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Begriindung der projektiven Geometrie im offenen
Kontinuum.

Von

Hans Mohrmann in Darmstadt.
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Einleitung.

In den letzten fiinfzig Jahren hat die Loslosung der Analysis vom
MutterschoB der Geometrie ihr Ende gefunden. Die Trennung des Be-
grifis der Zahl von demjenigen der mefbaren Grofe (Lénge einer Strecke),
die noch P.Du Bois-Reymond®) fiir absurd hielt, hat dabei betrichtliche
Wehen verursacht. Die Schwierigkeiten, die zu iiberwinden waren, spiegeln
sich vielleicht am sichtbarsten in den Umstinden, die die Einfithrung der
Zahl in die Geometrie unabhingig vom MafBbegriff, also, modern gesprochen,
ohne Benutzung von Kongruenzaxiomen bereitet hat; oder anders ausge-
driickt: die die Begriindung der projektiven Geometrie auf Grund der ihr
eigentiimlichen projektiven Axiome allein verursacht hat. Es gibt wohl
kaum einen mathematischen Satz, iiber den so viel geschrieben worden ist,
wie iiber den Fundamentalsatz der projektiven Geometrie?).

1) Allgemeine Funktionentheorie, Titbingen 1882. — Vgl auch Reye, Geometrie
der Lage I, 1, 4. Aufl. (1898), 8.3: ,Auf die hohere Analysis, dieses michtige Werk-
zeug der modernen Mathematik, miissen wir schon deshalb verzichten, weil wir das
Mag nicht benutzen.“

?) Vgl. Hélder, Math. Annalen 65 (1908), S.161ff. Die (100 Seiten umfassende)
Arbeit Holders uiber die ,Geometrie der projektiven Geraden“ gibt wohl einen voll-
stindigen Uberblick uber die frithere Literatur. Dabei zeigt sich die Stirke Holders
im Blick fir die Schwichen seiner Vorginger, seine Schwiche im Mangel an Blick
fiir ihre Stirken. .
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Wir wollen im folgenden zeigen, daf diese Schwierigkeiten nicht pur
in der Natur der Sache begriindet sind. Dabei folgen wir einem Gedanken
von F. Lindemann®), dessen groBle Tragweite allerdings weiterhin nur
D. Hilbert*) erkannt zu haben scheint, der sich den Lindemannschen Ge-
danken ausdriicklich zu eigen gemacht und mehrfach verwandt hat’).

I
Axiome des offenen projektiven Kontinuums.

Wir legen das folgende aus sieben ,linearen® (einschlieBlich dem Stetig-
keitsaxiom), zwei ,ebenen“ und einem ,rdumlichen® Axiom bestehende
System zugrunde, das sich ohne Miihe auf Raume von beliebig vielen Di-
mensionen ausdehnen 148t:

Das Element der Punktgeometrie ist der Punkt.

1, 1. Es ¢ibt wenigstens zwei voneinander verschiedene Punkte.

L, 2. Zwel voneinander wverschiedene Punkte bestimmen eine Menge
von Punkten, die wir g- Linie nennen.

I, 8. Irgendzwei voneinander verschiedene Punkite einer und derselben
g-Linie bestimmen diese g-Linie.

L 4. Wenn A, B, C Punkte einer g-Linie sind und B zwischen A
und C liegt, so liegt B auch zwischen C und A.

L5 Wenn A und C zwei voneinander wverschiedene Punkte einer
g-Linie sind, so ¢ibi es stets wenigsiens einen Punkt B, der zwischen A
und C liegi, und wenigstens etnen Punkt D, so dafi C zwischen A wund
D liegi.

L 6. Unter irgend drei voneinander verschiedenen Punkien einer g-
Linie gibt es stets esnen und nur einen, der zuischen den beiden anderen liegt.

Erklarung. Wir betrachten auf einer g-Linie zwei voneinander ver-
schiedene Punkte 4 und B; wir nennen das System der beiden Punkte 4
und B eine Strecke und bezeichnen sie mit A B oder B A. Die Punkte
zwischen 4 und B heiBen Punkte der Strecke 4B oder auch innerhalb
A B gelegen; die Punkte 4 und B heilen Endpunkte der Strecke AB.
Alle iibrigen Punkte der g-Linie heifen auferhalb der Strecke A B ge-
legen.

3) Clebsch-Lindemann, Vorles. uber Georetiie 2 (1891), Teil I, S. 433f..

