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Coneerning points of continuous curves defined by certain
im kleinen properties?).
Von
G. T. Whyburn in Austin (Texas, U.S. A.).

§1.
Infroduection.

This paper contains primarily the results of a study of the ¢m kleinen
cut points?®) and im klesmen cycle poinis of a continuous curve M in
euclidean space of n dimensions. If for each &> 0, a domain B exists
containing the point P of M and of diameter <& such that P is a cut
point of the component of M-E which contains P, then P is said to
be im kleinen cut point of M; if P lies, for each &, on some simple
closed curve in M of diameter < ¢, P is said to be an im kleinen cycle
point of M. § 2 contains various characterizations of these types of points
together with demonstrations of certain of their properties. It is there shown
that the set of all im kleinen cut points of any continuous curve is a
Borel set of the class F, (. e. the sum of a countable number of closed
sets); the problem of determining the Borel class, if any, of the set of all
im kleinen cycle points is left open. In § 8 the possibility of the density
of the non-im kleinen cut points L and the ramification points (points

*) Presented to the American Mathematical Society, June 2, 1928.

%) The point P of a connected set M is said to be a cut point of M provided
M— P is not connected. The notion of an im kleinen cut point of a continuum is
contained implicitly in the works of P. Urysohn and R. L. Moore, and is closely
approximated in that of R. G, Lubben and C. Zarankiewicz. Cf. P. Urysohn, Uber
im kleinen zusammenhingende Kontinua, Math. Annalen 98 (1927), S. 296—308;
[Urysohn uses the terms ,unvermeidbar“ (unavoidable) and ,vermeidbar“ (avoidable)
to designate im kleinen cut points and non-im kleinen cut points, respectively];
R. L. Moore, Concerning Triods in the Plane and the Junetion Points of Plane Con-
tinua, Proc. Ntl. Acad. of Sci. 14 (1928), pp. 85—88; R. G. Lubben, Concerning
Connectedness near a Point Set; and C. Zarankiewicz, Sur les points de division dans
les ensembles connexes, Fund. Math. 9 (1927), see proof of Theorem 14.
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of Menger order >2) W of M on an arc ¢ of M is investigated and it
is found that if L is dense on ¢ it must be uncountably dense on ¢ and
if M is cyclicly connected and W is dense on ¢, then L must be uncount-
ably dense on ¢. In §4 a study is made of a continuous curve M com-
posed wholly, or almost wholly, of im kleinen cut points. Some more
general theorems are established from which it follows that if M is com-
posed wholly -of im kleinen cut points, then M is a Menger regular curve
which, if bounded, is for each &> 0, the sum of a finite number of
&-continua no two having more than one point in common; and if M
is cyclicly connected and W denotes the set of all its ramification points,
then W is totally disconnected and each component of M — W is an or-
dinary arc-segment (¢.e, a simple continuous arc minus its endpoints).
A special type of regular curve, called a node curve, is studied in § 5.
These curves are defined as continua M which, for each ¢ >0, are the
sum of a finite number of ¢-continua each having at most two points in
common with the rest of M. The results of § 5 show that this class of
curves includes all acyclic continuous curves [¢. e, continuous curves con-
taining no simple closed curve, or baum curves (Menger)], and all baum
im kleinen curves. In § 6 it is shown that an im kleinen cut point of a
continuous curve M may be characterized as a point which is an isolated
point of some irreducible cutting of M between some pair of points A4
and B of M, and that in a Menger regular curve the set of all non-im
kleinen cut points of M is totally disconnected. In § 7 an example in
3-space is constructed of a continuous curve every subcontinuum of which
is a continuous curve which has a number of interesting properties, among
them being that it contains infinitely many mutually exclusive arcs all of
diameter >1/2. In this section also is given theorems and discussion of
the extension to n-space of some known theorems about Menger regular
curves and continuous curves all of whose subcontinua are continuous
curves in the plane.

The term continuous curve is used in this paper to designate any
connected im kleinen continuum, bounded or not. The point sets con-
sidered are assumed to lie in a euclidian n-space, although it is obvious
from the proofs that many of the theorems hold in more general spaces.

Definitions. A continuum will be called an e-continuum, or in
general, a set will be called an g-set, provided that continuum or set is
of diameter < ¢, where & denotes some positive number given in advance.
A point P of continuum M is a regular point®) of M provided that for

3) Of. K. Menger, Grundziige einer Theorie der Kurven, Math. Annalen 95 (1925),
S. 272-306.
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each &> 0, an ¢-neighborhood B of P exists such that F(R)-M is
finite, where as in this ‘paper it will be used, F(R) denotes the boundary
of BR. If an integer » exists such that for each &, the neighborhood R
can be chosen so that F(R)-M contains at most » points and if » is
the smallest integer such that this property holds, then P is said to be
a point of order*) » of M. Points of order 1 of continuum are called
endpoints ), points of order > 2 are called ramification points®), and re-
gular points which have no finite order are said to be of order w. A con-
tinnum all of whose points are regular will be called a Menger regular
curve or simply a regular curve. A continuous curve M is said to cyc-
licly connected ) provided that every two points of M lie together on
some simple closed curve in M. A cyclicly connected continuous curve C
is ealled a maximal cyclic curve of a continuous curve M provided C is
a subset of M but is not a proper subset of any cyclicly connected con-
tinuous curve in M. Considerable use is made in this paper of the de-
composition of a continuous curve into its cyclic elements, 7. e, maximal
cyclic curves, cut points, and endpoints, an extensive theory of which
may be found in my paper Concerning the Structure of a Continuous
Curve®). ’

The ordinary notation of Point Set Theory will be used in this paper.
In general the letter M is used to denote a continuous curve or a regular
curve, and, unless otherwise stated, the letters K, N, H and W denote the

4) COf. K. Menger, loc. cit., and P. Urysohn, Comptes Rendus 175 (1922), p. 481.
Urysohn uses the term ‘index of a point’ instead of the therm ‘order of a point’.

%) That this definition is equivalent for the case of continuous curves to the
Wilder definition [R. L. Wilder, Concerning Continuous Curves, Fund. Math. 7 (1925),
pp. 340—877] was shown by H. M. Gehman. See Concerning End Point of Conti-
nuous Curves and other Continua, Trans. Amer. Math. Soc. 30 (1928). In my thesis
I showed that this definition is (for plane continuous curves M) equivalent to the
following simple one: P is an endpoint of M provided that P is an interior point
of no are in M. Cf. Concerning Continua in the Plane, Trans. Amer. Math. Soc. 29
(1927), pp. 369—400, Theorem 12. For the extension of this and other results fre-
quently used later to m-space see W. L. Ayres, Concerning Continuous Curves in a
Space of » Dimensions, Amer. Journal of Math,

%) Cf. W. Sierpinski, Comptes Rendus 160, p. 305. Sierpinski defines a ramifi-
cation point of M as a point P such that M contains 3 continua X, L and N, such
that K-L=K-N=L-N=P, It follows from a result of Menger's (Fund. Math. 10)
that the definition here given and Sierpinski’s definition are equivalent for Menger
regular curves. Rutt [Bull. Amer, Math. Soc. 33 (1927), p. 411 (abstract)] has shown
them equivalent for all plane continuous curves. It appears likely that they are
equivalent for continuous curves in n-space.

