C‘ U q NIEDERSACHSISCHE STAATS- UND
-~ L UNIVERSITATSBIBLIOTHEK GOTTINGEN

Werk

Titel: Mathematische Annalen

Ort: Berlin

Jahr: 1930

Kollektion: Mathematica

Digitalisiert: Niedersachsische Staats- und Universitatsbibliothek Gottingen
Werk Id: PPN235181684_0102

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN235181684_0102

LOG Id: LOG_0009

LOG Titel: On the polynomial and trigonometric approximation of measurable bounded functions on a finite interval
LOG Typ: article

Ubergeordnetes Werk

Werk Id: PPN235181684
PURL: http://resolver.sub.uni-goettingen.de/purl?PPN235181684
OPAC: http://opac.sub.uni-goettingen.de/DB=1/PPN?PPN=235181684

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational,
research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections
are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission
from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online
system to access or download a digitized document you accept the Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further
reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the
source.

Contact

Niedersachsische Staats- und Universitatsbibliothek Gottingen
Georg-August-Universitat Gottingen

Platz der Gottinger Sieben 1

37073 Géttingen

Germany

Email: gdz@sub.uni-goettingen.de


mailto:gdz@sub.uni-goettingen.de

On the polynomial and trigonometric approximation of
measurable bounded functions on a finite interval.

Von
J. Shohat in Ann Arbor (Mich., U.S. A.).

Introduction.

Let f(z) be a continuous function defined on a finite interval (a, b).
The important role of Weierstra’ theorem dealing with polynomial (or
trigonometric) approximation of such functions is well known. With this
theorem is closely connected the important notion, due to Tchebycheff,
of the “polynomial of the best approximation” to f(z) on (a,b), of
degree < n — it will be denoted here by 1T, (x) —, for which the “deviation”
from f(x) — the so called “best approximation” E, (f) = max | f(z) — I, (2)|
on (a, b) — is the smallest possible, compared with any other polynomial
of degree < n. However, the actual construction of II, (z) is attainable
in a very limited number of cases only.

It is, therefore, of interest to give for any comtinuous function f(z),
defined on a finite interval (a,b), a sequence of polynomials of degree
n=1,2,... which, as n— 0o, converges uniformly to f(x) throughout
the whole interval (a, b), and yields, for n very large, an approximation
of the same order as that of the best approximation.

This was the original object of this paper attained by considering

- . b
the minimum of the integral [p(z)|f(z) — P,, (z)|™dz (m>=1), for
a

m,n—00, where p(z) (=0) and f(x) are properly defined on (a, b)
and P, (z) is the required minimizing polynomial of degree < mn. The
author wishes to acknowledge this part as an outgrowth of a corre-
spondence with Professor Paul Lévy of the Ecole Polytechnique in Paris.

In the course of the said Investigation it was found possible to extend
in two ways the motion of the polynomial of the best approximation (in



158 J. Shohat.

the above sense of Tchebycheff) to the more general class of measurable
bounded functions, making use of “measurable bounds” introduced for such
functions by C. N. Haskins.

We consider in the present paper the above minimum for all possible
cases: 1. m is fixed, n —o00; 2. n is fixed, m —o0; 3. m,n—oc. Thus,
our results supplement and generalize those previously given by G. Pélya,
D. Jackson and the writer?).

§1.

In our discussion we shall make frequent use of the following in-
equalities:
1 §-1

8

lffl(x)f (z)dz ! "d:zc:13 f]f;(x)]adx] (s >1)

Il/\
%
EJ

Fb % “b —i r‘b %g
Jin@+h@ <] in @) de] +] [if (o) ds]
. C Gy
b -3 r b ; -~
i@ —nra 2 fin@ial - flne e
b j; b Q
IACHIACTE x<Lff1 (@) de] [ [1h () 1dz] ~ (s,25>0)

@b <2 el + 18] (s21)

In (1 —4) the existence of the right-hand integrals (integrals are taken
in the sense of Lebesgue throughout this paper) implies the existence of
those on the left side.

Hereafter, the following general notations will be used: G, (z) = é gzt —
i=o

to denote an arbitrary polynomial of degree < n, subject in some cases to
certain explicitly stated conditions; A4, e — to denote respectively a suffi-

1 a) G. Pélya, Sur un algorithme toujours convergent pour les polynomes de
la meilleure approximation de Tchebycheff pour une fonction continue quelconque,
Comptes Rendus 157 (1913), p. 840—843. b) D. Jackson, On the convergence of
certain trigonometric and polynomial approximations, Transactions of the American
Mathematical Society 22 (1921), p. 158—166. c¢) Idem, Note on the convergence of
weighed trigonometric series, Bulletin of the American Mathematical Society 29 (1923),
p- 259—-263. d) J. Shohat, On the polynomial of the best approximation to a given
continuous function, ibid. 31 (1925), p. 509—514.