%) Grundlagen der Geometrie, Anhang I, S.113 der 6. Aufl.

3) Was wobl deshalb so wenig bekannt ist, weil fast immer von den Grundlagen
der Geometrie Hilberts gesprochen und nur selten beachtet wird, da8 Hilbert ver-
schiedene Eingiinge in die Grundlagen gezeigh hat, keineswegs nur einen solchen, bei
dem die Stetigkeitsforderungen den Schlufistein des Axiomensystems bilden.
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I, 7. (Stetigkeitsaxiom?®).) Jedem Punkie einer Sirecke entsprichi
eine reelle Zahl eines Intervalls und wumgekehrt.

Die Zuordnung der Zahlen zu den Punkten der Strecke, d. i die
Numerierung der Punkte, erfolgt alsdann auf Grund der Axiome des
~Zwischen”, wobel noch vielfach-unendlich viele Moglichkeiten . bestehen.
Die primitivste stefige Skala (zum Unterschiede von den projektiven und
metrischen) erhdlt man, wenn man den Endpunkten 4 und B der Strecke
AB die (reellen) Zahlen « und f zuordnet, wobei etwa a < f sei, einem
beliebigen Punkte C zwischen 4 und B aber eine belzebige Zahl y, ¢ << y << f usw.

I, 8. Hs gibt- wenigstens drei nicht auf einer und derselben g-Linie
gelegene Punkte.

1,9. Wenn A, B, C irgend drei micht in einer und derselben g-Linie
gelegene Punkte sind, D ein Punkt der Strecke
BC und E ein Punki der Sirecke AD ist, £
dann gibt es einen der Strecke AB ange-
horigen Punkt F derart, daff E auf der

Strecke CF liegt?). ¢
Erklarung. Die Menge der Punkte, die z

durch drei nicht auf einer und derselben

g-Linie liegende Punkte 4, B, C vermége den 4 F B

Punkten ihrer Verbindungsstrecken oder g- - Fig. 1.

Linien und denjenigen der Verbindungsstrecken
oder g-Linien der Punkte dieser bestimmt ist, heilit Dreieck oder E-Fldche
(Ebene) .

I, 10. Es gibi wenigsiens vier nicht in einer und derselben E- Fldache
gelegene Punkte.

Tetraeder und Raum, Simplex und Raum wvon mehr als drei Dimen-
stonen werden ebenso erklirt wie Dreieck und E-Fliche.

Wollen wir uns auf ein dreidimensionales Kontinuum beschrinken, so
brauchen wir noch ein Schlupaxiom:

) Die auf die Vorstellung der Iferasion gegriindete analysis infinitorum der pro-
jektiven Geometrie (unbegrenzt fortsetzbare Vierseitskonstruktionen) ist keine andere
als die auf die Vorstellung der natiirlichen Zahlenreihe gegrimdete analysis infinitorum
der reellen Zahlen. — Vgl. Weyl, Das Kontinuum, Leipzig 1918, 8. 72f. Auch wenn
man den Standpunkt Weyls nicht einnimmt (Fréchet, v. Kerékjirté) liegt firr uns
kein Grund vor, jene analysis noch einmal im geometrischen oder .mengentheoreti-
schen Gewande zu begriinden.

7) Peano, Sui fondamenti di geometria, Rivista di matematica 4 (1894), p. 65.
E. H. Moore, Trans. of the Amer. Math. Soe. 3 (1902), p. 147. F. Schar, Gnmdla,gen
der Geometrie {(1909), S. 7f.
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I, 11. Aupferhalb eines Raumes gibt es keinen Punkt.

Andernfalls 148t sich unser Axiomensystem ohne weiteres auf Riume
von beliebig vielen Dimensionen ausdehnen. In jedem Falle kénnen wir
noch ein Vollstdindigkertsaxiom hinzuftigen:

I, 12. Die Elemente der Geometrie bilden ein System wvon Dingen,
das bet Aufrechterhaliung sdmtlicher genannten Axiome keiner Erweste-
rung mehr fdhig ist®).

Dieses hat dann allerdings einen vollig anderen Charakter als bei
Hilbert, wo es mit dem , Archimedischen Axiom* zusammen die Forderung
der Stetigkeit ausmacht, die wir in I, 7 gestellt haben. Es hat bei uns
vielmehr den Zweck, unter allen zuldssigen (,nirgends-konkaven®, offenen)
Kontinuen das wmfassendste auszusondern.

