z, y=o0y =0 o’=1, o+l;

U: o' =9z, y =9y, =90z ¢’'=o%

Vi @ =0@+y+4), ¥=0@@+oy+o®), =9+ o’y+ as),
1

0= o
20, A subgroup of the Hessian group, of order 72 as a collineation-
group, and of order 216 as a linear group:

‘ 8, T and V of 1%
UVU-': #=9@x+y+0%), =0+ oy+ wr),
7 =g(wx+y+ ws)
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30. A subgroup of the Hessian group, of order 36 as a collineation-
group, and of order 108 as a linear group: S, T and V of 1°
C. Primitive groups isomorphic with simple abstract groups:
4% Group of order 60, both as a collineation- and as a linear group:

El; x’zy’ y’=z, Z’=.’I7;
Ey: o =2, §=—y, &=—2
,_ 1 .
E;: x=§(—-x+u2y+mz), y=?(y2x+ply—3),

(= (mr— Y+ ),
w=a+t et =2 (—1+V5), by =t + =5 (—1—VB),

b =1,
k

5. Group of order 360 as a collineation-group, of order 1080 as

a linear group:
{El, E, and E; of 4°;

E: od=—z y=—o0z i=—0o, o' +o+1=0

6% Group of order 168, both as a collineation- and as a ﬁngar
group:
S: o =s&x, y =4¢y, 7 =2¢s, =1, s=1;
T: #=2, y=2, Z=y;
U: o =h(ex+By+ve), y=nBa+ry+as), &=h(yatey+pa),

«=¢—¢t Pf=&—¢ y=s—¢,

1 1
k=-7A(s+52+e4—.9“1—£‘2—£‘4)=~—~—-

V—1
6. For a detailed study of the subject of linear groups consult the following
memoires, in addition to those mentioned in the footnmotes and in the synopsis by
Wiman, ‘Endliche Gruppen linearer Substitutionen’, Encyklopdidie der Mathe-
matischen Wissenschaften, Bd. 1, pp. 522—5564¢ )

Weber: Algebra I, Lineare Gruppen.

Frobenius: a series of articles in the Sitzungsberichte der Kgl. Preuf. Aka-
demie der Wissenschaften, beginning with ‘Uber Gruppencharaktere’, Sitzungsberichte
1896, p. 986. i

I Schur: ‘Uber die Darstellung der endlichen Gruppen durch gebrochene lincare
Substitutionen’, Jowrnal fir die reine und angewandte Mathematik, Bd. 127 (1904),
p. 20; also articles given in the Sitzungsberichte der Kgl. Preup. Akad. d. Wiss.,
beginning with ‘Uber eine Klasse von endlichen Gruppen Unearer Substitutionen’,
1905, p. 717. .

W. Burnside: & series of papers in the Proceedings of the London Mathe-
matical Society, beginning with ‘On group characteristics’, vol. 33 (1900), p. 146; also
a paper ‘On the reduction of a growp of homogeneous Unear substitutions of finite
order’, Acta Mathematica 28 (1904), p. 869.
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A. Loewy: ‘Uber die Reducibilitit der Gruppen lnearer homogener Substitu-
tionen’, Transactions of the American Mathematical Society, vol. 4 (1908), p. 44, and
further papers in the same journal.

On the special problem of the collineation groups in four variables consult
Bagnera, Rendiconti del Circolo Matematico di Palermo, 1901, p.161, and 1905, pL;
Autonne, Journal de Mathématiques pures et appliquées, 1901, p. 8561; Blichfeldt,

Transactions of the Am. Math. Society, 1905, p- 280 and Mathematische Annalen,
1905, p. 204.

L. Preliminary Theorems.

7. The Theorems 1—3 will be assumed true for all linear groups
in two variables, as they may be verified either directly from the list of
the binary groups given (art. 4), or by employing the methods used
below in the case of three variables to the case of two variables.

Theorem 1. An abelian group can be written in canonical form.

An abelian group G which is not the group F (art. 1) merely (for
which the theorem is evident), contains an invariant substitution 4 which
is not & similarity-substitution. Let us choose the variables so that 4
is written in canonical form (art. 2), say

&=z, y =Py, #&=ys
If no two of the multipliers «, 8, y are equal, we prove the

theorem simply by determining the general form of any other substi-
tution B of &, which must satisfy the relation

AB= BA.