") Cf. my paper Cydlicly Connected Continuous Curves, Proc. Ntl. Acad. of Sci.
13 (1927), pp. 31—-88.

¥) Amer. Journ. of Math. 50 (1928), pp. 167—194.
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sets of all im kleinen cut points, im kleinen cycle points, end points, and
ramification points of the curve M. The symbel S(P, r) denotes the
set of all points whose distance from the point P is less than the number 7.

§2.
Im Kleinen Cut Points and Im Kleinen Cycle Points.

Theorem 1. In order that the point P of a continuous curve M
should be an im kletnen cut point of M <t s mecessary and sufficient
that P should be a cut point of some comnected open®) subset of M.

Theorem 2. In order that the point P of a bounded continuous
curve M should be @ non-im kleinen cut pornt (or an avoidable point in
the terminology of Urysokn) 4t is necessary and sufficient that M — P
should be uniformly connected im kleinen®).

Theorem 3. Suppose R, and R are bounded connected open sub-
sets of a continuous curve M and suppose RC R,. Then there exists a
continuous curve U such thot (1) RCUCR,, (2) every cut point of R,
which belongs to R is a cut point of U, and (3) every cut point of U
is a cut point of R and hence is an im kleinen cut point of M.

The proofs of Theorems 1 and 2 present no difficulties. Theorem 3
is readily established with the aid of Theorem 1 above and Theorem 1
in the paper On continuous curves in n dimensions'') by W.L. Ayres
and the author.

Theorem 4. If the im Kkleinen cut point P of a continuous curve
M is a point of order two of M, then P is not an tm kleinen cycle
point of M.

Proof. Suppose, on the contrary, that P is an im kleinen cycle
point of M. There exists a neighborhood R of P such that P is a cut point
of the component ¢ of M-R which contains P. Hence ¢ — P = C,+C,,
where C; and C, are mutually separated. By supposition there exists
in M a simple closed curve J which contains P and lies wholly in B.
Then clearly J must belong to €, and J— P must belong either to O,
or to C,. But this is impossible, for since P is a point of order 2 of M,
P must be a point of order 1 of each of the continua C, -+ P and C, + P.

%) The subset B of a closed set M is said to be an open subset of M provided
M— R is either vacuous or closed.

10) A get M is uniformly connected im kleinen provided that for each s>0
a 6,>0 exists such that every two -points z and y of M whose distance apart is
<4, lie in a connected subset of M of diameter <s.

1) Bull. Amer. Math. Soc. 34 (1928), pp. 349—360.
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Corollary. Ewery tm kleinen cycle point of M whick is also an
im Fletnen cut point of M is a ramification point of M.

Theorem 5. If K, N and H respectively denote the set of all the
im Eletnen cut points, tm kletnen cycle points, and end points of a
continuous curve M, then K-+H-+-N=M, K-N is couniable, and
K-H=N-H=0.

Proof. Let P be any point of M which belongs to neither K nor A.
I shall show that P belongs to N. Let ¢ be any positive number. Since P
does not belong to K, there exists a neighborhood R of P of diameter
< & such that P is not a cut point of the component C' of M-R which
contains P. Since P does not belong to H it follows??) that P is an
interior point of some arc APB which belongs to €. And since P is a
non-cut point of € it follows with the aid of a theorem of R. L. Moore’s *%)
that C — P contains an arc ¢ from 4 to B. Clearly the sum of the arcs
APB and t contains a simple closed curve J containing P; and since J
must be of diameter < ¢, it follows that P belongs to N. Therefore
K+H+N=M. '

By a theorem of the author’s*) all save possibly a countable number
of the points of K are points of order two of M. And by Theorem 4,
no point of K which is a point of order two of M can belong to N.
Hence K-N is countable. Obviously K-H=N-H=0. This completes
the proof of Theorem 5.

Corollary. If M is cyclicly connected, then H=0 and M = K 4 N.

Theorem 6. Every point of a cyclicly connected continuous curve M
which is not an im kleinen cycle point of M is @ point of finite order of M.

Proof. Let P be a non-im kleinen cycle point of M. There exists
an &> 0 such that P belongs to no simple closed curve in M of dia-
meter < ¢. Let R be an open set containing P and of diameter < &[4,
and let Q denote the component of M-R which contains P. Since M is
cyclicly connected, it follows that each component of @ — P must contain
at least one point of F(R); and hence the components of @ — P are
finite in number. Let them be denoted by E,, E,, ..., E,. I shall show
that P is a point of order » of M. For each 7 < n, P must be an

%) See footnote %) and Theorem 3 above. Although C itself is not necessarily
a continuous curve, it follows by Theorem 3 that C contains a continuous curve U
such that UD P and (M—U)-P=0.

18) Concerning Continuous Curves in the Plane, Math. Zeitschr. 15 (1922), Theo-
rem 1. Also see footnote %)

*) G. T. Whyburn, Concerning Collections of Cuttings of Connected Point Sets,
Bull. Amer. Math. Soc. 35 (1929), pp. 87—104.
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endpoint (and hence a point of order 1) of the continuum E;+ P. For
by a theorem due to W.L. Ayres and the author'’) there exists a con-
tinuous curve W, of diameter < ¢ containing E;, lying in M, and such
that P is not a limit point of W, — (&, P). Then since P is not a
cut point of W, and lies on no simple closed curve in W,, then®) P is
an endpoint of W,. Hence?”) P is a point of order 1 of W; and since P
is not a limit point of W, — (E;+4 P), P is a point of order 1 of E,+ P.
And since P is a point of order 1 of each of the continua
E,+PE+P. . E+P

it follows that P is a point of order n of M.

Theorem 7. In order that the point P of a continuous curve M
should be a non-im kleinen cycle point of M it is necessary and suffi-
crent that there should exist a number ¢ > 0 such that P is an endpoint
of each component tnto which P e-cuts M (i.e, if B is a domain of
diameter < & comtaining P and N is the component of B- M containing P,
then P is an endpoint of each continuum obtained by adding it to each
component of (N— P)). Furthermore, if P e-cuts M into n such pieces
(n==1,2,38,...) for some one ¢, then P is a point of order n of M.

Theorem 8. The set K of all the im kletnen cut points of any
continuous curve M is an F, (i.e., the sum of a countable number of
closed sets).

