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General recursive functions of natural numbers?).

Von
S. C. Kleene in Madison (Wis., U.S.A.).

The substitution

1) P2y s @) = O (1 (Trs o0 Ba)y o vs A (215 -+ 5 T)),
and the ordinary recursion with respect to one variable
@) @(0,2,, ..., 2,) = Y (2y, ..., Tp)

@Y+ 1 oo @) = 1 (Y @Y Tay - os Tn)y Ty, + -y T,
where 0, x,, - .., Xm>» ¥, x are given functions of natural numbers, are
examples of the definition of a function ¢ by equations which provide a
step by step process for computing the value ¢(%k,,..., k,) for any
given set k,,...,k, of natural numbers. It is known that there are

other definitions of this sort, e. g. certain recursions with respect to two
or more variables simultaneously, which cannot be reduced to a succession
of substitutions and ordinary recursions?). Hence, a characterization of
the notion of recursive definition in general, which would include all
these cases, is desirable. A definition of general recursive function of
natural numbers was suggested by Herbrand to Godel, and was used by
Godel with an important modification in a series of lectures at Princeton
in 1934. In this paper we offer several observations on general recursive
functions, using essentially Gédel’s form of the definition.

The definition will be stated in § 1. It consists in specifying the
form of the equations and the nature of the steps admissible in the
computation of the values, and in requiring that for each given set of
arguments the computation yield a unique number as value. The ope-
rations on symbols which occur in the computation have a similarity to
ordinary recursive operations on numbers. This similarity will be utilized,
by the Godel method of representing formulas by numbers, to prove
that every (general) recursive function is expressible in the form
p(eylo(z,- ..., 2,, y) = 0]) where v and o are ordinary or ,,primitive“

1) Presented to the American Mathematical Society, -September 1935.

2) W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. An-
nalen 99 (1928), S.118—133; Rézsa Péter, Konstruktion nichtrekursiver Funk-
tionen, Math. Annalen 111 (1935), S. 42—60.
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recursive functions and (z,, ..., 2,) (E¥) [e(2,, ..., Z., y) = 0]%). Also,
it is seen directly that, for any recursive function ¢ (z,, ..., Z,, ¥),
ey lo(®,, ..., #,, y) = 0] is a recursive function, provided (z,, ..., z,) (E'y)
le(zy, ..., 2, y) = OL

In §2, the problem is raised, which systems of equations define
recursive functions under the general definition. The systems which do
cannot be recursively enumerated, if by a recursive enumeration is under-
stood one such that the numbers ordered by the Gédel method to the
systems of equations in the enumeration are a recursive sequence (i. e.
the successive values of a recursive function of one variable), since from
any recursive sequence of such numbers we can obtain the recursive
definition of a new function by the familiar process of diagonalizing and
adding 1. For the same reason, a recursive process of deciding which
systems define recursive functions is unattainable, if by a recursive
process is meant one such that there is a recursive function of the
corresponding numbers whose value is 0 or 1 according to the result
obtained. Since the condition under which a recursive function of #
variables is defined can be expressed in the form (z,, ..., 2,) (Fy)
[e(z,, ..., Zn, y) = 0], we are afforded an approach (somewhat different
than Gédel’s*)) to the existence of undecidable number-theoretic proposi-
tions in formal logics satisfying certain general conditions. Roughly
speaking, every such formal logic must contain undecidable propositions
of the form (z) (Ey) [o (=, y) = 0], where ¢ (2, y) is a primitive recursive
function, because otherwise the logic could be used to decide recursively
which systems of equations define recursive functions, which we know
in advance to be impossible. Every problem of the form, whether or
not (z) (Ey) [o (%, y) = 0], where o (2, y) is a recursive function, is in-
cluded in the problem, which systems of equations define recursive func-
tions of one variable.

Also, there are non-recursive functions definable using only one
quantifier, thus: z(z) = 0 if (y)[e (2, y) = 0], 7 (2) = 1 otherwise, where
o (%, y) is primitive recursive.

3) In the “functions” which we consider, the arguments are understood to
range over the natural numbers (i. e. non-negative integers) and the values to be
natural numbers. Also, for abbreviation, we use propositional functions of natural
numbers, calling them ,,relations* (alternatively ¢classes”, when there is only one
variable) and employing the following notations: (z) 4 (z) [for all natural numbers,
A (z)], (Ez)A(x) [there is a natural number z such that 4 (2)], ¢ 2[4 (x)] {the
least natoral number z such that 4 (2), or O if there is no such number], —[not],
V {or], &[and], — [implies], ={[is equivalent to].