2) F. Riesz, Uber Systeme integrierbarer Funktionen, Math. Annalen 69 (1911),
S. 449-497, 8. 456.
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ciently large or sufficiently small, but fixed positive quantity properly chosen
in each case; my, n,, ... — to denote properly chosen sufficiently large num-
bers of given sets (m), (n),...; 7,7,, — to denote properly chosen fixed
positive quantities which remain finite as m, n — co.

§2.

Definition. p(2), defined on a given interval (@, b) — finite or in-
finite — will be called a “characteristic function”, abbreviatedly, “c- function”,

b

if: @) p(x)=0 in (a,b), B) all integrals [p(z)zidz (i=0,1,...)
b a

exist with [ p(z)dx>0. In case of finite (a, b) the integrability of

p(x) on (a, b) implies the existence of all the integrals above.
With any such c-function p () we can construct a system of ortho-
gonal and normal Tchebycheff polynomials

(6) e (p;2)=9,(2)=a,(p)z"+... (n=0,12,...; a,>0)
» 0,
(7) gmx)%(xm(x)dx:{ i

which enable us to solve the following problem.
n
Find the upper limit of |w(G,)] E‘! e gii for all polynomials
" ' =0
G,(x) =g, of degree < n, satisfying the inequality
=0

fp(x)!G,.(x)]"‘dxg M

Here p(z) designates a c-function defined on (@, b), (:=0,1,...,7n),
M (>0) and m (=2) are certain given constants.
Solution. Applying (1) we get,

m~2

[2(@)6i()de < ] fp(ayas] "

Thus, our problem is reduced to the case 7 — 2, and we can apply the
solution previously given by the writer %):

m—2

(8) |o(6,)] < u[ f p()dz] “‘{gw?(m}%.

¥) J. Shohat, On a general formula in the theory of Tchebycheff polynomials

and its ‘applications, Transactions of the American Mathematical Society 29 (1927),
P- 569—583; p. 569—571.
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Special case: w(G,) = G,(2), z real arbitrary.

[p@)6, ()" de < 2™

imphies:
(9) 16,2)| < ML @) [p(a)as]
(10) K,(pi2) =K, (2) = 3¢} ().

The assumption m > 2 is sufficient for the applications below. In case
2 >m >1, the representation of (G,) as a definite integral used in
deriving (8) gives,
m-1
nm ” .
(11) |0(G,) :ngfpmdx' Sio(#)
(@, = max @, () in (a,d)).
Note. The above upper limils for | | w(G,)i do not depend on m, if M
-+
and the «; do not, for mm (8), (9) fp (z)dz <1 or <rfp(x)dx'
according to whether f p(z)dz <1 or >1, and similarly in (11).
§ 3.
We apply the solution of the aforesaid problem to the proof of
Theorem 1. Given on (a,d) a c-function p( ) and a measurable

function f(z) “of theclas [Ly' )", 7. e. such that fp(x f(z) " dx exists
(m2=1). Among all polynomials of degree < mn there exists at least one
> o (X) minimizing the integral fp(x [f(x)—P,,(x)|"dz. In case

m >1 this polynomial is unique 4)

4) This minimum problem, with more or less restricted p(z) and f(x), has
been treated previously (loc. cit. })). Here the only condition imposed upon p(z)
b - b

is: [ p(z)dz>0. This clearly is no restriction, since the hypothesis f p(z)dz=0
imp‘llies- p(x) =0 almost everywhere in (a, b). Similarly, the conditiona of existence
of f p(z)|f(z)i"dx is imposed by the very nature of our problem, for, as it is
readle seen from (1-—4), the integrals fp(z) f(x) ™dex, fp(:c) f(x)—Gy(z)i"dz

exist or do not exist simultaneously.
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Proof. By (3),

1

ot - e, mae] 2 [ [0, a]"~ [ fa@) (e aa]

Rl

b b
The assumption [ p () |G, (2)|™dz > (24)", with 4™> [ p @) |f(z)|" d=,
b @ a
implies: [ p(2)|f(z) — @, (z)|"dz > A™ Therefore, we confine ourselves
a

to polynomials @, (x) such that
fp )6, ()| dx < (24)™

The coefficients of such G, (z), for arbitrarily given n, are necessarily
bounded, as we learn from (8), taking successively ¢; =1 (7 =0, 1,...,n),
¢;=0 (j+1¢), and the existence of one at least minimizing polynomial

 (Z) follows.

As to the uniqueness of P, (z) for m >1, the proof is identical to
that given in my aforesaid paper ®).