Proof. Let K, denote the set of all those points of K which are
condensation points of K. It follows by Theorem 3 that for each point
P of K, and each integer n >0, M contains a continuous curve U,, of
diameter <C1{n containing P and such that P is a cut point of U,, but
is not a limit point of M —U,, and such that every cut point of U,
belongs to K. By the Lindeldf Theorem, for each n, there exists a count-
able subset N, of K, such that KICP 217\7 1(U,,), where I(U,,) = set of

cNa

all inner points of U,,. By a theorem of Zarankiewicz'®) for each n
and each PCN,, the set K, of cut points of the curve U,, is an F,,

and hence K, — ZijM, where F, . is closed for every j. And if @
j=1 @ ©
denotes the point set K — K, + 3 5 J'F; ., then since K — K, is

n=1 Pc N, j=1

18) Loc. cit. Bee footnote 1Y),

*) G. T. Whyburn, Concerning Continua in the Plane, loc. eif.; W. L. Ayres,
Concerning Continuous Curves and Correspondences, Ann. of Math. 28 (1927), p. 396.
For this theorem in n dimensions see W. L. Ayres, Concerning Continuous Curves in
a Space of n Dimensions, loc. cit. ).

17} Bee footnote %).

18) C. Zarankiewicz, loc. cif.,, Theorem 17.
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countable it follows that @ is an F,. It remains to show that @ is
identical with K. Clearly @ (K, for K, C K for each n and each PCN,.
Let P be any point of K. If P belongs to any set N, then it must
belong to @, for @ contains every N,. If P belongs to no N,, then P
must be a limit point of a sequence of points [P,], where for each =,
P,CN,. There exists a number d >0 such that P is a cut point of
the component B of M-8 (P, 4d) which contains P. There exists an
integer m, > 0 such that 1/n, <d and a point P, of N,, such that P
belongs to Uy, and is an inner point of U,,, relative to M. Clearly
Up,n, (R and since P is a cut point of B and is an inner point of Uy,
it follows?) readily that P is a cut point of U, ,. Therefore P belongs
to Kpn,, and hence belongs to @. Hence @ is identical with K, and
therefore K is an F,.

Corollary. The set of all the non-vm kleinen cut points of any
continuous curve M is a Gy (relative to M), i. e., the common part of a
family of sets each open in M.

The following additional facts concerning the Borel classification of
certain types of points of a continuous curve either are already known
or are easily deduced. Let K*, H, and N* denote the set of all cut points,
endpoints and points belonging to some simple closed curve in a continuous
curve M, then

(I) K* is an F, (theorem of Zarankiewicz, loc. ¢it.).

(II) N* is an F, (theorem of the author’s, c¢f. my paper Cyclicly
Connected Comtinuous Curves, loc. ¢it., where it is shown that N is the
sum of a countable number of continuous curves, i. e, the maximal cyclic
curves of M).

(IIT) His a G (theorem of Menger, loc. cit.).

(IV) M — K* and M — N* are G,s.

Examples are easily constructed to show that K* is not necessarily
a G;. It would be interesting to determine whether or not (a) H is
necessarily an ¥, and (b) N* is necessarily a G,.

§ 3.
Density of the Non-Im Kleinen Cut Points and Ramification Peints.
Theorem 9. Let L denote the set of all non-im kleinen cut (avoidable)

points of a continuous curve M and let t be any arc in M. Then if L
is dense on t it is uncountably everywhere dense on t.

%) In this connection see also, R. L. Moore, loc. ¢if. ref, 3) Lemma 2.
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Proof. By Theorem 8 and corollary, L is a @, relative to M. Hence
if § is any arc segment in ¢, S-F is a @, relative to 8. And since S-L
is dense in § it follows by Young’s Theorem 2°) that S-L has the power
of the continuum. Hence L is uncountably dense on .

Theorem 10. Let T be any arc of a cyclicly connected continuous
curve M and let L denote the set of all non-im klesnen cut points of M.
Then if the set W of ramification points of M is dense on T, L-T has
at least the power c¢ of the continuum.

Lemma 10a. If T is any arc tn a coniinuous curve M, then the
set I of all points X of T such that for each ¢ >0, M contains an
s-stmple closed curve containing an arc segment tn T which contains X,
s a linear G;.

Proof of Theorem 10. Suppose, on the contrary, that L-7T has a
cardinal number < ¢. Then by Theorem 9, L cannot be dense on 7.
Accordingly, there exists an interval ¢ of 7 which contains no point of L.
Then ¢ C K. Let ¢, be any subarc of ¢ of diameter < 1/4. Since by a
theorem of the author’s [see ref.!)], K.W is countable, #, contains an
interior point X, which is a point of order 2 of M. Since W is dense
on #,, X, is a limit point of M — ¢, but is not a limit point of any
single component of M —#,. Since M is a continuous curve, it is readily
seen that there exists a component R, of M — ¢, of diameter < 1/3. As
M is cyclicly connected, #, contains **) at least two limit points of B; and
it is easily seen that R, +#, contains a simple closed curve J, of dia-
meter <1 which contains an interval ¢, of 7, every point of which is
interior to #, and which is of diameter < 1/8. Just as above it follows
that M contains a simple closed curve J, of diameter < 1/2 which con-
tains an interval ¢, of 7, every point of which is interior to 7, and which
is of diameter < 1/16 and so on. Let this process be continued inde-
finitely. There exists a point X common to all of the intervals #,,7,,1,,....
Clearly X belongs to the set I (see Lemma 10a). And as #, is any
interval of #, 7 must be dense on ¢{. But by Lemma 10a, I is a G.
Hence by Young’s Theorem above quoted, I-f is uncountable. Clearly
I.:C N and since, by Theorem 5, N-K is countable, I-¢ must contain at
least one point of L, contrary to the fact that L-f=0. Thus the
supposition that Theorem 10 is false leads to a contradiction.

Corollary 1. If the non-im kleinen cut poinis of a cyclicly con-
nected continuous curve M are not uncountably dense on the arc t of M,
then t contains an arc segment which is an open subset of M.

%) Of. W. H. Young, Leipz. Ber. 55 (1903), S. 287.
2) G. T. Whyburn, Cyclicly Connected Continuous Curves, loc. cit. 7).
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Corollary 2. If the im kleinen cycle points of a cyclicly comnecied
cantinuous curve M are dense on an arc it in M, then hoth the avoidable
points and the im kleinen cycle points of M are uncouniably everywhere
dense on 1.

§4.
Curves Composed Almost Wholly of Im Kleinen Cut Points.

Theorem 11. If every point of a continuous curve M is either an
end point or an tm kleinen cui point, then M is a Menger regular curve
and both the ramification points and the im kleinen cycle points of M
are countable.

Proof. That M is a regular curve was proved by the author in
another paper®?). That the ramification points of M are countable follows
from the fact that no endpoint is a ramification point and the author’s
theorem *?) that only a countable number of the im kleinen cut points of
M are ramification points; and that the im kleinen cycle points are count-
able follows from Theorem 5 and the fact that no end point is am im
kleinen cycle point.

Theorem 12. In order that every subcomlinuum of a .conlinuous
curve M should conlain an arc segment which is an open subset of M
1t is necessary and sufficient that if W denotes the set of all ramification
points of M then W is totally disconnected.