4) Kurt Godel, Uber formal unentscheidbare Satze der Principia Mathematica
und verwandter Systeme I, Monatsh. fir Math. u. Physik 38 (1931), S.173—198.
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§1.
The relation bhetween primitive and general recursive functions.

A recursive function (relation) in the sense of Gddel*) (S. 179—180)
will now be called a primitive recursive function (relation). By using

Sz =z+1 (the successor function),
(3) C)y=0 (the constant function 0),

Ui (@5 .. @) = 2, (identity functions)

as initial functions, the definition of primitive recursive function can be
phrased thus:

Definition 1. A function is primitive recursive if it can be defined
from the functions (3) by (zero or more) successive applications of
schemas (1) and (2) (m,n=1,2,..;2=1,...,n)%).

In the study of general recursive functions, we treat the defining
equations formally, as sequences of symbols. For abbreviation, we may
omit to distinguish between the functions and numbers, and the symbols
or sets of symbols which stand for them.

Now consider expressions consisting of finite sequences of the follow-
ing symbols: O (the numeral 0), S (the successor function), w,, w,, ...
(numerical variables), g,, g,, .-. (variables for functions of r,, 7, ... ar-
guments, where 7,,7,,... is a sequence of positive integers in which
each occurs infinitely many times, say 1,1,2,1,2,3,...), (,),» , = (pa-
rentheses, comma, equality symbol). We define term thus: 0, w,, w,, ...

are terms; if a,, a,, ... are terms, S(a,), g,(a,, ..., ), 0,(a,, ..., @),
. are terms. By numeral is meant one of the expressions 0, S(0),
S(S(0)),.... If @ and b are terms (and if ¢,,..., 0, are functional

variables®) such that a least one of 0,,...,0, occurs in a or b, but no
functional variables other than o, ..., 6, occur in @ or b), a = b will be
called an equation (in o,...,0,). By a system of equations we mean a

finite sequence of equations. SZ‘ o Z"A shall denote the result of
e On

substituting b; for a; (¢ = 1, ..., n) throughout 4 (4 itself, if a,, ..., a,

5) This form of the definition was introduced by Godel to avoid the necessity
of providing for omissions of arguments on the right in schemas (1) and (2). The
operations in the construction of primitive recursive functions can be further
restricted. See Roézsa Péter, Uber den Zusammenhang der verschiedenen Begriffe
der rekursiven Funktionen, Math. Annalen 110 (1934), S. 612—8632.

6) That is, if a,, ..., 0, stand for ¢, , ..., Ca, for some set of distinct num-

bers a , ..., a, (then we use s, for To, ). Similarly, in R, below it is meant that

Z,... %, stand for v, , ..., w, for some set of distinct numbers 8, ..., 8.
1 n ) B 1 n
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do not occur in 4). E b, ,, ... F shall denote that the expression F
is derivable from the expressions E by (zero or more) applications of
the operations R,,, R,,, ....

We list the operations on expressions?):

R,: to replace 4 by SZ‘ "'2"Af, where 2., ..., %, are the numerical

A

varwables which occur in A, and k,, ..., k, are numerals.

R,: to pass from 4 and o(k,, ..., k) =k to the result of substituting &
for a particular occurrence of o(k,, ..., k) in A, where ki, ...k,
k are numerals.

R,: to pass from A and B = C to the result of substituting C for a
particular occurrence of B in A.

The Herbrand-Godel definition of general recursive function of
natural numbers can be formulated thus®):

Definition 2a. Given functional variables o,, ..., 0,, let E} denote
the set of equations o;(k,,..., ks;;) =%k where k is the ‘“value” of
aj(ky, ..., ksj) as presently defined. The functions g, ..., 5, are defined
recursively by the system of equations (&, :. . E,) if, for each ¢ (:=1, ..., n),
E, is a system of equations in o, ..., 0,, each of the form g (a,, ..., a,)==5
where ¢; does not occur in a,,..., @, such that for each set of
numerals k,, ..., k, there is exactly one numeral k (called the value of
;(ky, ..., k) for which E}, ..., BEf_y, E; b, ,0,(k,... k) =k
A function o, is recursive if there is an (E, ... E,) of this description.