The above proof gives incidentally the following

Corollary. To an arbitrarily large A > 0 there correspond certain
K, (1=0,1,...,n) such that any one of the inequalities |g,| > K, im-

b
plies: fp(z)!f(x)——Gn(x)]"‘dx>A, where the c-function p(z) and

the function f(x) of the class [Ly'] are arbitrary. The K, do not depend
on m, tf A and M do not; m >1.

We shall use the notation

(12) I, = f 2)|f(z)— P, (z)|"dz = minfp(x) |f(@) — G, () ["d,
and we have evidently, ’
(13) Ln.< [p(2)}i(2)|" dz

§4.

The following two theorems, interesting by themselves, are needed
for the investigation of I, and P o (Z)-

Theorem II. 1°, Let P () be non-negative and integrable. on (a, d)
and such that f p(z)dz >0, Ede'rwtmg an a,rbztmry measurable set of

%) Loc. cit. ¥),d), p. 511. Uniqueness, in case m = 1, seems to require additional
conditions for p(x).

Mathematische Anpalen. 102. 11
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points in (a,b) with mE > 0. Let the measurable function f(z), defined
on (a, b), be such that Imzfp(x)if(x)l’”dx exists for every m>0‘°).
Denote by F the “measurable aupper bound” ") of |f(z)| in (a, d). Then,
lim 1,—,1,’5 = F. 2° If m monotonically increases without bounds, then

m-—> o

lim I’” exists, < F for any p(z) non-negative and iniegrable in (@, b),

m >
1

and [_b_i__}m is also monotonically increasing (so is Iy, if

Jp(z)de

b
fp (x)dz < I) .
*  Proof. 1° The proof is somewhat similar to that given by Prof. Haskins
for the case p(z)=1.%) By the definition of “measurable upper bound”,
we write,
mEB[|f(z)| =2 F—¢]>0, mE[[f(z)I2F+e]=0 (a<2<b)
(with obvious modifications, in case F=+4 ). If F be finite, let E
denote the set of points z in (a, b) such that |f(2)| > F — e. Then,
1 - 1
I*> (F—¢) [_Efp(x)dx]'”-
On the other hand, )

1 1
(14) ILF < (F+e) [fp(x)dx]"‘
Therefore, since ¢ does not depend on m,
1 1
(15) lim I*>F, tmlI}<PF.
m-—>x® m > o

If F be oo, denote by E, the set of points 2 in (a,d) such that
|f(z)| = 2A. Then,

1

(16) Lt >24[ [ p(z)de|" > 4 (m > my).
i, -

The inequalities (15), (16) prove our statement.

%) This follows from its existence, say, for all sufficiently large integral m.

7) C. N. Haskins, On the measurable bounds and the distribution of functional
values of summable functions. Transactions of the American Mathematical Society
17 (1916), p. 181-194, p. 184.

®) Loc. cit. 7), p. 187—188.
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2°. This follows from (14) and from the inequality (see (4))

l‘___ My - My
(17) kg,xupuwﬂmw (m, > m, > 0).
Note. The condition f p(x)dx >0 (mE>0) is indispensable, as

it is seen by taking p(a:)—O flg)=1 for a<e<Laz<Lp<b and
p(z)=1, f(z)=0 elsewhere in (a, b).

Theorem III. Given on a finite interval (a, b) a non-negative in-
tegrable function p(x) and a family {f(x, m)} of continuous functions,
where the parameter m(>0) takes a set of values — co. Assume:
e) im f(z, m)=f(z) wuniformly for a <z < b; B) among the points
in ’?;,w b), where |f(x)]| (necessarily continuous) attains its maximum F,
there exists at least one, say, x = ¢, such that j)‘ p(z)dxz >0, (8) denot-

ing an arbitrary sub-znterval of (a,d) contarning the point c. Then,
[fgp z)|f z,m)j’”dz} =F.

Proof. First, we have
[flz,m) —flz)|<e, |flz,m)|<F+e (aLz<b; m=my).
This assures the existence, for all m under consideration, of

fp(x)lfx m)|"dz, with

1

(18) i = [afp(x)lf(x, m)|"dz | < (F+e¢) [[p(@)dz]" (mzm,).

On the other hand, consider the point  =¢ and the sub-interval (8)
with the properties given above. In virtue of the continuity of f (x) and
the uniform convergence of f(z,m), we can fixe m = m, so large and
the interval (d) so small as to have

[f(x,m)| > F—¢ (2 belongs to (8); m=>m,),

1 1
(19) in 2 (F—s)| [p(a)da]™ (m=m,).
@)
(18), (19) prove our statement, for they lead to the inequalities
1 1
Im 7 < F, lim ' > F.
m-> o m->» ®

We shall not dwell here upon possible generalizations of theorem III.9)

% In theorems I and 1Y the integrals involved can be written as Stieltjes in-
tegrals, for f P(@)[(2)d2= [ (2} dy(a), where v (z)= fp(@)dz. — 45 an

(Fortaetzung der FuBnote auf S, 164.)
11*
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§ 5.