Proof. The condition is obviously necessary. It is also sufficient
For let @ be any subcontinuum of M and let B be a component of
4 — W-Q. Then®®) B contains an arc AB, and since every point of 4B
is a point of order two of M, it follows that no point of 4B — (4+B)
is a limit point of M — [AB — (4 + B)]. Hence the segment 4B is an
open subset of M.

Theorem 13. If every point of a cyclicly cannected continuous enrve M
28 an im kleinen cut point of M, and W denotes the set of all rawmi-
fication points of M, then (1) W is tolally disconnected, and (2) every
component of M — W is an arc segment.

Proof. Suppose, contrary to (1), that W contains a continuum C.
Then since by Theorem of the author’s mentioned above, M is a Menger
regular curve, it follows®!) that €' is a regular curve, and hence € con-

%) 0. G. T. Whyburn, Concerning Collections of Cuttings of Connected Boint Sets,
23 R. L. Moore, loc. cif., see footnote 13).
2t) K. Menger, loc. ¢it., see footnote 3).

Mathematische Annalen. 102. 21
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tains an arc . But then W is dense on #; and hence, by Theorem 10,
t contains at least one point which is not an im kleinen cut point of M,
contrary to hypothesis. Hence (1) is true.

Now let R be any component of M — W. Since M is cyclicly con-
nected, W contains?®) at least two limit points of R. Hence it is readily
seen that there exists an arc AB such that 4 and B belong to W and
which lies except for the points 4 and B wholly in B. And since every
point of the segment AB — (A B) is a point of order two of M,
clearly B must be identical with this segment.

Essentially the same argument suffices to prove the following more
general theorem. A .

Theorem 14. Jf the avoidable poinis of a eyclicly connected con-
tenuous curve M are not uncouniably dense on any subcontinuum of M,
and if W denotes the set of all ramification points of M, then (1) W is
totally disconnected, and (2) every component of M— W is an arc
segment.

Theorem 15. If every subcontinuum of a bounded cyclicly connected
continuous curve M contains an arc segment which s an open subsel of
M, and W denotes the set of all ramification points of M, then (1) W is
totally disconnected, (2) M is a Menger regular curve, (3) each com-
ponent of M — W is an arc segment, (4) if L is any closed totally dis-
connecied subset of M contasning W, and G denotes the collection of
components of M — L, then for each >0 every point of L can be
&-separated®®) in M by a finite number of the segments of the collection @,
and (5) for each ¢ >0, M is the sum of a finite number of mutually
exlusive e-continua plus o finite number of mutually exclusive e-arc
segments the two endpoints of each of which belong to different continua
of the set just mentioned. Hence M is the sum of a finite number of
&-continua no two of which have more than one point in common®).

Proof. Conclusions (1), (2), and (3) are obvious from the above
theorems and discussion. To prove (4), let ¢ be any positive number and
P any point of L. Since L is closed and totally disconnected, it follows

25) See footnote ).

26) For a given s>>0, the point P of M is said to be ¢-separated in M by a
set A provided M — A= M,-+ M, where M, and M, are mutnally separated sets and
M, contains the point P and is of diameter <s. Cf. P. Urysohn, Comptes Rendus
175 (1922), p.481. Urysohn’s definition differs from the one just given in that it
requires ‘that the set M, 4 be of diameter <.

27 K. Menger (Zur allgemeinen Kurventheorie, Fund. Math. 10) has proposed
the question as to whether or not every regular curve has the property mentioned
in the last sentence of this theorem.
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that there exists an open set R containing P and of diameter < /2 and
such that F(R)-L=0. Then clearly F(R)-M(M— L= Zg Let

@, be the collection of all elements of G which ¢ontain at least, one point
of F (R). Then G, must be finite; for otherwise, since (see § 7 below)
only a finite number of the segments of @ are of diameter > any posi-
tive number, it would follow that F(R) contained a limit point of L,
contrary to the fact that L is closed and F(R)-L=0. Hence G, is
finite and clearly G, e-separates P in M. And since G, is finite, ob-
viously it contains a subcollection which e&-separates P in M and is
irreducible with respect to this property.

To prove (5), let ¢ be any number > 0. Since by (2) M is a
regular curve, by a theorem of Menger's®®) M is the sum of the elements
of a finite collection @ of ¢/2-continua each pair of which have at most
a finite number of common points. Let E denote the set of all points
which belong to at least two elements of the collection @. The points
of E are finite in number and can be ordered P,, P,, P,,..., P,. Let L
denote the set of points W+ P, + P,+... + P,. By (4), there exists
a finite collection @, of the arc segments of @ whose sum separates P,
in M from P,+ P, +...+ P, and which is irreducible with respect to
this property. Each segment S of G, contains an arc segment U which
Lies, together with its end points, wholly in §; and if U, denotes the
finite collection of segments U, it is easy to see that the sum of the
segments of U, also separates P, in M from P, + P, +...+ P,. Let V,
denote the point set obtained by adding together all the point sets of
the collection U,. Now a similar argument shows that there exists a set
V, which is the sum of the elements of a finite collection U, of arc-
segments and which separates P, in M from (P,+V,)+P,+P,+...+P,;
and indeed, for each ¢, 1< ¢ < n, M contains a set ¥V, which is the sum
of the elements of a finite collection U, of arc segments selected as above
and which separates P, in M from (P,+V,) +(P,+V,)+(P,_,+7V,_,)
+ P2+1 + i+2 + + P

Now let U denote the collection of all the arc segments which belong

to any collection U; (1 <7< n), and let V denote the point set 2”17,

=1
Let F denote the collection of all the components of M — V. Then each
element of F is a continuum, and by a theorem proved by Kuratowski
and Knaster®) and independently by the author?®) it follows that F is

28) Grundziige einer Theorie der Kurven, loc. cit.
29) Of. Kuratowski and Knaster, Remark on a Theorem of R. L. Moore, Proe.
Ntl. Acad. of Seci. 13 (1927); G.T. Whyburn, On the Separation of Connected Point
Sets, Bull. Amer. Math. Soc. 33 (1927), p. 388 (abstract).
21%
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finite. And since no element of F can contain meore than one point of
the set F, each element of F must be of diameter << &. And since each
segment % in the collection U lies together with its end points in some
segment of @ and belongs to some collection U, and hence is an element
of an irreducible set of segments separating P, in M from (P, +V,)+ ...
+ (P 1+ Vi) + P+ ...+ P, it readily follows that u is of dia-
meter << ¢ and that not both end points of » belong to the same element
of F. Hence (5) is true. And if for each % in U we let X=# and let
D be the collection whose elements are the arcs X together with the
elements of F, then clearly M = DZd, and no two continua of D have

more than one point in commeon. This completes the proof of Theorem 15.

Theorem 16. If every point of the bounded cyclicly connected con-
tinuous curve M is an im kletnen cut point (or indeed if the non-
im kleinen cut points of M are not dense on any subcontinuum of M),
then M has properties (1)—(5) in Theorem 15.