If «=p+y, we find the general form of B (i. e. of every sub-

stitution of @) to be the following:

& =o0x+by, y=cr+dy, 2 =ez
The substitutions
‘=az+ by, Y =czx+dy
form an abelian group in two variables, which can be written in canonical
form. New variables 2,, y,, certain linear functions of z, y, may there-
fore be choosen so that every substitution of G is of the form
2 = 0,2y, Y =0y, & =0,

Theorem 2. A group G containing an invariant abelian subgroup
H = F is either intransitive or can be written in monomial form.

We prove the theorem simply by writing H in canonical form, and
then find the general form of a substitution B of G such that BA, = 4, B,
where 4, 4; belong to H. .

Theorem 8. A group G whose order is the power of a prime p
can be written in monomial form.
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Consider a group G of order p™. We can construct a series of
groups
G} Gl) Gm e
of orders pm, pm—1, p»=2 ..., each of which is contained in all that
stand to the left of it and is invariant in G*¥). Now, if G is abelian,
the theorem is true (Theo. 1). If G, is abelian, but G not, then can
G, not be the group F, whose substitutions are commutative with every
substitution of G**). Hence, G is intransitive or can be written in
monomial form, by Theo. 2. If G is intransitive, say of the form
¥ =ax+by, y=cx+dy, 2 =es,
the group formed of the substitutions
¥ =ax+by, Y =cx+dy
will be of order p». The Theorem to be proved being true for two
variables, it would be true for three.

If G,,, is abelian, but G, not, then is G, ,,+F. The group @,
leaving G,,, invariant, could be written in monomial form, and the
Theorem is proved.

8. Lemma 1. Let X =0 be a true equation, the left-hand member
of which is the swum of a finite number of roots of umity. A certain root
of unity of order p* (p being a prime), say 6, may be selected so that every
term of X is the product of a power of 6 and a root whose index®*¥) 45
prime to p. Then, if 0 be replaced by 1, the resulting equation may no longer
be true, but the left-hand member will become p>< (the sum of a finite
number of roots of unity).

This follows immediately from a Theorem by Kronecker+) which

says that, 8 being regarded a variable, the quantity X either is divisible
by the expression ~

146" g2t p. .. gle-npnt

or vanishes for all values of 6. If §, represents 62", so that 6, is a
primitive root of the equation 6, —1 =0, then we can write every
power of 6 occurring in X in the form 6'6%, where ¢ <p, t, <p. Then
Kronecker's Theorem says that either will X vanish for every value of 0
and 0;, or must be divisible by 146, + 6,24 ---+ 6,2-%. In other

*) Burnside, Theory of Groups, p. 64.
*¥) Ihid. p. 68.

***) By the index of a root of unity ¢ we mean the least positive integer m
for which ¢™ = 1.
1) Mémoire sur les facteurs irréductibles de Pexpression 2" — 1, Jowrnal de
Mathématiques pures et appliquées, t. 19 (1854), p. 178.
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words, i 2 be arranged according to powers of 0y, then are the coeffi-
cients equal.
9, Let 6, «, B, .- represent a system of primitive roots of the
equations
" —1=0, " —1=0, ' —1=0,.-,
and 0, «;, B, - primitive roots of the equations
011’-—1-—=0, o?—1=0, 7—1=0,--,
0, 4,7, being different primes. We shall suppose the system 0, «, §,-- -
chosen so that every term of X can be written in the form of a pro-
duct of powers of roots of the system. Then a little consideration of
Kronecker’s Theorem will convince one that the terms of the quantity =
can be arranged in the following form:
2= T(l + 6, + 012"“ cet 91:0_.1)”" A+ o+ a4+ 0‘1‘1-1>
+ B(l + B+ ﬁ12+ i ﬁ17_1)+ I
where the powers of 0 contained in 7' are <p, those of ¢ in A4 are
< g, those of 8 in B are <r, ete. It is then apparent that the equa-
tion X = 0 is satisfied whatever finite values be given to the roots 6, ¢,
By 0% 0f B2y ebe 0,0, By, 0% o0 B - -, ete., regarded now
as independent quantities, so long as
1+01+012+,..+01p—1___0, l+0£1+6£12+"‘+061”"1=0,
L+ B +B 4+ =0,---.
In particular, we may put O for every 6,60%, ..., 67-1 «, 0% ... at-!
8, B, -, p—% - oceurring in T, 4, B,---, and replace 6,, 0,% -
0.7~ o, e, -, 00 B, 8% -, 877 .- in such a manner by the
numbers O, 1, — 1 that we have 146, + 62+ .-+ 0,2-1 =0, ete.
If, however, this scheme be carried out only with reference to the roots
6,6% ..., 07 o,ef -, 00 B, a? .-, B, -, at the same time
replacing each of the roots 6,,6,% ---, 6,2=* by 1, the quantity = will
not necessarily be =0, but will certainly be =0 (mod. p). We shall
state this result in the following form:
Lemma 2. Let every term of X be written in the form
(Gtaxp® ) (Breypy ), 4 <p; @, a,<q; b, b <7,
Then if every factor (6'af®---) which is not already =1 be replaced
by O, every factor 0,5 by 1, and the powers ey, &2 ---, 0,974 B,, B2, -+,
=Y, .-, regarded now as so many independent quantities, be replaced
by O, 1 or — 1 in such a manner that the equations
Lot ol ottt =0, L4B i+ +fr =0,
are satisfied, then will the resulting value of X be an integer =0 (mod. p).
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II. The Order is not Divisible by any Prime > 7,