Hereafter, the interval (a,b) is assumed to be finite. We proceed
now to set forth an upper limit for |f(xz) — P, ()|, under the assump-
tion: f(z) #s continuous for a <z < b. Introduce its polynomial of the
best approximation on (a, b) II (), of degree < n, and the best appro-

ximation K, (f) (see Introduction):
(20) E,(f)=max |f(z) — I (z)] < max |[f(z) — G, (z), in (a,bd).

n

We have then, by the definition of P, (z) and by (4),
f p(2)if(2) = P,,(z)|"d

(21) ,
,.m_fp(x ) (@) —11,(2)|"dz S ET(1) [ p(2) dz,

(22) g'mx)!P,,m(x)—IL(x)t"’dxg[2E,.(f>1’"afp<x>dx.

Assume, first, m, not being an integer, is > 2, and denote by 2u the
greatest even integer contained in m. By (4), we get from (22),.

b b

(23)  Jp(@)iP(2) = M, (2)[*de < [2B,(N]* [ p(2) dz,
a a

and this inequality evidently holds also for

(24) 2um<2u+ 2.

Apply (9) to the polynomial [P, (z)— II (x)]* of degree < un, taking
m =2 and replacing n by un. We get,

(25) | Pon(2) = 11,(2)] 2B, (1) (K, (=) [ p (1)t}
(m > 2; z arbitrary),
(26) [f(2) = Pyu(z)| < E,.(f){l +2 [Kw(x)afp(t)dt]?—;}.

Formulae (25), (26) hold for any c-function p(z), for any con-
trnuous function f(x). [For 1 >m > 2 we could use (11).] They yield

3
illustration to theorem YI may serve: 1°. The integral c,,zfp(x)le"da:, (a, b)
1 a

finite. Here lim ¢, (=h’mc’;“) max (jal, {b!). Cf. O.Perron, Die Lehre von

n->® n

den Kettenbruchen (1913), p- 3~520, p. 334~38; 2°. lim ]fe-'w‘ "dx] (2> 0)
n>® 0
= — 11

A
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the order, with respect to n, of |f(2) — P, (z)| for very general p(z),
n .
where the order of K, (z)= 3 ¢3(z) is known.
i=o

Assume, to illustrate, that p(z) satisfies the following

Condition P. There exists an interval (c,d) (a Lc<d < b) with the
Jollowing properties: «) it conlains a finite number of points x; to which
correspond sufficiently small intervals (x;—9;, z,-+46;) (the interval being
one-sided if z, = ¢, d) in which -—"E)_ > 4, with certain k;> —1, 4,>0;
HE A
B) plx)=p,>0 elsewhere in (a,b).

Then, as it has been shown by the writer %),

(27) K, (z) < tn7 (cLz<a),

6 (>0, determined by the %;) and z do not depend on z, nor on x.
Therefore, with p(x) satisfying the condition (P),

(28) f(2) = Pyp(2)| <, B, (f) n** (c<Lz<d),

where 7, does not depend on m, nor on 2, nor on f(z), and this can be

rewritten, as
a

(29) 1(2) = P, (2) | < 7, B, (0" (c<z<ad)
in case
(30) n, m— cc, !?frﬁ remains finite.

With the additional assumption
(31) p(2)2p,>0 for (a<)e<a<d(<H)

we can derive an upper limit for | f(2) — P, (z)| by an entirely different
method.

It makes no use of Tchebycheff polynomials, being based upon the
well known Markoff-Bernstein theorem which we state as follows:

. jG’,,(x)lgM on («, B) implies: 1°. |G, (2)| < Cn* M (¢ L 2 < B),
2°. {Gn(x){§0nM (e +e<Lax < B—¢), where C (of course, not the
same In 1° 2°) depends on o, B and & only.

We write, with the notations used above,

[Pum () — IT, ()] = L J.[P,,m.(t) —II,(1))*#d¢.