Theorem 17. If every point of a bounded continuous curve M is
an tm kleinen cut point (or if the non-im kleinen cut points are not
uncountably dense on any subcontinuum of M), then for each ¢>0,
M is the sum of a finite number of &-continua no two of which have
more than one poini in common.

Proof. It follows by Theorem 16 that every maximal cyclic curve
of M is for each ¢, the sum of a finite number of ¢-continua no two
having more than one common point. Hence, by a theorem of the author’s®?)
M itself has this same property.

Examples are easily constructed to show that (a) under the con-
ditions of Theorem 15, neither W nor M — K (the set of avoidable points)
is necessarily countable, and (b) K (the im kleinen cut points) can be
uncountably dense on every subcontinuum of a cyclicly connected con-
tinuous curve M and yet M not have property (1) in the statement of
Theorem 15.

§5.
Node Curves.
Definition. A continuous curve M will be called a node curve
provided that for each £>0, M is the sum of a finite number of

&-continua each having at most two points in common with the rest of
M. It is obvious from this definition that every node curve is a bounded

30) G. T.Whyburn, Concerning Menger Regular Curves, Fund. Math. 12, Theorem 2.
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Menger regular curve. However, as will be apparent below, the converse
is not true. Hence a node curve is a special kind of a regular curve.

Theorem 18. In order that a continuous curve M should be a node
curve it 1s necessary and sufficient that for each ¢ > 0, M should contain
a fintte set of points Q such that each component of M — @ is of dia-
meter << & and has at most two Wimit poinis in Q.

Theorem 19. In order that the cyclicly connected continuous, curve
M should be a node curve it is mecessary and sufficient that for each
&> 0, M s ihe sum of a finite number of e-continua each having exactly
two points tn common with the rest of M. It is likewise necessary and
sufficient that M contain a finite set @ such that each component of
M — Q is of diameler < ¢ and has exactly two limit points in Q.

Theorem 20. In order that the bounded cyclicly connected continuous
curve M should be a node curve withoutl points of order w it is necessary
and sufficient that no point of M of order > 2 (4. e., no mmszatzon point)
be an im kleinen cycle point.

Proof. The condition is sufficient. It follows by Theorem 6 that
every point of M is a point of finite order of M and hence M contains
no point of order w. Let ¢ be any positive number which for con-
venience later we will suppose is < 1/3 the diameter of M. For each
point X of M which is a point of order two of M there exist two points
A, and B, of M and a connected open subset U, of M containing P and
of diameter < & and such that U_-(M — U,)= 4, -+ B,. For each point ¥
of M which is net a point of order two of M, since Y is not an im
kleinen cyele point of M, it follows as in the proof of Theorem 6 that
a domain R exists containing ¥, of diameter < &, and such that Y cuts
the comporent of M- R which contains ¥ into » components (where 7
is the order of P) and is an end point (point of order one) of each of
them. Thus it is readily seen that a connected open subset V, of M
exists which eontains ¥, is of diameter < ¢, whose M-boundary contains
Just n points, and which is the sum of ¥ - =» open sets Uys,, Uy, - - -» Uyz,
each having just ¥ and seme other peint 4, as boundary points with
respect to M. Let G, denote the collection of sets whose elements are
the sets U, and the sets ¥,. Since @, covers M, then by the Berel
Theorem @, contains a finite subcollection € which also covers M. By
the above properties of the sets ¥V, it follows readily that there exists a
finite collection U,, U,, ..., U,, of open subsets of M each of diameter < &
and such that (1) for each ¢, 1< i< m, the M-boundary of U, (i.e,
the boundary of U, with respect to M) consists of just two points 4; and
B, (2) U;+U,-U;+U; for each 7 and j < m, and (3) M (U,+ U,
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4+ T, +...+T,). Let N denote the (finite) set of points 3 (4, +B,).
1=1

Then clearly each component of M — N must be of diameter < e, for it
is a subset of some set U,. It remains to show that each component of
M — N has just two limit points in N. Suppose on the contrary that
some component R of M — N has as many as three limit points P,, P,, P,
which belong to N.

Now clearly there exists an integer 7, 1 < ¢ < m, such that R CU,.
Now since M is cyclicly connected it follows3?) that every cut point of
U, must separate 4; and B; in U,. And since R — R contains at least
three points it readily follows that R — R contains at least one point P
distinet from 4; and B; which does not separate 4; and B; in U,. Hence
P is not a cut point of U;,. Now since P belongs to N, there exists an
integer j such that A; = P. Now 4; belongs to U;; and B; cannot belong
to U,. For suppose B; CU;. Now U;+ U; <+ M, for the diameter of M
is >38e. Let C be a component of M — (U, U,). Since M is cyclicly
connected, U, -+ U; must contain at least two limit points X, and X, of
C. Obviously X, + X, C 4;-+B;-+ 4;+ B;, and since 4;-+ B; (U, then
both A; and B; must be limit points of €. But since U; contains a point
of U; but is not a subset of U, by (2), then U; must contain at least
one of the points A, and B;; and clearly this is impossible, since each of
these points is a limit point of C. Therefore B; does not belong to U,.
But now 4; is not a cut point of U;. Hence U, — 4; is connected and
contains at least one point of U, but contains neither 4, nor B;; and
therefore U; is a subset of U, contrary to (2). Thus the supposition that
some component of M — N has more than two limit points in N leads to
a contradiction; and hence, by Theorem 18, M is a node curve.

The condition is also necessary. For let M be any node curve con-
taining no point of order w, and let P be any point of M of order > 2
of M. Let n be the order of P. Since M is a regular curve, by a theorem
of Menger’s3?) there exists a set of n arcs 4, P, 4,P,..., A, P belonging
to M and each having P as one end point but no two having in common
any point except P. Let d be a number less than each of the numbers
6(4,, P),6(4,,P),...,6(4,, P), where 6 (4;, P) = distance from 4, to P,
and let B be a domain containing P and of diameter < d/4. Since M
is a node curve, it is the sum of a finite collection G of continua each

31) With the aid of the folowing easily established lemma: If the connected open
subset B of a cyclicly conmected continuous curve M has just two boundary points A and
B with respect to M, then every cut point of the curve R separates A and B in B and
if @ denotes the set of all such points, then Q-+ A+ B is closed.

3%) K. Menger, loc. cit., see ref. 27).
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of diameter < d[4 each having at most two points in common with the
rest of M. Since n > 2 it is readily seen that P is not an interior peint
of any one of the continua of G relative to M, and indeed, that there exist
exactly n of the continua of @ each of which contains P and some segment of
one of the arcs 4, P having P as one of its end points, Let B,, E,, ..., B,
denote these continua. Then since P is a point of order n of M, it
follows that P is a point of order 1 of each of the continua E,, E,, ..., E,.
Therefore, since P is not a limit point of M — (B, + B, +...+ E,), it
follows that P is not an im kleinen cycle point of M. This completes
the proof.

In proving the necessity of the condition in Theorem 20 no use was
made of the fact that the curve M is cyclicly connected. Hence we have
the following theorem.