10. Let G be a group whose order is divisible by a prime p > 7.
Then it contains a substitution S of order p, which we may write in
canonical form:

8: &' =0z, y =0y, &=0, 0,2 = 0gf =6 = 1.
Two cases may arise: the multipliers are all different, or 6, =6, < 4,.
‘We shall consider only the first possibility, remarking that there will be
hardly any difference in the manner of procedure in the two cases.

Let T be any other substitution of order p in G:

T: &=ax+by+ez §=az+by+ e, 7= ayw + by + Cg4.
Let us form the substitutions 7'S, 7'S% T'S* We have (art. 2)
[T]1= a + b + ¢,
[T8]= a6, + B30, + ¢305,
[T8%]= a,0,® + by0,® + ¢;6,%,
[T8%] = a,0* + by0,* + ¢;0,*
Eliminating the quantities a,, b;, ¢; we get the equation
[rf1 1 1 1
W (5] 6, 6, o,
(787 6. 65 6°
[T58% 6} 6 65
Dividing by (6, — 6,) (0, — 0;) (6, — 0,) we get
[T8% + [T] £, + [TS] Z, + [TS87] Z; =0,
the coefficients X, X,, %, being certain integral functions of 6, 6,, 6;.
The weights [78%], [T], - - - being each the sum of three roots of
unity (art. 2), we have an equation X =0 of the type comsidered in
articles 8—9.
We shall apply the Lemma 2, and put 1 for every root whose in-

dex is p. To such roots belong 6,, 6, and 6,, and the quantities X,
Z, and X take the values

L G=1@A—2)
g

=1
2

respectively, as may be proved readily. To clear of fractions we multiply
throughout by » + 1. The weights [T'S*], [T'], etc., being each the sum.
of three roots of unity, will take integral values lying between — 3 and
+ 8, inclusive, by the process of article 9. Indicating the resulting value
of the indeterminate quantity [T'S*] by [7'S8*], we obtain, finally, a con-
gruence of the form

A(A—2),
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[TS=al®+bA+¢ (mod. p), 4=0,1,2,-- ., p—1;
a, b, ¢ being certain integers independent of 2.

Bearing in mind that [7'S*]' can have only 7 different values, namely
+3, +2 +1,0, we find without much trouble that the congruence is
possible only if @ =0=0 (mod. p) when p > 7. It follows that

[TS7=TY=3 (mod. p),
since 7' was, by assumption, a substitution of order p.

Now, the weight [7'S*], for any given value of 1, could contain no
roots not satisfying the equation 6# — 1 =0. For if it did, we could at
the outset have made one such root O by the scheme laid down in ar-
ticle 9, in which case the quantity [7'S*] (for the value of 1 given)
would have had ome of the values + 2, + 1, 0 only. No ore of these
numbers is, however, =3 (mod. p), if p > 7.

11, The product of any two substitutions of G each of order p, as
T'S, must therefore be the identical substitution (whose weightis 1++1-1)
or be a substitution of order p. It follows that all the substitutions of
order p contained in (, together with the identical substitution, form a
group by themselves. This group, H say, is transformed into itself by
the substitutions of (f, as a substitution of order p is transformed into
one of the same order. The order of H is evidently a power of p. It
can therefore be written in monomial form (Theorem 3). A monomial
group will, however, contain substitutions of order 2 or 3, unless the
monomial form is the canonical merely, in which case the group is evidently
abelian. Accordingly, H is an abelian group, and G can not be primitive
(Theorem 2). Hence, finally, a primitive group can contain no substitu-
tion of prime order p > T. .