1%) J. Shohat, On the development of continuous functions in series of Tchebycheff

polg;oom;.lls, Transactions of the American Mathematical Society 27 (1925) p. 537—550,
p. 540541,
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The polynomial Q(z)= [[P,, (¢) —IT (2)]**dt, of degree < 2nu +1,
et+e
satisfies, for ¢ <o < d, the inequality (see (23))

Q@) < & [p()(Pun(t) — I, (01 s < PB4y,

and Markoff-Bernstein theorem gives:
anm(x) —-Hn(z>l < Tnmann(f)’
(32) [f(z) = P, (2)] <7,,.n'E(f),
g=2 for c<L2<d; ¢g=1 for c+e¢<La<d—e. 1)

This is a special case of (25), (26), for, under (31),
(33) K, (x)<wn® (¢c<L2<d), K (z)<n (c+eLx<Ld—e)20)
In addition to (31) we subject now p(z) to the condition

z+6

(34) Sp(x)de < K6 (cLz<2z+6Ld),
T

where K does not depend on z, nor on 6.

Then we get a new expression for the upper limit of |f(z) — P, ()|
involving the modulus of continuity w (%) of f(z) in (a@, b), which proves
to be especially useful in case: » is fixed, m — co. We write:

z+h z+h
(&) — o) =+ [[7(2) — r0)dt 4 4 (1) — By (1)) a

+ }IZf[an(t)—an(x)]dt§i1+ie+is (h>0; esz<zt+h<d).

I3, S w (R),

» £ z+h mt '%—l_ _%
. m m n K h En
ol S g [J2 010 = Pu"ae]" [ [ p(ar] " < =220,

' 1:3 ,l .—g anthm
(by Markoff-Bernstein theorem; M,,=max|P,, (x)| in (c,d)).

1) The elegant method of D. Jackson, also based essentially on Markofi-Bernstein

theorem (loc. cit. {1-b), p. 162—164), seems to be inapplicable here directly, unless

z4:0
Jp(z)dz),
z

an additional assumption be made concerning the lower limit of

6= ILS%; s %, 2 4 8 varying throughout the whole interval (a, b).
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m~—1

(35)  Bon(2)=11(z) = Pun(e)| S o (h) + B 25D onong, 1
(g given In (32); eLx < d).
[P,,(2)| £ B, (%) +|f(2)].

M,,=|P,(8)]<R, ()+FLR,  +F  (§in (c,d),

R, = max|R, (z)l, F=max|f(z)] in (c,d).

(35), (36) lead to

(36)

m—1 1

(37) 17(2) = Pou(@)] < {0 (0) - S BAD 4 gash ) (1 - Onh)

(Cnih <1),

m—-1 1

K™p ™

(38) 11(2) = Pou(2)| S B,(N{2+ + Cnth):(1— Onh),

(39) [f(2) = Punl(2)| < 2B, (1) {3+ 51—}

(We derive (38), (39), applying (37) to ¢ (z) = f(z) — P, (x) and
taking Cn'h =1).

In (37),(38),(39) ¢g=2 for c<ax<d, g=1 for c+eLx<d+e,
C is given by Markoff- Bernstein theorem.

The expressions given above for the upper limit of |f(z) — P, (%)|
enable us to treat I, and P, (z) in all the cases given in the Intro-

duction. Formula (26) also yields some interesting applications to the
theory of Tchebycheff polynomials.

_L
m

§ 6.
Case I. m is fixed, 7 — co.

1
Theorem IV. The sequence {In",',,} is monotonically decreasing
towards zero for any f(z) of the class [Ly') (m=>1).

Proof. We have, first, by the definition of P, _(z),
(40) 1.>1 Ry AN

n+li;m <=

On the other hand, f(z) being of the class [L}] (m >1), a continuous

)
function ¢ (z) can be determined such that [ p(z)|f(z) — @ (2)|"dz < 2—8; 1%

i¥) The proof is essentially the same as that given by Hobson (The Theory of
functions of a real variable, 2d ed., 2, P- 250) for the cage p(z)=1.
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By Weierstraf3’ theorem, a polynomial @ (z), of sufficiently bigh degree n
b

can be assigned so that [ p(2)|¢ (z) — @ (2)|"dz < 21,, Then, using (5)
a

and the definition of P, (z), we get,
b ’ b
&fp(x)i f(2) — Pm(x)lmdxéafp(x)!f(x) — Q(z)|"dz

<2 [ p(@)|1(z) — ¢ (2)["dz + [ p(2)|¢(2) — @(2)"da} <,

which, combined with (40), proves our statement.

Assuming m >1, and writing P,(2), 1, in place of P, (2),1,,,
we associate with any f(z) of the class [L,'] the sequence of polynomials,
uniquely determined,

(41) P, (z), P,(z), ..., P,(z), ...

or, which is the same, the infinite series

(42)  P(2)+[P(2) — P (2)]+.. . + [Phys(2) = Py(2)] + ...