We understand a function ¢(z,, ..., z,) to be recursive under this
definition, if it is possible to define it by recursion equations of the type
described, whether or not originally the function is so defined. More
explicitly, a given function ¢ (z,, ..., z,) is recursive under Def. 2a, if
there exists an (E, ... E,) as described in Def.2a in which o, may be
regarded as representing ¢. o, may be regarded as representing ¢, if
s, = m and whenever k,, ..., ks,, are the numerals S (..., times ... S(0)...),
e 8{... 2, times ...S8(0)...), resp., the “value of o, (k,,..., k)"
under Def.2a is the numeral S(... ¢ (z,,..., z,) times...S(0)...).
A similar remark applies to Def.2b below.

7) In these operations we do mnot require that 4 and B — C be equations
and that ¢ be a functional variable, since R, —R; as stated when applied to
equations generate equations. Thereby, our proof of IV is simplified.

8) In what follows, the word “recursive” (when not qualified by the a,djectlve

“primitive’) will mean recursive under any one of the definitions 2a, 2b and 2¢,
except when the definition involved is mentioned explicitly (as is necessary in the
course of establishing the theorems VI and IX on their equivalence).
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We now show that Def.2a is not more general than the following
(which will later be proved equivalent to it):

Definition 2b. The functions s, ..., 6, are defined recursively by E,
if E is a system of equations in o, ..., 0, such that foreach7 (¢ =1, .... n)
and each set of numerals %, ..., ks, there is exactly ‘one numeral k
(called the wvalue of o, (%, ..., ksl)) for which E b 30,(%,, ..., ks) = k.
A function ¢, is recursive if there is an E of this description®).

For the system of equations (¥, ... E,) of Def.2a can be proved to
be a system E for Def.2b thus: Clearly, (E, ... E,) is a system of equa-
tions in ¢,,...,0,, and for each 7 and set of numerals k,,...,k,
(E,...E,) by 50,k ... k) = k where £ is the value of 0, (k,, ..., &)
under Def. 2a. It remains to be shown that (E, ... E,) b, ; o; (k,,- .., ko) =1
for I a numeral only when ! = k. Now each equation of (%, ...E,) is
verifiable (for each replacement of its numerical variables by numerals)
by use of the values under Def. 2a, since, on examination, the supposition
of the contrary is found to conflict with the hypothesis that for given 5
and numerals k,, ..., k;, there is only one numeral k such that

Leu Bf oy, By byyoo, (kg ..o k) = k°%). Moreover, R, and R; applied
to verifiable equations yield verifiable equations. Hence, if (E, ... E,)
Fyso.(ky, ..., k) =1 where k,,..., &k, I are numerals, the values of
o,(k,, ..., k) and | must be the same, i e. ] must be the value k of
6:(ky, ..., k) under Def. 2a.

The set of operations R,, R; may be replaced in Def.2b by a set
R;(2=0,1,2,...) of single-valued binary operations, defined over all
pairs of equations as follows:

' . wi !
R;; : to pass from A and B to SS(w,)Ai'

R3, 41 to pass from A and B to SgiA .

Rj. 4 0t to pass from A and B = C to the result of replacing the occurrence
of B in A beginning with the © + 15t symbol by C, if there is such
an occurrence; otherwise, to A itself.

For, under the conditions of Def.2b, E b , ., . o;(k,, ..., ks) = l

(! a numeral) when ! is the value of o;(k,, ..., k,) under Def. 2b and

only then (as is easily shown).

%) A more general definition would not be obtained by ailowing under R;
also the substitution of B for C, since E may be chosen to include b == a when-
ever ¢ — b is included.