Theorem 21. No node curve M contains a point of finite order
> 2 which is an tm kleinen cycle point.

The above proof for the sufficiency of the condition in Theorem 20
suffices to establish the following theorem.

Theorem 22. Ewvery bounded node curve tm klesnen is a node
curve.

Theorem 23. Ewery subcontinuum of a node curve is itself a node
curve.

Theorem 24. If P 4s a point of ordern (n finite and > 2) of a
node curve M, then there exists a positive number &, such that if e<e,
and M is decomposed into a finite collection G of e-continua each having
at most two points in common with the rest of M, then P is common
to exactly n of the continua of G, P is an end point of. each of these-n
continua and is not a limit point of M minus their sum.

Proof. By Menger’s theorem there exist n subarcs 4, P, 4,P,..., 4, P
of M from A, to P, 4, to P,..., 4, to P, respectively, each two having
just the point P in common. There exists a hypersphere S with center P
which neither contains nor encloses any of the points 4, 4,,...,4,.
Let ¢, denote 1/2 the radius of 8. Let ¢ be any positive number <e,
and let' M be decomposed as above into a set G of e-continua. Let N
denote the (finite) subset of M each point of which is common to at
least two of the continua of G. On each of the arcs 4,P (¢ =1,2,...,n),
in the order from P to A4, let X; denote the first point after P, which
belongs to N. Now since > 2, it is clear that P must belong to N.
Each of the arc segments PX; must lie wholly within one of the con-
tinua of G, and since each of these arc segments has at least one limit
point: X, other than P which belongs to N, it is clear that no two of
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these segments can lie in the same continuum of ¢. Hence P is common
to at least » continua of @ And since P is of order n, clearly P be-
longs te no more than a such continua, is not a limit peint of M minus
the sam of these » continua, and is an end point of each.

A similar proof shows the following theorem.

Theorem 25. If P is a point of order w of the node curve M,
then for each inieger n >0 a number ¢, » > 0 exists such that if ¢ <e,
and M is decomposed into a collectzcm G of e-continua as descrzbed
above, then P is common to at least n of the continua of G.

The two preceding theorems give the following theorem:

Theorem 26. Ewery point of a node curve M of order > 2 of M
is an tm kletnen cut point of M.

Theorem 27. The ramification poinis of any node curve are
countable.

Theorem 27 follows immediately from Theorem 26 and the author’s
theorem that the im kleinen eut points of any continuous curve M of
order > 2 are countable. It also follows from Theorems 24 and 25. For
if for each integer » >0, we decompose M into a finite collection @, of
1/n-continua as above, and N, is the set of all points common to two
of the continua of @,, then by Theorems 24 and 25, the set W of points
of M of order > 2 is a subset of S N,. And since for each », N, is

=1

finite, 21\7 is countable, and hence W is countable.

n=1
Theorem 28. The ¢m kleinen cut points of every node curve M

are everywhere dense in M. Indeed, every point of Z,'N above is an
tm kletnen cut point.

Every maximal cyclic curve of a bounded continnous curve M can
be a node curve and yet M itself not be a node curve, as seen by the
following example. Let I denote the interval (1,2) of the X-axis, let ¢
be the eircle X Y®=1, let R be the interior of €, and for each n
(n=1,2,3,...) let C, denote the circle (X—l)“’—i— Y®=1/n® Then

if M denotes the continuous curve F+ €+ R - 2 , the set of peints
C+R- Z’O’ is the only maximal cyclic curve of M and although, as is

casily seen with the aid of Theorem 20, this set of points is a nede curve, .
nevertheless (cf. Theorem 21) M itsel is not a node eurve. However, we
may characterize & node curve in terms of its maximal cyelic curves as
follows.
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Theorem 29. In order that a bounded continuous eurve M should
be a node eurve it is mneecessary and sufficient that fer each mazimal
cyclic curve C of M (1) € is a node curve, and (2) every peint of €
whieh is a lWimit point of some eomponent of M— € is an im klcinen
cut. point of C.

Proof. The conditions are necessary. Condition (1) is mecessary
because by Theorem 23, every subcontinuum of M is & node curve. Fo
show that condition (2) is necessary, let C be any maximal cyclic curve
of M and P any point of ¢ which is a limit point of some component §
of M — €. There exists an arc 7' which has P as one end point and is
a subset of @ 4 P. Suppose, contrary to what we purpose to show, that P
is not an im kleinen cut point of C. Then since by condition (}), € is
a node curve, it follows by Theorem 26 that P is a point of order two
of C. Then P is a point of order 3 of the curve "4 7, and since, by
Theorem 23, C -+ 7T is a node curve, then by Theorem 21, P is not an
im kleinen cycle point of ¢ 4 7. Hence P is not an im kleinen cycle
point of C; but then by Theorem 4, corollary, P must be an im kleinen
cut point of C, eontrary to supposition. Thus the supposition that con-
dition (2) is not necessary leads to a contradiction.

The conditions are also sufficient. For let M be any bounded con-
tinuous curve satisfying the conditions, let ¢ be any positive number,
and let G denote the (finite) collection of all those maximal cyclic curves
of M which are of diameter >>:f4. In my paper Concerning Menger
Regular Curves®®) it was shown that M -eontains a centinuous curve @
containing all the curves of G and such that (1) @ is the sum of the
eurves of & plus a. finite number ¢, 4, 4, ..., ?, of simple cyclic chains 3*)
of cyelic elements of M such that for each 7, (1 <7 < m), ¢, has at most
one point in common with #,_,, and (2) each component of M — @ is
of diameter < &/4 and has just one limit point in . It is readily seen
that there exists a finite number of cyclic elements Oy, C,, C;, ..., C, of M
including all the curves of the collection @, and such that if U, is any
component of @ — 3 C,, then U, is a simple cyclic chain determined by
an arc 4;B; in M and having at most the points 4; and B; in common
with 3 C;. Clearly the components of Q@ — 3 C; are finite in number.
Denote them by U,, U,, U,, ..., U,. Now for each ¢, 1<z n), let E;
denote the (finite) set of points in C; each of which is a limit point of

33y Fund. Math. 12, see proof of Theorem 2. For a statement of practically the
same theorem see a forthcoming paper of W. L. Ayres entitled ‘Concerning Are
Curves and Basic Subsets of a Continuous Curve. Second Paper’.