The sequence (41) may be spoken of as approximating f(z) in the
sense of the “least m-th powers” (D. Jackson), also — slightly gene-
ralizing a notion due to F. Riesz —, as “converging strongly to f(z) with
exponent m”*¥). We have then,

b b
(8)  Im [p(e)]B(e)["de = [p(a)] )] "de,
() dm [p@)B@)e()dz = [ p(a) ()0 (2)dz

(a__<=oc, t < b; g(a) of the class [L,',%ID

In other words, for any f(x) of the class [L,'] (m >1) the infinite
series (42), multiplied on both sides by p(x)g(x), where g(z) is an

o
arbitrary function of the class I_L,’,” ‘IJ, can be integrated term by term
between any two limits (a <), (< b). The convergence is uniform, of
t be variable.
The proof of (43), (44) is essentially the same as that given by
Hobson**) for the case p(z)=1.

13) Loc. cit. %), p. 464. Here we introduce p(z) as a factor.
14} Loc. cit. %), p. 251.
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With regard to the convergence of the series (42), we derive from (26)

Theorem V. The series (42), or, which is the same, the sequence
{P,,.(2)}, with m (>1) fized and n— o, converges to f(z), as-
sumed to be continuous in (a,b), umformly over any sub-interval (c, d)

(a Lc<d L b) where K, (2) = Z(p; (2) = 0(n°) (this certainly takes

le a

place if the condition (P) is satisfied), provided, h.m E (f)n*"=
(6 does not depend on n, nor on z).
From (31) we derive as sufficient condition for the umiform con-

vergence of (41):
a
(45) im E (f)n™ =0 (see (32))

n—>w

quite similar to that given by D.Jackson in the case p(z)=1.%%)

§7,
Case II. n is fixed, m — .

Consider the class of all f(z) measurable and bounded on (a,b).
Denote by F, F respectively the upper bound and the “measurable upper
bound” of |f(z)| in (a,bd).

The notion of the “best approximation” of functions by means of
polynomials of degree < n, established by Tchebychef for functions conti-
nuous over a finite interval, can be extended to the more general class
of measurable bounded functions f(z) (under our consideration) in two
ways, as follows. Using for the best approximation and the corresponding
polynomial resp. the notations Ey (f), Ea (f), Iy (), ITZ (2), we define:

Ey () = upper bound of |f(x) — Iy (z) |, Ex (f) = measurable upper
bound of |f(x) — II{ (z)| on (a, b), are each the smallest possible among
all such expessions formed with an arbitrary polynomzal of degree < n.

The existence of one at least IT, () has been proved by Kirchberger®).
In a similar manner we prove the existence of one at least IT/ (z). The
latter, which seems to be new, is more important, as is shown by theorems
VI, VII below.

If f(x) be continuous on (a, b) then
F=F, IL(x)=If(2)=I,(2), B(f)=EL(f)=E,(f)-
1) Loc. cit. ¥) b), p. 165— 166,

1) P. Kirchberger, Uber Tchebycheffsche Annaherungsmethoden, Math. Annalen
57 (1903), p. 509—540; p. 511 —512.
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In general,

F+F, Ii(z)+ (), BE(f)+ Ei(f),
and we have, denoting respectively by F*, F* the measurable upper bound
of |f(x) — I, (x)| and the upper bound of |f(z) — I/ ()|, for a <z <b,
AGES S HOES I

Ei() 2 Bars(£) 2. BLO)ZELL(F)=...
There exist, therefore,
lim B (f)=0, lm Bf(f)=E*(f)=>0.

n->»w

Theorem VI 1° lm E; (f)=0, if f(x) has one at least disconti-

n—>w

nuity in (a, b). 2° Lm EF(f)=0 for all f (z) measurable and bounded
in (a,b). n>e
Proof. 1°. The assumption lim E; (f) =0 implies:
n—> o

(46)

[f(e) — I (2) | < Eu () <e (e<2<b nzm);
in other words, the infinite series of polynomials
IIM (z) (I (z) — II{ ()} + ...
converges to f(z) uniformly for @ < 2 < b, which necessitates the conti-

nuity of f(z) throughout the whole interval (a, b), contrary to our hypo-
thesis.

2°. Assume E’(f)>0. Denote by I', the measurable upper bound
on (a,b) of |f(z)—@G,(z)|. Then, for any n,

I,> B(f)2 B (f) > 0.

This contradicts a theorem of Hobson'?) which states the existence of a
sequence of polynomials @ (z) converging, as =, the degree of Q(z),

— 00, to f(z) almost everywhere in (a, b).

§ 8.

Let us associate with the polynomial @, (z)= 2”’ g;%* the point
=G0 G153 Gp) = ( 3‘) in the n-dimensional space. 7;: relation A, —B,,
means, then, that the ooe/fwzents of 4,(z)= Za 2 converge respectively
to those of B (z)—be , and thus A (z)——»B (2) uniformly over

any finite interval.