9a) Similarly, the equations of the system E of Def. 2b are verifiable by use
of the values under Def. 2b, if they are of the form o(ay, ..., a) = b
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We now assign numbers to symbols, expressions, finite sequences of
expressions, etc., by the Gédel method [loc. cit.®) S. 179—182], letting
numbers correspond to symbols thus:

€L, N8 LB, ws= LB, T LT (L1, <)L 18,

2

“W o Pivas 07 P

where p; denotes the 2* prime number. Then if the numbers correspon-
ding to N,,...,N, are n,,..., 7, resp., the number corresponding to
the sequence N, ..., N, is pi'... p;*. Employing Godel’s notations (in-
cluding the use of italics to indicate the correspondent for numbers of a
given notion relating to expressions) and his methods of exhibiting the
primitive recursiveness of functions and relations®®), we adopt 1—10 of
his list, modifying 6, and define further primitive recursive functions and
relations, as follows:

6. nG@le=cyly < z&a|(Pr(n)) & z|(Prn) 1]

The finite sequence 7, ..., n; of positive integers is represented by
Pyt ... pi*. Also, we may use the positive integer z to represent any
sequence n,, ..., n; of natural numbers such that z = pi* ... p;*. The
modification in the definition of nGlz secures that nGlz.always be
the #® member. The significances ascribed to I{x), z*y, etc., refer only
to the case n,,..., 1, > 0).

11, z—y=c2zZL2&z=y-+2].

ey y=2—y; i<y, z—-—y=0.
12. [—:—]zez[zgx&(z-{—l)y>x].
x
13. Rem(x,y)zm;([—y—])y.
14. Dy (0) =1,
Dy (k+1) = ez [z < 3 & {[1GI Dy (k) < 261Dy (k) & z
= QUGIDy 0] + 132 GLDy ()]

V [1GI Dy (k) = 261Dy (k) > 0 & 2
= 216IDy () 3(261Dy (B = 1]

V [2GIDy (k) = 0 & z = u&Dy @i+ 1]}],

9b) Also see Th. Skolem, Begriindung der elementaren Arithmetik durch die
rekurrierende Denkweise ohne Anwendung scheinbarer Veranderlichen mit unend-
lichem Ausdehnungsbereich, Videnskapsselskapets Skrifter 1923. I. Mat..naturv.
Ki., Nr. 6, S.1—38. ’

10) Note that (1) =0 and 21 = l»2 = z [I(z) > 0]
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Dy (k) represents the k -+ 1¢¢ pair of numbers in the following order:
00; 01, 11, 10; 02,12, 22, 21, 20;....
15. 90ccz= (En)[0 <n <1(2) &v=nGlz].

The symbol v occurs in the expression w.

16. Su x(Z) =ezle Z [Pr(l(@) +1@)Prv&(Bu, v)[u,v < z&2
— s R(mGlo)+v&z = usyso&n = I () -+ 1].
U (;) entsteht aus z, wenn man an Stelle des n-ten Gliedes von z
y einsetzt (vorausgesetzt, daB 0 <n < l(z))“ (Godel, S.184, Nr.27).
17. Sb (0, z, v, y) = 2,

Sb(k+1, z, 0, y) = ez[zg Sh (k, 2, v, 4) + Su b (b, 2,2, 9)

k—l—l)

& {[k—|— 161z + v&2z = Sb (%, 2, v, 9)]
[k—i—lGlx = v&2.= SuSh (k2,0,9)| H)]}]
Sb (k, z, v, y) is the result of substituting the expression y for the
symbol v throughout the first k symbols of the expression = (if k < I(z)).
18. S(z,v,y) = Sb(l(x), z,v, y).
S (z, v, y) corresponds to the operation S:xl (if v is @ symbol and z

and y are expressions).

19. St(z,n,a,y) = ¢z [z < [Pr@+Iim))Fre {(Bp, ) [pg < 2&
z = prarq&l(p) = n&z = pry+q] V [(2,9)[p.9 < 2&
z =psasq—>l(p) +n]&z= :z:]}]

St (2, n, a, y) is the result of substituting the expression y for the
occurrence of the erpression a in the expression z beginning with the
n -+ 1% symbol, if there is such an occurrence; otherwise, z itself. -

20. Ry(i,2,y) =8(z, Pr(: +17), RB)+E(Pr (i + 1))
RY (4, 2, y) = 8(z, Pr(i +7), R(1)).
B (G2, 9) = St (z,4,6p[p < y& (Bg)[g < y&y = p+R()+ql],
29[9 < y& Ep)lp < y&y = p+R(B)»4l])-

Mathematische Annalen. 112. 48
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Ry (¢, 7,y), B (35,2,y), B (i, , y) correspond to the operations Rq;,
Riiy1, Ryipa, Tesp.