Theorem 4. The order of a primitive group is not divisible by any

prime p > 1.

IIL. The Order is a Factor of 2%.3%.5%. 72

12. We may study a group whose order is the power of a prime
very easily by writing it in monomial form (Theorem 3). We shall not
enter into the details of this simple problem, but merely state the fol-
lowing results:

«. A group of order 2* must contain a substitution of order 8, or
a substitution of order 4 whose weight has the form (— 1+ ¢+ 9),
?=—1.

B- A group of order 3* (of order 8° as a linear group containing F)
must contain a substitution whose 3" power is neither the identical sub-
stitution nor a similarity-substitution.

7. A group of order p?, p>>3, must contain a substitution of order p*

Mathematischo Annalen. LXIIL 36
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‘We shall proceed to show that a group ( containing any of the special
substitutions just mentioned must leave jnvariant a certain subgroup H,
defined below, and that as a conmsequence it cannot be primitive. Now,
by a well known theorem, a group whose order is divisible by p* (p
being a prime) contains a subgroup of order p"*) It follows, from
Theorem 4 and from the results stated under «, B, y, that the order of
a primitive group must be a factor of 23.3%.52. 72

13. Consider a group G containing a substitution S of order 8,
whose multipliers are ¢y, ¢5, @5. At least one of these must be a pri-
mitive 8% root of unity, and we shall, for the present, assume that they
are different one from the other. We choose the variables of G so that
S is written in canonical form.

Let T be any other substitution of G@. We can form an equation
in the same manner as we formed (1) of article 10, by eliminating cer-
tain quantities a;, by, ¢; from the weights of the substitutions 7, 7'S%,
T8 and T8% namely the equation:

[ [r8] 1 1 1

[TS'] 9* @t o5t

[T8] ¢, ¢ o

[T8%] 9.° @.° @y 4

After multiplying out we divide by (@, — @,)(®y; — @5) (9 — @,).
The weights [7], etc., being each the sum of three roots of unity, we
obtain an equation X =0 of the type considered in articles 8—9. We
shall apply the Lemma 1, and put 1 for every root whose index is a

power of 2. Indicating the modified weights by the symbols [7'],,
[T84],, - - -, the resulting equation will be found to be of the form

3[T], — [T8%,— S[TS], — 6[T8%, =0 (mod. 2),

[T],=[78%, (mod 2).

14. The group G considered may contain other substitutions S;, S, -,
besides S* enjoying the same property, viz:
2) (T=[T8), [Th= [Z8:)s ---  (mod. 2),
T being any substitution of G. We shall prove firstly, that all such sub-
stitutions form a group H, and secondly, that this group is invariant in G.

Firstly, to show that, if S, and S; satisfy the congruences (2), so
will 8,8;; i. e. to show that

[T, =[T(55)) (mod. 2).

= 0.

or

* Sylow’s Theorem; see Burnside, Tkeory of Groups, p. 90-
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Now, as T represents in turn all the substitutions of G, so does
T8,. Substituting 7'S, for T in the second of the congruences (2), we have

(78),=[(T8)S;]; (mod. 2),

(78] =[T(5,8,));
= [T} (mod. 2)

by the first of the congruences (2), proving the proposition.

Secondly, to show that, if T' and ¥ be any two substitutions of G,
and if S, be a substitution of H, then is also VS V~! a substitution of
H. We have

(3) (V-1IV],=[(V-*TV)S], (mod 2)

by (2). But, we may readily prove that
(B] = [4BA~],

whatever be the substitutions (of finite orders) A and B. Hence,
[(V=217v]=[T],

(VIS = [V(V1TVS) V=] = [T(VS, V)]
Substituting in {3) we get
[Th=[T(VSV-"] (mod 2),

proving that V'S, ¥—! belongs to H. That is, H is an invariant sub-
group of G. The group H can neither be the group F nor the iden-
tical substitution, since, H contains a substitution of order 2, namely S*
(art. 13).

15. We have so far studied the effect of the presence in G of a
substitution S of order 8, with three distinet multipliers. In like manner
we may deal with the cases where (f contains a substitution §” of order
8, two of whose multipliers are equal; or a substitution S” of order 4,
whose multipliers are — 1, ¢, 4; i*= — 1. We begin with a determinant
differing from the ome of article 13 simply by lacking its last row and
column in the former case, and its second row and last column in the
latter. We show the presence of an invariant subgroup H in both cases,
containing a known substitution of order 2, namely (S8°)* in the former
case and (S”)? in the latter.