17y Loc. cit. %), p. 256.
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Theorem VIL Let the c-function p(x) satisfy the requirements of
theorem 11, and let f(x) be measurable and bounded on (a,b). Then:
1°. All limst-points of the set {P,, (x)} are in a finite portion of space
and cotncide with the set of the polynomzals of the best approzimation

RS
I (z) (n is fized, m—c0). 2° lm Ijw=EL(f). 3° If f(z) be
m-—> o 1

continuous on (a, b), then lm P, (2)=II,(2), lim L7 = E,(f).

m-> @

Inm m L

4°. If m increases monotonically, so does { fbp @ dx} , and im I,

exists for any c-function p(z). s m>®
Proof. 1°. 2°. F denoting, as above, the measurable upper bound of

[f(z)] in (a,d),
(47) afp(x)lf(w) — P, (2)|"dz < (F+e)”‘afp<x>dx (see (13)).

It follows (making use of the Corollary to theorem I) that the coefficients
of all P, (1) are bounded, as functions of m, which proves the first
part of 1°. To prove the second part, we employ an argument somewhat

similar to that of G. Pélya®). Let @, = (é‘,) denote any one of the limit-
0

points in question. Denote, further, by ¢ the measurable upper bound of
|f(z) — @Q,(z)| in (a, b), and by E. the set of points z in (a, b) where

(48) |7(2) — Qu(z) | SQ— 5.

There exists in the set {m} a sequence m, (: =1, 2, ...; im m, = co) such
that im P, (2)= @, () uniformly in (a,b), and ‘7%

{7 (2) = P (@)} —{f(2) = Q(2)}| <5 (a<2<b; i),

|f(x)~P,, ()| =2Q—e (zin E,; ¢ 2> 1,; see(48)),
L% 2 (@—o)[ [ p(2)de]™ (52 4).
By the definition of P, (z), we write,
_17 _1_” » m'’ —m'
(50) Liw < L up(z)dx] ww (m” >m') (see (4))

1 1

(51) Lh < {!P(x)!f(x)—ﬂf(x)]”'dx];‘ < (BE(f) +e) [fbp(;)dx];.

18) Loc. cit. t) a).
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We assume, further,
b
(52) [p(z)de=1,
a

replacing, if necessary, p (z) by ¢p (), with ¢ > 0 properly chosen. Then,

1

(53) IM > I > (Q—e) [fp(x)dxy'“ (m >m,; i >3,) (see (49), (50)).

(51), (53), where & does not depend on m and lim m,= oo, lead succes-

i> >

sively, making use of the definition of ITf (), Ei (f), to

1 1
(54) m L, < B (f), lim L,>Q,
m—>» o m-r» o
1 1
(55) Q@ = Ef(f) = lim Iy, =lim Ijy; bm Py, (z)=Q,(z)= IIf (z).
m-—» o m-> o 1> ®

(55) holds even if we reject (52), for replacing p(z) by c¢p(z) leads to
1

¢, with lim " = 1, while P, (z) remains unchanged.

3° follows from 1° and 2°, I1/(z) here being unigue and = II,(z),
with Ef (f) = B, (f)-

4° 1s proved by (50).

Theorem VII supplements and generalizes the results previously given
by G.Pélya and the writer. The condition éf p(x)dz >0 (mE>0) is

indispensable if we want theorem VII, 3° to be valid for all continuous
funetions.
With such functions we can go further, if we assume

(56) p(x) = const. for (@ <)e La <d(Lb).

Applying (37) with K = p,, we get, writing, in general, E (f; a, b)
and taking
(57) h=(14+m8" (0<b<1), h—0, a8 m—oo:
s B0 A1) =P (@) S B (50,0 () (<2 <d)
n(m)=0(m=9) +wle ™), 5(m)—0, as m—co.
Formula (58), in case ¢ =a, d=2>5, is another proof of the result of
G. Pélya: kim P, (z)=II (z). It gives, moreover, some indication about

m > 0

the rapidity of this limiting process.
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§9.
Case III. n, m —co.