Betrachten wir z. B. als Punkte unserer Geometrie, die Punkte der
Kugelhaube

X+ +2°=2, Z>1
(X, Y, Z rechtwinklige kartesische Koordinaten im Euklidischen Raum),
als g-Linien die GroBkreise der Kugel, soweit sie auf der Kugelhaube ver-
laufen, so erfilllen diese Punkte und g-Linien sdmtliche Axiome I, 1—10.
Das Vollstandigkeitsaxiom 1, 12 aber ist nicht erfiillt.
Die Punkte und g-Linien der offenen Halbkugel
X?4Y'+2°=2, Z>0
indessen erfiillen — bei Beschrinkung auf ein zweidimensionales Kontinuum —
auch das Vollstandigkeitsaxiom.

Hieraus erkennt man leicht, daBl das Hilbertsche Parallelenaxiom: Es
ser a eine beliebige g- Linie und A ein Punkt auferhalb a: dann gibt es
in der durch a und A bestimmten E-Fliche hochstens eine g-Linie (und
dann eine und nur eine), die durch A lduft und a nicht schneidet, auf
Grund unserer Axiome I, 1—12 ein bewessbarer Satz ist. (Hierin ist wohl
auch der Grund zu suchen, warum das Hilbertsche Parallelenaxiom nur in
der ersten Auflage der ,,Grundlagen® vor den Kongruenzaxiomen gestanden
hat) In der Tat ist das Hilbertsche Parallelenaxiom dem Euklidischen
nur deshalb dquivalent, weil die Axiome des ,,Zwischen®, die Euklid fremd
waren, insbesondere Hilberts II, 3 (unser I, 6) in Verbindung mit Hilberts
erstem Kongruenzaxiom (III, 1) vom Streckenabtragen die wunendliche
Ldnge der g-Linie fordern (die Euklid erst im Parallelenaxiom voraus-
setzt) und damit die elliptische Geometrie (auch im offenen Kontinuum)
ausschlieBen?).

8) Hilbert, Grundlagen, § 8.

9) Siehe hieritber mein demnichstim Verlag der ,Akademischen Verlagsgesellschaft*
in Leipzig erscheinendes Biichlein: Einfithrung in die Nicht-Euklidische Geometrie.
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IL
Die Beweismittel.

1. Wir diirfen hier als bekannt voraussetzen®), daB man auf Grund
unserer Axiome I, 1—6, 8—10, also ohne Benutzung des Stetigkeitsaxioms
I, 7 den folgenden Satz vom 4. harmonischen Punkte beweisen kann:

a) Sind A, B, C drei voneinander verschiedene Punkte einer g - Linie g
derart, daf} B zwischen A und C liegt, so gibt es auf g zu C in bezug
auf A und B etnen und nur einen 4. harmonischen Punkt D. Dabei
heiBen nach v.Staudt®) vier Punkte 4, B, C, D einer und derselben g-
Linie harmonisch, wenn 4 und B Schnittpunkte der Gegenseitenpaare eines
eigentlichen Vierecks sind und € und D auf den Diagonalen dieses Vier-
ecks Liegen. D liegt dann notwendig zwischen 4 und B.

Wir diirfen hier ferner den folgenden leicht auf Grund derselben
Axiome elementar beweisbaren Satz iiber harmonische Strahlen voraus-
sefzen™):

b) Werden die g-Linien a,b,c,d, die vier harmonische Punkte
A, B, C, D einer g-Linie g aus esnem Punkie 8 auferhalb g projizieren,
von esner beliebigen weiteren g-Linie g, tn vier Punkten A, B, C, D, ge-
schnitten derart, daf S nicht zwischen A und A,, B und B,, C und C,,
D und D, liegt, so sind auch A, B, C, D, vier harmonische Punkte. Die
g-Linien a bc d heifen (deshalb) harmonische Strahlen.

2. Bezeichnet man mit Pringsheim*?) als Systembruch mit der Basis b
(b positiv ganz > 2) einen Ausdruck von der Form

o=g+ 3+t +,

wo ¢ eine ganze Zahl, auch die Null, vorstellen kann und die a ,Ziffern~
der Zahlenwerte 0, 1, 2, ..., 5 —1 bedeuten, so gilt der (uns aus der
Dezimalzahl-Theorie geldufige) grundlegende Satz:

Jede reelle Zahl kann durch einen und nur einen unbegrenzi fortselz-
baren Systembruch*®) mit vorgeschriebener Basis b

10) Geometrie der Lage, Niirnberg 1847,

1) Im allgemeinen zerstort Projektion das ,Zwischen“. — Wir brauchen die
Sitze a) und b) nur in dieser engen Form.