21. R'(n,z,y) = sz[z< Ry ([ ] z, y)—{—R;'([n_l] z, y) +R;'([7ii2],
x, y {[ ‘3&2 = Ro([ ] z, y)] vV [n+2l3&z

=R (["_-_1] e, y)] [n + 1|3&z - Rz(["—2] z, y)m

R’ (n, z,y) corresponds to the operation R,.
22. Z(0) = R(1),

Z(n+1) = R(3)+E (Z(n).

Z (n) corresponds to the numeral S(... n times ... S(0)).
23. Eval,(n,9,%,,...2,)=(Ez){c <y & y=R(Pr(n+ 7))+ E(Z(x,)

«+R(T)x...» R(T)+Z (x,))+« R(5)*Z ()} (for
a fixed number p).

y corresponds to an expression of the form g,(z;,..., z,) = z,
where z is a numeral.
24. Val(y) =ecz{z < y&(Em)[m < y&y = m=+Z(z)]}.

If y corresponds to an expression of the form a = z where z is a
numeral, then Val (y) = z.

Supposing the function ¢(n, z,y) given, we define a series of
functions as follows:

¥(0, 2, y) =z,
y(n+1,z, ?/) = 90(": z, ?/)
4(0, 2) = I(2),
Ak +1,2) = [k -+ 1]-A(k, 2)%

7(0,2) = 2,
t(k+1,2) = Z(kJr[lf);[lPr(n + 1)] exp {w([r(;‘—;] [[16¢1Dy (Rem(x,
A (IZ;’))] + 1]Glz (k, 2), [[261 Dy (Rem (n, 4 (k,2)%))]
+1]@lz(k, 2))}-

pn,2) =etft < n&n < é’ A2, 2)]

un,2)
v(n,z)-—-[z Z(Z z)]_n
0(z m) = v(m 2)Glz (p (m, 2), 2).

Then lf z or 7(0,2) is the Godel number for the sequence S, of the
2(0, 2) numbers z,, ..., 2, (2, ..., 2, > 0), 7 (k -+ 1, 2) is the Godel number

v
<.
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for the sequence S; ;, of the 4 (k' + 1, 2) numbers y (n, 2, y), forn = 0, ...,
k and z and y ranging over S;, in a certain order. Since ¢ (0, z, y) = z,
Sy includes all numbers in S; for 0 < j < k. When I(z) > 0, u(n,2)
and »(n,2) as n=0,1,2,... take successively the pairs of values
04(0,2),04(0,2) —1,...,01; 14(1,2),14(1,2)—1,...,11;.... Hence
B(z; m) for m = 0,1, 2... are the members of S, (¥ =0,1,2,...). But
these are (with repetitions) the numbers obtainable from z,, ..., 2, by zero
or more applications of the operations ¢ (0, z, ), (1, z, y), .... Since
0 (z, m) was defined in a manner which shows that it can be obtained
from ¢ (n, z, y) and known primitive recursive functions by substitutions
and primitive recursions, we have proved:

1. Gwen a function ¢ (n, z, y), there is a function 6(z, m), primitive
recursive in @ (n, z, y)1'), such that, whenever z = pi ... pi (2, ..., 2, > 0),
then 0(z,0), 0(z, 1), ... 1s an enumeration (with repelitions) of the least
class C (x) such that C(z,), ..., C (z) and (n, 2, y) [C (2) & C (y) -~ C (g (n,z, 7))

We note here the following two theorems for later use:

II. Given a class A(z), a relation z,y Bz, and a number k which
belongs to the least class C (x) such that (z)[4 (x) - C (z)] and (z, y,2)[C(z)
&C(y) &z, y Bz — C (2)], there is a function 7 (m), primitive recursive in
A(2) and z,yBz, such that 7(0),n(l),... is an enumeration (with
repetitions) of C(z).

n(m) is the function 6(R(k), m) when 6(z,m) is chosen as in I

taking for ¢ (n, z, y) the function ¢z tz <n+ké& {{%52 &[(A [(%)] &

S M O N O P

e =]

If a member k£ of a class R(x) is given, the class is enumerated
(allowing repetitions) by the function cy[y < m + k& {(R(m) & y = m)
V (R(m)&y = k)}], which is primitive recursive in the class. Similarly:

) We call a function ¢ primitive recursive in other functions v, if ¢
becomes primitive recursive under the supposition that i, are primitive recursive.