34) Of. my paper Concerning the Structure of a Continueous Curve, . eit. 8).
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some component of @ — C;, and let E denote the (finite) set of points
3 E,. Now since E is finite and since, by hypothesis, each point of E is
an im kleinen cut point of each curve of the set C,, C,, C,, ..., C, which
contains it, it follows that there exists a number é > 0 such that if P
is any point of E, C; is any curve of the collection C,, C,,..., C,, and
R is any domain containing P and of diameter < J, then P is a cut
point of the component of C;-R which contains P. Let d be a positive
number < &/4 and < /2. Now since for each 7, (1<¢<n), C; is a
node curve or a point, it follows by Theorem 19 that for each ¢, a finite
subset @, of C; exists such that each component of C;,— @, is of dia-
meter < d and has just two limit points in C,. Now for each ¢,
(1£i<Lk), as shown in my paper Concerning Menger Regular Curves
(loc. cit.) there exists on the arc 4;B; a finite set of points V, each of
which separates 4, and B, in M and such that each component of U, — V;
is of diameter < d and has at most two limit points in V;. Let Z denote
the (finite) set of points of the curve @ such that each point P of @
belongs to at least two of the chains U,, U,, ..., U,. Finally, let F de-

k
note the set of points Z+ E-- 3@+ SV, Then F is finite, and it
=1

t=1

is not difficult to show that no component of M — F has more than two
Limit points in F. Therefore, by Theorem 18, M is a node curve.

Corollary 1. Ewery bounded acyclic continuous curve ts a node
curve. ’

Corollary 2. Bvery bounded baum im kleinen curve is a node
curve. '

Corollary 3. If every maximal cyclic curve of a bounded continuous
curve M is a baum tm kleinen (or, what is equivalent, contains only
a finite number of simple closed curves) then M is a node curve.

Theorem 30. If no potnt of a bounded continuous curve M is an-
im kleinen cycle point, then M is a node curve.

Theorem 30 is a corollary to Theorems 29 and 20.
© Tt is easily shown by examples: (1) that the ramification points in
a node curve M may be dense on some arc in M, and (2) that the
ramification points may be dense on no subcontinuum of a continuous
curve M and yet M not be a node curve.

Let M be a node curve, ¢ any positive number, and K a finite
subset of M such that (see Theorem 18) each component of M — K is
of diameter < ¢ and has at most two limit points in K. Let G denote
the collection of sets obtained by adding to each component of M — K
its limit points in K. We shall call the elements .of G the links of the
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curve M. Those links of M which join on to the rest of M at two points
will be called ordinary links of M, and those joining on at only one
point will be called the end-links of M. By a simple chain X of links
of M joining two links 4 and B of M is meant the sum of the elements
of a finite collection £ of links such that (1) X is a continuum (2) X
contains both 4 and B (3) 4 and B are the end-links of the node
curve X and are its only end-links, (4) X is irreducible with respect to
the property of being the sum of the elements of a finite collection of
links of M and having properties (1) — (3). The following propositions
are easily deduced:

a) Every two links of a connected set H of links of M can-be joined
by a simple chain of links lying in H;

b) The ordinary links of M are finite in number and their sum is a
confinuum ;

c) If X is any simple chain of links of M between two links 4 and B,
X, and Xp are points’ of M — K belonging to 4 and B respectively,
then every point of [X — (44 B)]- K separates X, and Xz in X. And
every link of X except A and B separates X, and Xp in X;

d) If M is cyclicly connected, all its links are ordinary links.

§ 6.
Im Kleinen Cut Points and Irreducible Cuttings.

If A and B are points of a continuum M and K is a subset of M
such that M — K is the sum of two mutually separated sets M, and M,
containing A and B respectively, then K is said to be a cutting of M
between A and B; if no proper subset of X is a cutting of M between
A and B, K is called an ¢rreducible cuiting®®) of M between A and B.

Theorem 31. In order that the point P of a continuous curve M
should be an tm kletnen cut point of M it is necessary and sufficient
that P be an isolated point of some irreducible cutting of M between
some two poinis A and B of M.

Proof. The condition is sufficient. For suppose P is’ an isolated point
of an irreducible cutting X of M between the points 4 and B of M. Let
R be a domain containing P and such that R contains no point of
A+B+K—P, and let .N be the component of M-R containing P.
Then since®) P is a limit point of both the components R, and R, of

35) Cf. G. T. Whyburn, Concerning Irreducible Cuttmgs of Contmua, Fund. Math.
13, pp. 42—-57.
36) . T. Whyburn, loc. cit., Theorem 7.
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M — K containing A4 and B respectively, then N contains points of both
R, and R,; and since R- K=P, it is readily seen that N—P=N-R_+N-R,,
and N-R, and N-R, are mutually separated. Hence P is a cut point of
N and is then an im kleinen eut point of M.

The cendition is also necessary. For if P is an im kleinen cut point
of M, a domain B exists such that P is a cut point of the component N
of M.R which contains P. Let 4 and B be points of N lying in R and
belonging to different components of N — P and such that there exists
an are AB in M-R. Now clearly P+ F(R)-M cuts M between 4 and
B. Then®") P+ F(R)-M contains an irreducible cutting K of M between
A and B. And since there exists an arc 4B in M-R, and K-RC P, it
is clear that P must belong to K and must be an isolated point of K.

Theorem 32. If K denotes the set of all the im kleinen cut points
of any Menger regular curve M, then M — K is totally disconnected.

Proof. Suppose, on the contrary, that M — K contains a connected
set H containing two distinct points 4 and B. Since M is a regular
eurve, there exists a finite cutting @ of M, between 4 and B. By a
theorem of the author’s®) @ contains an irreducible cutting @, of M
between 4 and B. Since H is a connected subset of M containing both
4 and B, obviously it must contain at least one point P of @,. And
since @, is finite, P is an isolated point of @,. But then by Theorem 31,
P must belong to K, contrary to the fact that PCH and H-K = 0.

Corollary. Under the hypothesis of Theorem 32, K is dense on
every comnected subset of M.

Theorem 32 does not remain true if the hypothesis that “M is a
Menger regular curve” is replaced by the weaker one that “every sub-
continuum of M is a continuous curve”. This fact is demonstrated in an
example due to H. M. Gehman *?).

§7.
Continua All of Whose Subcontinua Are Continuous Curves
and Menger Regular Curves, in n Dimensions.

In this section I shall first give a simple example in 3-space of a
eontinweus eurve every subeontinuum of which is a continuous curve and
which bas some rather interesting properties. Referring to a system of

3% G. T. Whyburn, loc. cit., Theorem 8.
3% Eac. eit., Theorem 8.
3%) Concerning the Subsets of a Plane Continuous Curve, Annals of Math. 27

(1925), pp. 29—46.
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cylindrical coordinate axes P, ©, Z in 3-space, let AB be the interval (0,1)
of the Z-axis, let » take on in ascending order the set of valuesincluded
in the set of all positive prime integers. For each =, let us subdivide AR
into a set I, of n equal subintervals by inserting a set K, of » —i points
of subdivision; and in the plane © = &/n, let us construet on each inter-
val of the set I, a semicircle having this interval as its diameter, and let
C, be the sum of all these semicircles. Let v denote the continuum

AB+ X C,.

Properties of the curve v:

() Ewvery subcomtinuum of y is a continuous curve.

This property is obvious from the construction; er it .can easily be
proved with the aid of a theorem of H. M. Gehman’s®?).

(B) vy is not a Menger regular curve.

This property readily follows from property (y) below.