%) Vorlesungen iiber Zahlen- und Funktionenlehre 1, 1 (1916), S 1111

%) Allenfalls mit der eingliedrigen Periode b—1;

fir b=10 ist z.B. $=0,5=0,4999... und
fir b= 2 st $=0,1-=0,0111....
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=g+l R ST
9—9+b+bz+~-+b,7’

dargestellt werden, und wmgekehrt stell jeder solche Systembruch eine und
nur erne reelle Zahl dar.

Es ist also

67<a_§_ay+-£; (fiir. jedes » =0,1,2,...).

Damit haben wir die Beweismittel zusammengestellt.

111
Uber den Fundamentalsatz der projektiven Geometrie.

1. Seien wieder X, Y, Z gewéhnliche rechtwinklige kartesische Ko-
ordinaten im Euklidischen Raum. Alsdann stellen die Gleichungen und
Ungleichungen

§§+-§g+%‘:1 (0<a<b<e; X>0,7>0, Z20)
a [

einen Ofktanien eines dreiachsigen Ellipsoids dar. Die inneren Punkte
dieses Oktanten (X >0, Y > 0, Z>>0) betrachten wir als Punkte einer
Geometrie, die geodétischen (kiirzesten) Linien des Ellipsoid-Oktanten als
ibre g-Linien. Das System dieser Punkte und g-Linien geniigt unseren
simtlichen Axiomen I, 1—9. Dem ,rdumlichen“ Axiom I, 10 indessen
gentigt es, nach einem bekannten Satze von Beltrami'?), nicht, d. h. ein
den Axiomen 1,1—9 gendigendes System von Punkten und g-Linien kann
im allgemeinen nicht als Teil eines entsprechenden raumlichen Systems
von Punkten und g-Linien aufgefaft werden.

Wir wollen zeigen, dall eine den Axiomen 1,1—7 gendigende g- Linie
tmmer als Teil eines rdumlichen Systems betrachtet werden kann, oder mit
anderen Worten, daf eine allgemeine stetige Skala (Abschnitt I dieser
Arbeit) immer als projektive Skala aufgefaBt werden kann.

Die drei Punkte, in denen die positiven Koordinatenachsen unser
Ellipsoid durchstofen, bezeichnen wir mit X, ¥ und O. Wir numerieren
die Randpunkte unseres Ellipsoid-Oktanten auf OX und OY, d. h. wir
stellen zwei beliebige stetige Skalen OX und OY her, indem wir dem
Punkte O den Wert Null, den Punkten X und Y je den Wert oo zu-
weisen und irgendeinem Punkte zwischen O und X bzw. O und Y den
Wert 2 baw. y 0 <z < oo, 0 <y < oo, usw. Alsdann sind sowohl die

14) Annali di matematica 7 (1865), S.187.
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Punkte z auf OX zwischen O und X als auch die Punkte y auf OY
zwischen O und Y den positiven Zahlen zwischen 0 und oo eindeutig um-
kehrbar zugeordnet. Die g-Linien, welche
die Punkte der X-Achse aus Y projizieren,
wihlen wir als Koordinatenlinien # = konst.,
diejenigen, welche die Punkte der Y- Achse
aus X projizieren, als Koordinatenlinien
y = konst.

Durch jeden Punkt im Innern des
Ellipsoid-Oktanten geht eine und nur eine
Koordinatenlinie des einen und des anderen
Systems.

Wir bezeichnen die Punktmengen im Innern des Ellipsoid-Oktanten,
deren Koordinaten eine Gleichung von der Form

Az +By+C=0
erfiillen, als y-Linien. Alsdann geniigen die Punkte des Ellipsoid-Oktanten
und seine y-Linien unseren simtlichen Axiomen I, 1—10. Und wir kénnten,
wenn wir uns paradox ausdriicken wollten, sagen, wir hiitten die projektive
Geometrie mit alleiniger Benutzung linearer und ebener projektiver Axiome
begriindet.

Indessen sind nur die Koordinatenlinien

x = konst. und ¥ = konst.