0% ) Y (g, 9)
x(% 3 1) and 2 y(x,3, n) are primitive recursive in v (x. 1) and x(%, 3, %).

n=0 n=90
Here we use %, 1,3 as abbreviations for Ziseeor Zys Yioooor Yo Zps - o or Zps TESP,
and we shall continue to do so when convenient. .
12) If k=0, replace “4(0,2) = I(z)” by “A(0, 2) = 1” in the definition of
0 (z, m). . "
48%
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II1. Given a relation R (x, y) and a number k such that (Ey) R (k, y),
there s a function y(m), primitive recursive in R (z,y), such that
y(0), 7 (1), ... is an enumeration (allowing repetitions) of the class (E y) R (z, y).

y(m)=cy[ly < [1GIm]+ k & {(R(1GIm, 26Im) & y = 1Glm)
V B(1GIm, 2GIm) & y = k)}]-

By applying I, taking for ¢(n, 2, y) the function R’'(n, z, y) (21),
we obtain a primitive recursive function:
25. H(z, m).

If z corresponds to a system of equations Z, H(z, 0), H(z, 1), ... is
an enumeration (with repetitions) of the numbers corresponding to equations
Y such that Z |, ,,, ... Y.

Now let ¢ (x) be a recursive function in the sense of Def. 2a or Def. 2b.
Then there is a system E of equations defining ¢ recursively under
Def. 2b; suppose that g, stands for ¢ in E. The system E has a Godel
number e. Using 23 and 25, if R(z, y) = Eval, (a, H (e, y), %), then, by
Def. 2b, (x)(Ey) R(z, y). Furthermore, using 24, if y(y) = Val(H (e, y)),
then ¢ (x) = v (ey[R(%, y)]). We have now proved:

IV. Every function recursive in the semse of Def.2a (or Def. 2b) is
ewpressible in the form vy (cy[R(x, y)]), where y (y) is a primitive recursive
function and R (x, y) a primitive recursive relation and (x) (Ey) R (%, y).

Thus the extension of general over primitive recursive functions
consists only in that to substitutions and primitive recursions is added
the operation of seeking indefinitely through the series of natural numbers
for ome satisfying a primitive recarsive relation.

By Godel S.180 IV, e¢y[R(x,%)] is primitive recursive in R(x,y)
and any function y(x) which bounds y. Hence, in a certain sense, the
length of the computation algorithm of a recursive function which is not
also primitive recursive grows faster with the arguments than the value
of any primitive recursive function'3).

Given a relation R (z), the function g(x) which is 0 or 1, according
as R(x) holds or not, may be called the representing function of R ().
As with primitive recursions, we say that R(x) is recursive, if its
representing function is recursive (under Def. 2a)).

13) Besides the method, for demonstrating that a function is not primitive
recursive (or not definable by given additional means, sach as recursions with
respect to n variables simultaneously), which consists in finding a2 lower bound for
the values, we have the method, for demonstrating relationships of the opposite
kind, which consists in finding an upper bound for the number of steps in the
computation algorithm.

14) This is equivalent to saying that there is a recursive fanction g’ (x) such
that B (x) ~ [o'(x) = 0], since then o (x) = 1 = (1 — o’ (%)).
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Let R(x,y) be a recursive relation such that (x)(Ey) R(x,y). Then
the function 7 (x,y) = ]u] o (,), where g (%, y) is the representing function
i=0
of R(z,y), is recursive (under Def. 2a); and the function u(x) = ey[R(%,¥)]
satisfies the following relations in terms of = (%,y):

6 (0,x, 3/) =1
(4) o(S(2),%,y) = G(ﬂ (S (¥), % 8(y),
u(x) = o(n(x,0),%,0).

These equations (supplemented by the equations defining 7 (%, %) recursively
under Def. 2a) form a system E defining u (%) recursively under Def.2a,
Hence:

V. If R(x,y) is a recursive relation, and (x)(Ey) R (2,y), then e y[R (%, y)]
is recurswe (under Def. 2a).

This shows that the converse of IV is true, and gives us as an
operation of recursive definition the formation of ey[R(x,y)] from a
recursive relation R (x, y) such that (z) (Ey) R (x,y)*®). Also, the equivalence
of Def. 2a and Def. 2b is now established:

VI. The class of recursive functions under Def. 2b is identical with
that under Def. 2a.

For, as noted earlier, Def. 2b is not less general than Def. 2a, and
now we have by IV and V that any function recursive under Def. 2b
is expressible in the form ¢ (u(x)) where y(y) and u(x) are recursive
under Def. 2a.