(7) v contains infinitely many arcs AX,B (+=1,2,...) from 4 %o
B no two having any common poini except Aand B. {(y’) There exists
an & >0 such that v contains infinitely many muwtually exclusive con-
tinua of diameter > e.

To show property (y) it is only necessary to set AX,B=C; Jor
each 7.

(8) vy contains an arcwise connected set N which is not arcwise
connected im kleinen and which has a boundary point P which is not
accesstble from it.

To prove (3), we merely set N= 3 C, and let P be the point
(0,0,1/272). Clearly N is not arcwise connected im kleinen at any one
of its points belonging to AB — (4 + B), and obviously P is not accessible
from N.

&) v conlatns a connected subsel which ts not arcwise connected.

The set N+ P under () is not arcwise connected, and hence y has
property ().

(£) v contains an arcwise connecied and commected im Kleinen set
which is not arcwise conmected tm klesmen.

The set N defined under () satisfies all vequirements onthe-getin ().
That this set, contrary to a statement made in the ‘first dbstract -of this
paper, is connected im kleinen was kindly pointed out to me by Professor
R. L. Wilder. It would be interesting te determine whether a set. N could

4 -Some Conditions Under ‘Which a Centinuam is a Continnouns Carye, Amn.-af
Math. 27 (1926), pp. 381 —384, see Theorem 2, -
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Lie in the plane and have property (), or slightly different, whether a
set N could lie in the plane and be strongly connected and connected im
kleinen and yet not be strongly connected im kleinen.

Gehman#) has given an example of a plane continuum having both
properties (&) and () and has shown that («) and the absence of (y’)
are equivalent for bounded continua in the plane. Zarankiewicz*?) charac-
terizes a continuum (in n-space) having property («) as one containing
no “continuum of convergence”, and in footnote states that his condition
is equivalent to the absence of (y’), (7. e to Gehman’s condition). The
curve vy above, of course, shows although this is true in the plane that
this is not the case in nm-space for n >2. It has been shown by the
author*?) that no plane continuum can have both properties («) and (4).
Knaster and Kuratowski*t) have given an example of a plane regular
curve having property (¢). Their example is somewhat more complicated.

Theorem 33. If M is a bounded Menger regular curve and ¢ is
any positive number, then M does not contain more than a finite number
of mutually exclusive continua each of diameter > ¢.

Proof. Suppose, on the contrary, that M contains an infinite sequence
of continua M,, M,, M,, ... all of diameter > ¢. Then since M is bounded,
there exist two points 4 and B of M belonging to the limiting set of the
sequence M,, M,,.... But since M is a regular curve, there exists a finite
subset K of M which separates 4 and B in M. Clearly this is impossible,
since only a finite number of the continua M,, M,, ... can contain points
of K. Thus the supposition that Theorem 33 is false leads to a contra-
diction.

Theorem 34. If M is any continuum having the property that for
each ¢ >0, M does not coniain infinitely many mutually exclusive con-
tinua each of diameter > ¢, then every subcontinuum of M is a con-
tinuous curve, and if H is any arcwise connected subset of M, then
(1) H s arcwise conmected tm kleinen and (2) every boundary point P
of H %s regularly accessible*®) from H.

4) See reference ). .

%) Sur les Points de Division dans les Ensembles Connexes, loc. ¢it.; K is a
continuum of convergence of a continuum M provided that M— K contains a sequence
of continua whose sequential limiting set is K.

43) Concerning Certain Types of Continuous Curves, Proc. Ntl. Acad. of Sci. 12
(1926), pp. 761—767.

44) Knaster and Kuratowski, Bull. Amer. Math. Soc. 33 (1927), p:-106.

45) That is, for each #>0, a 8,>0 exists such that every point of H whose
distance from P is <dJ, can be joined to P by an arc in H-+ P of diameter <.
See my paper Concerning the Open Subsets of a Plane Continuous Curve, Proc. Ntl.
Acad. of Sci. 13 (1927), pp. 650—656.
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That every subcontinuum of M is a continuous curve follows by the
proof given by Gehman (loc. cit.) for the case of the plane, which extends
to n dimensions without difficulty. That M has property (1) follows by
the proof given in my paper “Concerning Certain Types of Continuous-
Curves” %) for the theorem that every arcwise connected subset of a plane
continuum every subcontinuum of which is a continuous curve is arcwise
connected im kleinen, in the proof of which the only plane property used
is that for each &> 0 the continuum contains not more than a finite
number of mutually exclusive continua each of diameter << e. That M
has property (2) follows in a similar way by a proof given in my paper
“Concerning the Complementary Domains of Continua”4?) for the theorem
that every boundary point of an arcwise connected subset of any plane
continuous curve every subcontinuum of which is a continuous curve is
regularly accessible from that set.

Theorem 35. If H is any arcwise connecied subset of a Menger
reqular curve M, then (1) H is arcwise connected im kleinen, (2) every
boundary point of H is reqularly accessible from H.

Theorem 35 is an immediate consequence of Theorems 33 and 384.

Theorem 36. If K is any closed subset of a bounded continuum
M every subcontinuum of which is a conttnuous curve, then for each
e >0, M— K contatns at most a finite number of componenis each of
diameter > ¢.

Theorem 36 follows at once with the aid of Zarankiewicz’s Theorem
(loc. cit.) that no continuum every subcontinuum of which is a continuous
curve can contain a continuum of convergence.

Theorem 37. If R is any connected open subset of a bounded con-
ttnuous curve M every subcontinuum of which is a conitnuous curve,
then R has property S*®) and every boundary point of R is regularly
accessible from R.

Proof. Suppose theorem 37 is not true. Then either B does not
have property § or B has a boundary point which is not regularly ac-
cessible from R. In either case?) it follows that there exists an &> 0

46y Loc. cit., see reference *3).

4%) Ann. of Math. 29 (1928), pp. 399—411.

%) That is, for each ¢ >0, B is the sum of a finite number of connected sets
each of diameter <&. See R. L. Moore, Fund. Math. 3 (1922), p. 232.

49) For the former case, see my paper Concerning the Open Subsets of a Con-
tinuous Curve, loc. cif., proof of Theorem 1, p. 651; and for the latter case see my
paper Concerning Menger Regular Curves, Fund. Math. 12 (1928), Fundamental Ac-
cesgibility Theorem.
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and B contains an infinite sequence of points P,, P,, ... having a sequential
lmit point P belonging to M — R and such that no two of these points
can be joined by any arc in B of diameter <¢. Let C be a circle with
-the center P and diameter £/2. For each ¢, B contains an arc P, P, ,.
Since each such arc must contain peints without €, it readily follows
that B contains a sequence of mutmally exclusive ares T,, T,, 75, ...
each of diameter >>¢/8 such that there exists a continuum 7 belonging
to M — B and which is the sequential limiting set of the sequence of
continna T,,7T,,.... But then T is a continuum of convergence of M,
contrary to a theorem of Zarankiewicz (loc. ¢it.). This contradiction proves
Theorem 37.

(Eingegangen am 17. 11. 1928.)