7,

Fig. 2.

zugleich g- und y-Linien. Hitten wir nur eine Skala direki hergestellt,
etwa die auf der X-Achse, und diese dann zunichst aus Y auf eine be-
liebige g-Linie g durch O projiziert, die

. Y,
so gewonnene Skala wiederum aus X auf
die Y-Achse, so wire auch die y-Linie Y Y Y
-
Y=z Y2
mit einer g-Linie identisch, weitere
y-Linien indessen nicht. Hieran wiirde
sich auch dann noch nichts dndern, wenn 0
x, Z2

a=b=¢>0, d. h. unser Ellipsoid eine )
Kugel wire, obwohl dann die g-Linien Fig. 3.
des Kugel-Oktanten (und seine *Punkte) unseren simtlichen Axiomen I,
1—10 geniigen, so daB sowohl fiir die y-Linien als auch fiir die g-Linien
des Kugel-Oktanten die Sitze der ebenen projektiven Geometrie (im offenen
Kontinuum) giiltig wéren.

Vier Punkte der X-Achse, die in bezug auf die y-Linien harmonisch
sind, sind es in bezug auf die g-Linien (im allgemeinen) nscki. Eine Los-

Mathematische Aunalen. 102, 35
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losung der projektiven Geometrie der Geraden von der Ebene hat also
keinen geometrischen Sinn*®).

2. Wir ersehen daraus weiter, daBl man, um den Fundamentalsatz der
projektiven Geometrie auf Grund unserer Axiome I, 1—10 zu erweisen,
die Koordinaten nicht willkiirlich einfithren darf. Dies hat vielmehr so zu
geschehen — und das ist der in der Einleitung erwahnte Lindemannsche
Gedanke —, daf das System der y-Linien mit dem System der g-Linien
zusammenfillt. Kann man das zeigen, so ist damit auch der Fundamental-
satz der projektiven Geometrie erwiesen, sowie die Giiltigkeit des Pascal-
schen Saizes'®) (im offenen Kontinuum) usw.

Notwendige Voraussetzung ist demnach, daB vier Punkte einer Ko-
ordinatenachse, die in bezug auf die g-Linien harmonisch sind, auch in
bezug auf die y-Linien harmonisch liegen. Hieraus erklirt es sich, daf
man eine im v. Staudtschen geometrischen Sinne projekiive Skala im
Gegensatz zur stetigen (im Holderschen Sinne projektiven) Skala nur mit
Hilfe von Vierseits-Konstruktionen herstellen kann, indem man drei Punkten
A, B, C beliebige Zahlen z,, x,, ¥, zuweist, dem vierten harmonischen
Punkt D hingegen diejenige Zahl z, die sich aus der Gleichung

(ABCD)= (z,z,2,2) = —1

ergibt, wo (z, z,2,x,) das Doppelverhilinis der Elemente z,z,z; z,

.

15) Holder (a. a. 0., S.248) nennt eine ein-eindeutige Beziehung zwischen den
samtlichen Punkten einer Geraden g und den sdmtlichen Punkten einer Geraden g’
(die Geraden konnen auch koinzidieren) projektiv, wenn die Bedingung erfullt ist,
daf vier harmonischen Punkten von ¢ stets vier harmonische Punkte von g’ ent-
sprechen und umgekehrt. Holder konstatiert ausdricklich die Ubereinstimmung seiner
Definition der Projektivitit mit derjenigen v. Staudts und fugt hinzu, daf die De-
finition durch (mehrmaliges) Projizieren fur seine Zwecke unbrauchbar sei. Da Halder
trotz den 100 Seiten, die er der ,Geometrie der projektiven Geraden® widmet, keine
Gelegenheit findet, zu erkliren, was man unter vier harmonischen Punkten zu ver-
stehen habe, wihrend er auf der anderen Seite als ein Ziel seiner Arbeit die ,Los-
losung der projektiven Geometrie der Geraden wvon der Ebene“ bezeichnet, so kann die
Meinung entstehen, es sollten an die Stelle der v. Staudtschen Definition von vier
harmonischen Punkten die hierauf beziiglichen Holderschen Axiome III bis VI treten,
um so mehr, als Holder sagt (S.167): ,Dabei ist es aber nun notwendig, daf auBer
den fur die Gerade gultigen Axiomen der Anordnung und ... der Stetigkeit gewisse
die harmonischen Punkte betreffende Tatsachen vorausgesetzt werden, die man bei
einem anderen Ausgangspunkt der Untersuchung aus den Tatsachen der Ebene bzw.
des Raumes beweist.