It remains for us to study the group H. It cannot contain a sub-
stitution whose order is a prime number ¢+ 2. To prove this, let 7' in
the congruences (2) be the identical substitution. Then we have

[7,=3=[5], (mod 2),
S being a tentative substitution of H of order g, and S/ any power of 8.
If the multipliers of S are «, §, y, we have

1. e.

36%
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3=[8, =o'+ p +¢ (mod 2)
and therefore

9 9
3 X w= SV P+ (od 2)
= ]=

7 being a root of the equation 62 — 1 = 0, which equation is also satisfied
by «, § and . Now, if none of the latter roots are = 1, we get, by
putting n = 1, the impossibility

3¢=0 (mod. 2).
In all other cases we get similar impossibilities by choosing a suitable
value for 7.

It follows that the order of H is a power of 2. We can therefore
write this invariant subgroup of G- in monomial form. When so written,
we find it to be either

a) abelian, in which case G is not primitive (Theorem 2), or

b) intransitive, having a single invariant straight line. This line
should evidently also be invariant under G, in which case G is intran-
sitive, not primitive (art. 2).

To resume, if the order of G is divisible by 2% then will G contain
a substitution of order 8, or one of order 4 whose multipliers are —1, 4, 4.
The group G will, in both cases, contain an invariant subgroup H and
is not primitive. Accordingly, the order of a primitive group is not divi-
sible by 24

16. In exactly the same way we prove that if G has a substitution
of order p® p > 3, then it has an invariant subgroup H of order p™
Such a group being abelian (cf. art. 11), it follows that G is not pri-
" mitive (Theorem 2). Hence, the order of a primitive group is mot divisible

by p® p being a prime > 3.

: In the case p =3 we find that a linear group can have no substi-
tution of order 3™ whose 3 power is not the identical or a similarity-
substitution, unless it has an invariant subgroup H of order 3 Tt will be
shown later (art. 23) that there are three primitive groups which contain
invariant subgroups whose orders are powers of 3. A cursory examina-
tion of these groups reveals the fact, however, that they contain no sub-
stitution whose 3*¢ power is not the identical or a similarity-substitution.
It follows that the order of mo primitive collineation group is divisible by
3% (cf articles 12 and 16). Hence, finally, we have the

Theorem b. The order of a primitive group is a factor of 2%.3%.52.72,
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IV. Auxiliary Theorems.

17. Theorem 6. If the group G contains a substitution 8 of order 5
and one T of order T; 4. e. if the order of G is divisible by 5 - 1, then
will G contain o substitution of order 5 - 1.

Let [8]= e, + o, + ¢5. Choose the variables so that 7' is written
in canonical form. Then if a,, &;, ¢; be the coefficients in the principal
diagonal of the matrix of S, we have

[8T]) = a8, + by B’ + cs By, = 0,1,2--6.
Hence, if § be a primitive 7% root of unity different from g,~% §,~%,
B;~ %, then
(4) [ST+BIST]+ BLST®) + P[ST) + B[S T4] + °[ST®] + °[S T¢] =0

Assume the theorem not true, so that none of the weights [S7"]
contains both 7™ and.5™ roots at the same time. Let us arrange accord-
ing to powers of B. Then must the coefficients of the different powers
be equal (art. 8). Now, .

a) if none of the weights [S7] contains 7* roots of unity, the
equation considered is already arranged, and we have

[S]=[ST];
b) if some of the weights contain 7% roots, say [ST], [SZ?], - -
then we will write the sum of the corresponding terms in the form
BIST]+ BIST N+ - - - = ko + Bk + Bhy + - - + O,
and (4) becomes
{[S1+ k! + Bk, + 82 (ke + [ST?]} + PRy +--- =0,
from which follows:
) [S1+ ky="ly, or o + ag+ o5+ ky— kK, =0.

Arranging this equation according to the five different powers of «,
the coefficients should be equal (art. 8). But, %y — %, being free from
5% roots, the equation (5) has at most four different powers of &, so that the
coefficients should all be = 0, which is absurd. Hence, only (a) is tenable.

By writing S in canonical form instead of 7, still assuming the
theorem to be proved not true, we get in the same way

[T] + «[ST] + «2[S2T] + a¥[S*T] + eA[S4T] = 0,
[7] = [ST].

[S]=I[T], or e+ a5+ a5=p+ B+ Bs,
which, like (5), is an impossibility. Accordingly, at least one of the
weights [S7%] must contain both 5® and T7* roots of unity, and the
theorem is proved.

and

Hence,
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18, Theorem 7. If a linear group G has a substitution S of order 5
(or T) and & substitution T whose multipliers are @, , po®, where ¢* = o,
o + @+ 1=0, then it has one of order 9-5 (or 9-7).