" VII. Let R(x,y) be a relation such that for every x R(x,y) holds
for infinitely many y’s, and let v(x,n) denote the n* y such that R (%,y)
in order of magnitude. If R (x,y) s recursive, then v(x,m) is recursive.

For »(x,n) satisfies the relations »(x,0) = & y [R (%, y)] and » (3, S (n))
= &(x,v(x,n)) where &(3,2) = ey[R(zx,y) &y > 2], from which its
recursiveness follows by use of V.

The converse of VII holds, since R (x,y) = (En)[n < y & v (x,n) = ¥],
which is primitive recursive in » (¥, n).

13) By IV, the use of this operation repeatedly and with £ (x, y) a general
recursive relation gives no extension of the class of functions obtainable by a
single application of it with R (x, ) primitive recursive.

We had already as an operation of recursive definition the formation of
ey[R(x, y)) from a recursive relation R (% y) such that there is a recursive
function x(z) for which R (%, ¥) - y = x (2) (by Godel, S.180, IV). This and the
present result correspond to different methods of expressing sy [R (%, y)] recursively
in terms of ¢ (3, y). .
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Thus, omitting the parameters x, an infinite class is recursively
enumerable without repetitions in order of magnitude if and only if it is
recursive.

VIIL. If the function C(x) is recursive and takes infinitely many
values, and 7 (n) denotes the n'* in order of first occurrence tn £ (0), £ (1), .. .,
then 1 (n) vs recursive.

For 7(n) = {(v(n)) when »(n) is chosen by VII for

Riy)=(z)[zs <y —L(=) + {(y)]

Thus the recursive enumerability with repetitions of an infinite class

implies its recursive enumerability without repetitions '®).

§ 2.
The undecidability, in general, which systems of equations
define recursive functions.

The definition of general recursive function offers no constructive
process for determining when a recursive function is defined. This must
be the case, if the definition is to be adequate, since otherwise still more
general ‘“‘recursive” functions could be obtained by the diagonal process.

In order to analyze the situation in detail, we utilize the correspondence
of systems of equations £ to numbers e, under which the problem, which
systems E define functions recursively, becomes a number-theoretic one.
We introduce for each particular value of » the following primitive
recursive relation, where «, denotes the least 7 for which 7; = n:

26. T.(2, 2, ..., @5 y) = Eval, (e, H (2, y), 2,5 - - -, Tn)-
The relation between the numbers and the recursive functions is simplified
under the following definition:

Def. 2¢c. The number e defines (recursively) the function ¢ (z,,..., @)
= Val(H(e, ey[Tn(e, @, .., Tn, y)])) if (@1,...,20) (BY) Tu(e; 2y, - ., T, Y)-
A function ¢ (z,, ..., &,) is recurswwe if there is an e of this description.

IX. The class of recursive functions wunder Def. 2¢ s identical with
that under Def. 2a (2D).

For if ¢(x,,...,z,) 1s recursive under Def. 2a (2b), the system of
equations which defines ¢ recursively under Def. 2a (2b) has, after
changing the notation if necessary so that ¢ is represented in it by o, 2
Godel number e which defines ¢ recursively under Def. 2¢ (cf. the proof
of IV); and conversely, every function recursive under Def. 2¢ is recursive
under Def. 2a (2b) by V (V and VI).

16) In XV below is given an example (Ey)T,(z,z,y) of a non-recursive class
 which by IIT is recursively enumerable.
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If a number e defines a function ¢ (z,, ..., 2,) recursively under
Def. 2¢ and is the Gédel number of a system E of equations, E is in
general a system determining a multiple-valued function'”), not necessarily
a system defining a funetion recursively under Def.2a or 2b.

What follows is stated for n = 1, and would hold similarly for any
other fixed #').

X. If 6(z) is a recursive function, and (z) (Ey) T,(0(z), z,y), there
is a number | such that (z) (Ey) T,(f,z,y) end (Eq)[6(g) = f1.