16) Der passend spezialisierte ,Pascalsche Satz“ spielt bekanntlich bei der Be-
grandung der projektiven Geometrie mit Hilfe der Kongruenzaxiome eine wichtige
Rolle; er ist dem Fundamentalsatz aquivalent. Vgl. z.B. Schur, Grundlagen, a.a.O.
8. 170.
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i i T Tl
T, -, Xyg— 1z’
die bekannte Inwvarianie gegeniiber linearer Substitution, bedeutet.

Man ersieht daraus aber auch, daB der Fundamentalsatz der pro-
jektiven Geometrie kein linearer Saiz ist, obwohl man ihn scheinbar so
aussprechen kann, indem man mit v. Staudt die Projektivitit nicht durch
Perspektivitit, sondern durch das Entsprechen harmonischer Gebilde erklirt
und vergiBit, daf harmonische Punktquadrupel nur mit Hilfe der Ebene
geometrisch definiert werden konnen.

Wir konnen den Sachverhalt auch so ausdriicken: Die projektive
Geometrie der Ebene ist das Primére, der sogenannte Fundamentalsatz
der projektiven Geometrie das Sekundire. Wir geben ihm die folgende
Fassung:

Fundamentalsatz der projektiven Geometrie (im offenen Kon-
tinuum). Numeriert man maittels wiederholier (unbegrenzt fortsetzbarer)
Vierseits-Konstruktionen die Punkie einer Sirecke AC, indem man etwa
den Endpunkten A und C der Strecke die Werte 0 wund oo, einem be-
liebigen Punkte B zwischen A und C die Zahl 1 zuordnet, so ist die
entstehende projektive Skala vom Wege der Herstellung unabhingig.

Damit treten aber auch schon die eigenartigen Schwierigkeiten zutage,
die bei einer Begriindung der projektiven Geometrie auf Grund der ihr
eigentiimlichen projektiver Axiome allein zu iiberwinden sind. Wir erwihnen
nur zwei: 1. Es ist zu zeigen, daB vier Punkte, fiir deren Koordinaten

das Doppelverhiltnis
(z, 2, 2 2,) = —1

ist, ein (im geometrischen Sinne) harmonisches Quadrupel bilden; 2. Es ist
zu zeigen, daf Punkte mit gleichen Koordinaten, die sich auf verschiedenen
Wegen ergeben haben, identisch sind.

Dem letzten Umstande kénnen wir sofort entnehmen, dafi der Fun-
damentalsatz der projektiven Geometrie, auch unter Voraussetzung des
Stetigkeitsaxioms I, 7, d. h. unter Ausschluf spdterer Himzunahme so-
genannter Nicht- Archimedischer Elemente”), nicht ohne Stetigkeitsbetrach-
tungen erwiesen werden kann?f). Man braucht nur zu beachten, daB den
Vierseits-Konstruktionen gegeniiber ein und dasselbe Element ,rational“
und irrational“ sein kann. Beispielsweise ergibt sich 1 aus 0, 1, oo mit

17) Siche Hilbert, Grundlagen, § 12. — Eine angebliche Begriindung der (-pro-
jektiven) Geometrie mit Hilfe von Kongruenzaxiomen ohne Stetigkeitsaxiom hat nur
unter dieser Voraussetzung einen Sinn, d. h. die so entstehende Geometrie ist wn-
fertige, nicht etwa elementare Geometrie.

%) Vgl. Hilbert, Grundlagen, Kap. VI,

35%
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zwer Schritten, namlich so:

1

1 1
Wendet man dagegen den ProzeB des fortgesetzten ,Halbierens® an:
(¢, 2, c© a)=-—1 (x=£‘-—;ﬁ),

so kann man i nicht mit endlich vielen Schritten erreichen, da es nur

esne Entwicklung von } in einen (unbegrenzt fortsetzbaren, periodischen)
dyadischen Bruch gibt (II, 2):
1

1 1 1
== — ‘_‘*L‘...
3 22+24+26 :

oder, in dyadischer Schreibweise, wegen

. 1=2°=1,000... und 3=2"42°=11,000...,
1 1
3 =7 = 0,010101....
1v.

Beweis des Fundamentalsatzes.