Proceeding as in article 17, we obtain an equation of the form

(6) [8]+ ¢*@[ST] + o[ST] = 0.
Now, it follows from Kronecker’s Theorem (art. 8) that the equation
A+ 9B+ ¢'C=0,

(4, B, C being sums of roots of unity none of which can be written in
the form spw® or s@?w?, where ¢ is a root whose index is prime to 3)
can be satisfied only if 4= B = C=0. Then the assumption that none
of the weights [SZ7] and [ST®] can contain both 9* roots and 5%
(or T™) roots at the same time is readily proved untenable.

19. The two preceeding theorems state that G contains a substi-
tution ¥ of order p”q, p and ¢ being prime to each other, under certain
conditions. This is the same as saying that, when these conditions are
fulfilled, G contains two commutative substitutions S (=V#") and T(=V7)
whose orders are prime to each other. In such cases G will have an
invariant subgroup H, as we shall proceed to show, unless the weights
of S and T are of certain types.

Theorem 8 Let 8 and T be two commulative substitutions of a
group G, of orders q and p* respectively; p and g being different prime
numbers. Then if two of the multipliers of S be not equal, G has an in-
variant subgroup H.

The substitutions S and I’ generate an abelian group, which we will
write in canonical form. We suppose

S: 2 =z, ¥ =0y, &=ouz
T:2 =Bz, y=pHYy =040
and assume that &, o, and &, are all different. Let 4 be any substitu-
tion of G, and let the coefficients in the principal diagonal of the matrix
of 4 be a,, b, and ¢,. Then if we eliminate the three last quantities
between the four equations obtained by writing down the weights
[4] = a; + by + ¢y, [AT)=a,p; + by By + €35, [AS] = etie,, [45?] = ete,
as in article 10, we get the equation
} 4 1 1 1
[AT] B B B
(48] o & o
(487 o & |

=0.
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We shall apply the Lemma 1, and write 1 for every root whose
index is a power of p. Then we have

{[A]p“ AT ]p} oy — o) (g — eg) (g — &) =0 (mod. p).
This congruence can be changed into the following
[4],— [AT],=0 (mod. p),
by multiplying both sides by a suitable factor. Now, 4 being any sub-
stitution of @, this last congruence indicates an invariant subgroup H of
the kind defined in article 14 for p =2.
) 20, It is thus shown that, if G contains a substitution V of order
p*q, p and g being different primes > 2, and is to be primitive, then
must the substitution V#", when written in canonical form, be of the
type:
(M) V9o =z, f =0y, & =02 of=0at=1.

Again, if the order of G is divisible by 5 (or by 7%), then G has
an abelian subgroup of order 5% (or 7%) (cf. art. 11) and must necessarily
have a substitution of order 5 (or 7) of type (7). This we prove readily
by constructing the different possible types of canonical groups of order 52
(or %), omitting the cases where such groups contain substitutions of
order 5% (or 7%) (cf. art. 16).

Let us now consider a group G having a substitution 8, of type (7).
This substitution leaves invariant a point (x = 0, y = 0) and every straight
line through it. Let S, be another substltutlon into which §; is trans-
formed by a substitution of G; S; will also leave invariant a certain
point (say & =0, 7 =0) and every straight line through that pomt
Therefore, the straight line joining the two points, (# =0, y = 0) and
(# =0, ¥ = 0), must be left invariant by both S, and S;,. Accordingly,
S, and S; will generate an intransitive group (art. 2) say of type
(8) ¥=ar+by, y=cx+dy, &=cz.

The substitutions
©) 2 =oax+by, y=cxr+dy
will form a finite group in two variables.

21. Let S, be of order 7. A substitution of order 7, contained in
a group of type (9), must be commutative with every substitution of the
group (cf. art. 4). Hence, the substitutions S, and § must be commu-
tative with each other, as far as they are looked upon as transforming
the variables x, y. But then it is readily seen from the form of (8) that
they 'are completely commutative. Accordingly, all the substitutions
8S;, S;, - - -, which are transformed one into the other by the substitutions
of G, are mutually commutative, and will therefore generate an abelian
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group, evidently contained invariantly in G. In this event G is not pri-
mitive (Theorem 2).