Writing m,,, I, P, (x), we state
1

Theorem VIIL 1° I™ remains finite, as n;voo, for all f (z) with

finite measurable bounds in (a,b). 2° «) Lim I =0 for all f(z)
n>rao

measurable and bounded in (a,b). p) For all such f(x) the infinite

series P (z)+ [P, (x)— P, (2)] + ..., where v is sufficiently large so

that m, > 1, multiplied by p (x) g (x) and integrated term by term between

12
the limits «, t (a < «, t < b) converges uniformly to [ p(z)f(z)g(z)dz,
b a
provided, [ p(z)|g(x)|**"dz exists with a certain r > 0.
a

Proof. 1°. F denoting the measurable upper bound of if(z)| in
(@, b), we write, by the definition of P,(z),

I <(F+ s)’"ﬂaf p(z)dz,

b ‘__1
and this proves our statement, since, as n — oo, m,—00, [ f p(z) dxm’i_,l.
a

2°. «). With II (¢) and Ef(f) introduced above, we write,

1 1

1" <[ p (@)1 (2) — I (2)|™ da]™ < (B (7) +-+) [;fbp(x)dx}ﬁ,

with lim EZ(f)=0.
n->»wo

b
B) iafpmgm (f (@) — P, (2))dz]|

m;—1

_Mn_ W — 2
p(@) g @)™ dz] ™,

b 1 b

< — Ma 3| M
<[Sr@Ir @ — P, @) |™az]™ S
and tl(l’e right-hfmd member — 0, as n— oo, for so does the first factor
(by 2% @)), while the second factor exists as a finite number for all n

sufficiently large so that ™= 1 +r.

?7—37‘—-1
The most interesting case is that of f (x) continuous tn (a, b).

Theorem IX. Given a sequence of exponents m,, such that lim m = oo,
logn N

“m, Temains finile, and a c-function p(x) defined over a finite inter-

val (a,b). Then, f(x) being an arbitrarily given continuous on (a, b)
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/unction, the polynomial P,(x), of degree < n, minimizing the integral
fp(x)[f(x) — P, (z)|™dz converges, as n— oo, to f(x) uniformly over
any sub-interval (¢, d) (a < ¢ <d < b), where 2 pi(z)=0(n°) (6>0

independent on n, x). Furthermore, tn case c=a, d=2>0, the approxi-
mation of f(z) by P,(z) on (a,b) is of the same order with repect to n,
taken sufficiently large, as the best approximation E_ (f).

This follows at once from (29), since max|f(z)— P,(z)| on (a, bd)
> B,(1).

It suffices, therefore, to take m,~2n, p(z) = (¢ —a)* " (b—2)**
(e, 8 >0), or, simply, p(x) =1, and we thus obtain a sequence of poly-
nomials {P,(z)}, following a simple formula, which converges to f(zx),
subjected to the only condition of continuity, uniformly over the whole
interval (a, b), the approximation being of the same order, with respect
s0 n, as the best approximation.

Corollary. The approximation properties of P (x) stated above

hold for any sequence of expoments {m,} with lim m, — oo, provided,
n->wo

1 (z) satisfies in (@, b) Lipschitz’s condition of an arbitrarily given order.
In fact, such a condition of order, say, « implies:
E, (f)=0(n"°),
(59) 2 e
E (f)n =0<n""‘ )—»0, as n—00.
l‘;i” , 1s sufficient to assure the

uniform convergence of P (2) to f(z) on (a, b). It would be interesting
to find a condition relating to the mode of increase of the sequence {m,},
which is necessary for such a convergence.

§ 10.
Applieation to Tchebyeheff pelynomials.

b
Copsider our minimum problem I, — [ p(2)|f(z)— P, ()|"dz

b a
=min [ p(2)|f (z) — G, (x)|"dz for m = 2. Then, as it is well known,

» b
(60) P, (z) =i§6’Ai‘P£ (%), .4 =!p(x)f(x) ¢ (z)dz,
and formula (44) gives,

©1) fp@r@)s@as = 34,8, B,= [r@o@. s ase <o)
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the convergence being umiform, with respect to t, for any g(z) of the
class [Ly]. In particular,

(62) afp(z)f“’(x)dx 2,5: 4., 4, =!p(x)f(z)q),,(x)dx.

Formulae (61), (62) represent the so-called “closure-property” for
Tchebycheff polynomials. Thus, formula (44) extends this property to the
minimizing polynomials P,, () (n=1,2,...; m>1).

Theorem V, combined with (33), (59), (60), leads to

Theorem X. ZThe snfinite series

® b
né;’)%(?ﬁ)!?(%)l”(ﬁ)%(ﬂt) dz

converges to f(z) uniformly in any sub-interval (¢, d) (a <¢, d <b),
where p (x) = p, > 0, provided, f(z) has a continuous derivative in (a, b).
A sufficient condition for this uniform convergence to hold inside (¢, d)
t8: f(x) satisfies Lipschitz’s condition of order > % in the interval (a, b).

Proof. The following remark is sufficient: for f(z) having a conti-

nuous derivative in (a,d) E,(f) = o(%).

§ 11.

The results given above hold, mutatis mutandis, if we replace poly-
nomials (of degree n) by limited irigonometric sums (of order n).

The University of Michigan.

(Eingegangen am 15.11. 1928.)