Wir schreiten nunmehr zum Beweise des Fundamentalsatzes der pro-
jektiven Geometrie im begrenzien Gebiete oder, was dasselbe besagt, im
offenen Kontinuum auf Grund unserer Axiome I, 1—10. Als Kontinuum
wihlen wir das Innere eines Dreiecks (YOX). Man sieht dann leicht, daB
man diesem Kontinuum, ohne mit den vorausgesetzten Axiomen in Wider-
streit zu geraten, noch drei weitere, vollig gleichartige ,, Quadranten, samt
den ihnen gemeinsamen Randpunkten, aber mit AusschluB der Punkte
X*=* uynd ¥Y*%°, niamlich

(YO —X), (—X0—7Y), (—YOX)

hinzufiigen kann. Und da man in diesem umfassendsten zweidimensionalen,
offenen Kontinuum (im Sinne des Vollstindigkeits-Axioms I, 12) wiederum
Kontinua abgrenzen kann, fiir deren Inneres ebenfalls simtliche Axiome
I, 1—10 giiltig sind.

Hierzu ist zunichst nétig, mit Hilfe von Vierseits-Konstruktionen eine
projektive X-Skala O X herzustellen. Das kann auf unendlich viele Weisen
geschehen, und es ist nach dem Fundamentalsatze gleichgiiltig, auf welchem
Wege es geschieht. Aber es ist nichi gleichgiiltig fir den Beweis. Wollen
wir unser Ziel erreichen, so miissen wir die schon erwahnten Schwierigkeiten
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beriicksichtigen. Hierzu ist in erster Linie erforderlich, die Skala so an-
zulegen, dafl wir sicher sind, jeden Punkt der Trigerstrecke ein und nur
einmal zu numerteren.

Dies geschieht am einfachsten dadurch'®), da man den Endpunkten
der Skalentrigerstrecke OX die Werte O und oo zuweist, und einem be-
liebigen Punkte zwischen O und X die Zahl 1. Damn sucht man die Punkte
mit ganzzahligen Abszissen auf; und endlich unterteilt man jede Strecke,
deren Endpunkte zwei aufeinanderfolgende ganze Zahlen zu Abszissen haben,
auf die gleiche Weise, durch fortgesetztes ,Halbieren®.

Zu diesem Zwecke wenden wir den friiher erklérten ProzeB der Kon-
struktion des vierten harmonischen Punktes D (zu einem Punkte C in bezug
auf zwei von diesem und voneinander verschiedene Punkte 4 und B, von
denen B zwischen A und C liegt) auf die beiden folgenden Weisen an:

(1) (ABCD) = (cozyz,2) = — 1,
d. b

T — Ty =Ty — X,
(Antragen der gleichen Strecke einer metrischen Skala im FEuklidischen
Bilde), woraus sich, wenn man mit 2, =0 und 2, =1 beginnt, die Reihe
der natiirlichen (positiven, ganzen) Zahlen ergibt®°);

(2) (ABCD) = (z,z,c0z) = —1,
d. h

—Ath
(Halbieren einer Strecke einer metrischen Skala im Euklidischen Bilde),
woraus sich die erwdhnten Unterteilungen ergeben.
Wir wollen nun unsre ,Abszissen*-Skala z soweit fertiggestellt

denken, da8 die Differenz irgend zweier aufeinanderfolgender Abszissen —:1

(k pos. ganz) betragt. Alsdann projizieren wir die Skala OX aus Y auf
eine beliebige g-Linie OU im Innern des Dreiecks (0XY), und die so
entstehende Skala aus X auf OY, wodurch wir eine ,Ordinaten~-Skala z
erhalten. Die g-Linien durch ¥ und X wihlen wir als Koordinatenlinien

2z = konst. und y = konst.

%) Vgl. Clebsch-Lindemann a. a. O., S. 436.

20) Nur der Mathematiker, an dessen axiomatischen Gebilden noch das (den
geometrischen Gebilden der Wirklichkeit eigentiimliche) deiktische Begriffsmerkmal
des Ausgedehntseins haftet, wittert hier das Fehlen eines weiteren ( Archimedischen)
Axioms: die ,Linien“ der ,axiomatischen“ Geometrie sind aber, ebenso wie diejenigen
der ,analytischen“, nur Mengen von Elementen, die wir Punkte oder Zahlen nennen;
sonst nichts. ’
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Und die Schnittpunkte der Koordinatenlinien bezeichnen wir als Gitter-

punkte, und wir nennen
1

oF
die Maschenweite des (unbegrenzt fortsetzbaren) offenen Gitters.
Weiter bezeichnen wir, wie frither, als y-Linien solche Punktmengen

unsres Kontinuums, deren Koordinaten (2, ) linearen Gleichungen
Az +By+C=0

geniigen. Alsdann wollen wir den folgenden, fiir uns grundlegenden Satz
beweisen:

Irgend drei Punkie eines offenen Gitters, die auf etner und derselben
y-Linie liegen, gehoren auch einer und derselben g-Linie an.