22. Let S, be of order 5. If S, and S, are not commutative, the
group (9) generated by them must be the Icosahedral group 4° article (4).
Among its substitutions are found the two, A, of order 3, written in
canonical form, and B, a similarity-substitution of order 2:

A:2 =0z, ¥ =0’; o'+o+l=0;
B:W":"'x’ ?/’=_'y'

The group (8) will then contain the substitutions

A 2 =0z, ¥=0Y, &F=eqz

B :&=—z y=—y, &=ez.

The quantities e, and ¢, are 1 or are 5% roots of unity, (8) being
generated by substitutions of order . It is therefore allowed to put
e, = ¢ =1, which is equivalent to replacing A4, and B, by their 5%
powers. But, 4, and B, being commutative, we may call them S and 7'
respectively and employ the reasoning of art. 19 to show that G has an
invariant subgroup H. Hence, if G is to be primitive, S, and S; must
be commutative. However, by following the reasoning of the latter half
of article 21, we find that G cannot be primitive in this case either.
Hence, finally, a primitive group G can have no substitution of order 5 or 7
and of type (7).

Constructing the different possible types of collineation-groups of
order 8% allowed in a primitive group after article 16, we find that
all such groups have a substitution 7' of the kind mentioned in Theorem 7.
Now, by referring to the theorems 6, 7 and 8, we verify the following:

Theorem 9. The order of o primitive group G is not divisible by
38.5, 8517, 5% T2 nor by 5-7. The order is therefore a factor of one
of the numbers 23 - 3% 23.8%.5 or 28.3%. 7.

V. Classification of the Primitive Groups.
A Primitive groups having invariant intransitive subgroups.

23. No such subgroup could be abelian (Theorem 2). If an in-
transitive group is not abelian, it has a single invariant point. This
point must evidently be transformed into itself by any group G con-
taining the given intransitive group invariantly, and such a group G
could not be primitive (art. 2).
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B. Primitive groups having invariant monomial subgroups.

Let @ contain an invariant monomial subgroup K. This subgroup
leaves invariant the triangle whose sides are # =10, y =0 and 2= 0.
If this is the only triangle left invariant by K, then must G evidently
leave that triangle invariant also. We therefore seek the form of a mo-
nomial group K leaving more than one triangle invariant, and yet not
being intransitive. We readily find but one type for K, namely that
generated by the substitutions:

S:a'=y, y=2 #=u;
{T:x’=x, ¥ =o0y, =0 o+tot+tl=0.

This group is of order 9 (as a collineation-group) and leaves in-
variant each of the four triangles:

t=@x=0,y=0,2=0),
by lyyty=@+y+02=0,2+ oy +0c’2=0, x + 0’y + oz =0);
0=1,0 o
The primitive groups permuting among themselves these four tri-
angles are generated by the substitutions
U= (tst): @' =9z, ¥ =gy, { =90z ¢ =0}

V={(tt;)(%4): 7' =e(z +y +2), ¥= o(z + oy + o®2), -
7 =0z + 0’y + a2), 9=;;;1:;;§§
UVU-* = (4 (1) 4 = 05 + 9+ 6%, ¢ = o(a + ay + 03,

7 =o(ox+y+ 02);
as follows:

1°. The Hessian group of order 216%*):
Sand T of X, U and V.

20 An invariant subgroup of the Hessian group, of order 72:
8, T, V and UVU-L
3° An invariant subgroup of 29, of order 36:

S, T and V.

These groups, when written as linear groups, all contain the group F
of similarity-substitutions, and their orders as linear groups are therefore
648, 216 and 108 respectively.

# Cf. Jordan, Mémoire sur les équations différentielles lindaires ¢ entégrale
algébrique, Journal fir die reine und angewandte Mathematik, 84 (1878), p. 209.
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C. Primitive groups isomorphic with abstract simple groups.

24. We found that the order of a primitive collineation-group was
a factor of one of the numbers: 2%.3% 2%.3%.5 and 2%.3%. 7 (art. 22).
The greatest of these numbers being 504, the question is therefore to
determine all the primitive groups isomorphic with the four simple
groups whose orders are not greater than this number; viz. the well known
simple groups of orders 60, 168, 360 and 504 (art. 3).

There can be no group in three variables isomorphic with the simple
group of order 504. For, this has an abelian subgroup of order 8, formed
of 7 distinct substitutions of order 2 and the identical substitution.¥)
Attempting to write this subgroup in canonical form, we find it impos-
sible as a group in three variables.

There is one, and only one, type of a primitive group isomorphic
with each of the simple groups of orders 60 and 360 respectively, as
shown by Maschke in Mathematische Annalen, Bd. 51 (1899), pp. 264—
267. He derives the following types: )

4°. A simple group of order 60, generated by the substitutions

E o=y, y¥=2 &=uw;
4 ’
By =3, y=—y, d=—2

7 1 7 1
Byt =5 (—o+ wmy +u,9), ¥ =5 @r+uny—2),

- , 1
{ =5 (W —y+ 2,

~‘al=——-oc+a,4=~;»(-1+1/5), y2=u2+a3='-;-(—1~]/5), b =1.

This group does not contain the group F' of similarity-substitutions
and is therefore of order 60 as a linear group. It is simply isomorphie
with the alternating permutation-group in five letters a, b, ¢, d, ¢, and its
generating substitutions can be identified with the following permutations:

E, = (abc), E,= (ab)(cd), E;=(ab)(de).
5% A simple group of order 360 generated by*¥)
E,, E, and E; of 4%
E:d=—2z, ¢yy=—0z f=—0'y, o*+o+1=0.
This group contains F and is therefore of order 1080 as a linear

* See Burnside, Theory of Groups, p. 878.
*#) See also Valentiner, De endelige Transformations-Gruppers Theori, Copen-
hagen, Videnskabernes Selkabs Skrifter, 6. Rekke (1889), p. 192.
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group.®) It is simply isomorphic with the alternating group in six

letters a, b, ¢, d, ¢, f:

E, = (abo), E,= (ab) (cd), By = (ab) (de), E, = (ab) (ef)-

There is one, and only one type of a collineation-group simply iso-
morphic with the simple group of order 168, as shown by Weber in his
Algebra, Bd. II, pp. (497—502) 2% edition, 1899).%¥) This group is
generated by the substitutions:

6°. S:a'=ex, y =&y, F=ctz, =1, e1;

T:d =z, y=x, #=y;

U:&' =h(ez + By + p2), ¥ =h(Bs + py+ z), 4 =h(yz+ay + B2),
a=&—&t B=8—¢? p=c—il
k=—;—(s+s2+e4——e“1—-a‘2—s"4)=-i——7-

This group does not contain F and is therefore of order 168 as a
linear group. We can represent the group as a permutation group in
T letters a, b, ¢, d, ¢, f, g, in which case the generating substitutions given
will appear in the forms

S, = (abedefg), 1I,= (abd)(cfe), U,= (ab)(ce).

D. Primitive groups having primitive invariant subgroups.

We saw (art. 22) that the order of a primitive collineation group
should be a factor of one of the numbers 28.3% 28.3%.5 or 2%.3%.7.
The groups 1° and 5° can therefore not be contained as subgroups in
larger groups. The groups 2° and 3° have each a single invariant sub-
group of order 9, namely the group K (art.23). A group containing
either 2° or 3° invariantly should therefore also leave K invariant, and
could be none other than either 1° or 2°. We find that 1° contains
2 invariantly, and 2° contains 3° invariantly.

Consider the group 4% of order 22.3.5. A group G containing
4% invariantly must be of order 2%+«.31+2.5 Now, 4° has 10 sub-
groups of order 3, which must be permuted among themselves by the
substitutions of G. Accordingly, there is in G a subgroup of order
2+a. 31+, 5110 = 21+4. 3145 which transforms a given subgroup of 4°
of order 3 into itself. Therefore, if @ > 0, G contains a substitution of

*) That the linear group cannot be written without similarity-substitutions, is
seen in the following manner. The simple Gy, has an abelian subgroup of order 9,
containing 8 substitutions of order 8. No such subgroup can be written in three
variables directly as a linear group.
**) Cf. Klein, Mathematische Annalen, 14 (1878), p. 444.
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order 2 commutative with a substitution of 4° of order 3. This is im-
possible, by Theorem 8. Hence, a = 0. Again, 4° has 6 subgroups of
order 5. If b>0, we would find in G a substitution of order 3 com-
mutative with a substitution of order 5, which is likewise impossible by
Theorem 8. Thus, the order of G is 22-3 .5, and G = 4°

Consider the group 6° of order 28-3.7. A group G leaving this
invariant should be of order 23.8'+’.7. Now, 6° has 8 subgroups of
order 7, and a substitution of order 3 which transforms a given substitu-
tion of order 7 into its 2°¢ or 4™ power. If >0, G must contain a
substitution of order 3 which is commutative with a substitution in 6°
of order 7. But this is impossible by Theorem 8.