Zu diesem Zwecke brauchen wir nur die Figuren (4) und (5) zu be-
trachten, von denen (5) das metrische Euklidische Bild von (4) ist.

Y,
¥4
2
7
3
3
z
2z
z
¢
A I A 2 X 0 i35 3 : X
Fig. 4. Fig. 5.

Auf Grund der Skalenkonstruktion und des Satzes (II, 1, b), nach
dem vier harmonische Punkte durch vier harmonische Strahlen projiziert
werden und, was dasselbe besagt, vier harmonische Strahlen nach vier
harmonischen Punkten geschnitten werden, erkennt man sofort die Richtig-
keit unsres Satzes fiir die y-Linien y = 2z und (ihre Spiegelbilder)

y=—2(zx—1) sowie y=—2(x—2).
Hierbei kommen als projizierende Strahlen nur Koordinatenlinien in Betracht.
Wihlt man aber jetzt die Punkte (x=13%, y=1) und (2=1,y=2) zu
Projektionszentren, so erkennt man, daB auch die Punkte der X-Achse

1 3 1 1 3
(Z’ ‘4‘5 0, IZ) und ('2') §: 3, 1)
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harmonische Quadrupel bilden, womit die Verbindung zwischen den Kon-
struktionselementen der Skalen hergestellt ist (was iibrigens auch mittels
den Diagonallinien des Gitters hitte geschehen kénnen). Durch Wieder-
holung der gleichen Betrachtung ergibt sich hieraus ohne Miihe, dafl srgend
drei Skalenpunkte z, x, z,, fiir die
Ty — Ty = Xy — X4
ist, mit x = oo harmontsche Quadrupel
(ABCD) = (2, 2,00,)

bilden. Hieraus aber folgt unser Satz mit ausschlieBlicher Benutzung von
Koordinatenlinien als Projektions-Strahlen zunéchst fiir irgend drei auf-
einanderfolgende und damit fiir irgend drei Gitterpunkte einer y-Linie.

Beil unsrer Einfithrung von Koordinaten auf Grund von Vierseits-
Konstruktionen erscheinen die Zahlen in Gestalt von dyadischen ,System-
briichen® (11,2, mit der Basis b=2). Betrigt die Maschenweite unsres

Gitters ?1,;, so haben alle Koordinaten die Form **):
a, a, @
6k=9+’§“+'2‘;+~-+2—12:

wo also ¢ eine ganze Zahl und die @, 0 oder 1 bedeuten.

Da wir nun die Maschenweite unsres (offenen) Gitters durch fort-
gesetzte Vierseits-Konstruktionen unter jede Grenze herabdriicken konnen,
so folgt aus unserm Satze iiber die Punkte eines (offenen) Gitters, daf
jede g-Linie durch eine lineare Gleichung in den Koordinaten x, y dar-
gestellt werden kann, und dafi wmgekehrt jede derartige lineare Qleichung
eine g-Linte darstells.

Damit aber ist der Beweis der Giiltigkeit der projektiven Geometrie
fiir ein beliebiges, den projektiven Axiomen I, 1—10 geniigendes Kontinuum
erbracht: die projektive Geometrie im begrenzten Gebiet oder, was dasselbe
besagt, im offenen Kontinuum ist auf Grund der ihr eigentiimlichen Axiome *?)
allein begriindet, und damit auch der Fundamentalsatz erwiesen.

Darmstadt, den 6. April 1929.

2) Die von Holder a.a. O, $.205 und Klein-Rosemann, Vorlesungen itber Nicht-

Euklidische Geometrie, Berlin 1928, S. 160 verwandte Form ~21—:~ ist fur unsern Schluf

durch vollstindige Induktion ungeeignet.
2% Da zu diesen auch ein Sgetigkeitsaxiom gehort (I, 7), so zahlen wir es mit
zu den ,projektivent Axiomen (im Gegensatz zu anderen Autoren).

(Eingegangen am 10, 4. 1929.)