For then 7 (z) = Val(H (8(2),ey [T,(0 (2),2,y)])) + 1 is a recursive
function (by V) such that, for every z for which 6 (z) defines a function ¢,
of one variable recursively, 7(z) = @.(x) + 1 (by Def. 2¢). Let f be a
number defining 7 (z) recursively. By Def. 2¢, () (Ey) T, (f,z,y). Also,
if there were a ¢ such that 6 (q) is f, we would have 7 (z) = ¢, (x), which
contradicts the preceding equality when z takes the value g¢.

In the case that for every # 0(z) is the Go6del number of a system
E, of equations defining a function ¢, of one variable recursively
(@, being represented in E, by g,), we have that the function ¢, (z) + 1
is recursive. Thus the diagonal procedure, applied to a sequence of
recursive functions which are defined by systems of equations of which
the Go&del numbers form a recursive sequence, does not lead outside the
class of recursive functions.

XI1. The nuwmbers which define functions ¢(x) recursively are not
recursively enumerable, t. e. there is mo recursive function 0(m) such that
(m,) (Ey) T,(6 (m), 2,3) and () {(2) (Ey) Ty (2, 3,9) — (Em) [8(m) = 2]}

For, given any recursive function 6 (m) such that (m, z) (Ey) T, (6 (m), 2,y),
then a fortiori (2) (Ey) T,(6(z),2,y), and by X there is a number f
such that (z)(Ey) T,(f, z,y) but (Em) [0 (m) = f].

XII. The class (x)(Ey) T,(z,z,y) of the numbers z which define
functions @ (z) recursively ts not recursive.

For if it were recursive, it would be enumerated by a recursive
function, contradicting XI.

Indeed, given any recursive class R(z) such that (2){E(z) —
(2)(Ey) T, (2,2,y)}, a number { such that (2) (Ey) T, (f,z.y) but R(f) is
obtained by X, when 0 (z) = ¢y [(R )&y =2)V(B(») &y = k)],
where & is any number such that (z) (Ey) T, (k, =, y).

17) Then ¢ (%,,..., Zn) is that one of the values z determined by E for which
the Gbdel number of gu, (2,, ..., Zn) = = occurs earliest in the list H (e, 0), H (e, 1),....

18) Since the means given for passing from definitions under Def. 2a (2b) to
definitions under Def. 2¢, and vice versa, are effective, the problem which we now
study (which numbers define functions recursively) is equivalent to the one first
proposed (which systems of equations define functions recursively).
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The definability of a non-recursive class by use of quantifiers applied
to a recursive relation gives the existence of undecidable number-theoretic
propositions in certain formal logics from the consideration (somewhat
different from that employed by Godel) that otherwise the logics could
be used to construct recursive definitions of the class.

XIIL. Given a formal logic S, suppose that the propositions (z) (Ey) T, (2, z, )
z2=20,1,2,...) can be expressed in S by formulas A,, and that numbers
can be assigned to the formulas of S, in such a fashion that (1) to distinet
formulas are assigned distinct numbers, (2) the class A (x) of the numbers
assigned to axioms, and the relation z,y Bz between numbers of being
assigned to formulas in the relation of immediale consequence, are recursive,
(3) 2z 1s a recursive function f(a,) of the number a, of A,, (4) the class C (n)
of the numbers a, is recurswe, (5) if 4, vs provable, then (x) (Ey) T, (2,2,y)
ts true. Then there are 2’s for which A, is mot provable calthough
(@) (Ey) T, (2, o, y) is true™).

For suppose that there is a number % such that 4, is provable. Then,
by (2) and II, given a,, there is a recursive function H (m) which enumerates
the numbers assigned to provable formulas of S; and, by (1), (3) and (4),

the recursive function 8(y) = B(em [{C(H (y)) &m = H(y)} Vv {C(H(y))
&m = a;}]) enumerates the z’s for which A4, is provable. By (5),

(z) (By) T, (0 (2), 2, y)-
Hence, by X, there is a number f such that (Eg¢) [0(¢q) = f] (which
implies that 4, is not provable in S) and (z) (Ey) T, (}, =, )*°).

19) The relation of “immediate consequence” we suppose to be a given relation
between a formula and a pair of formulas, and the class of “provable formulas” to
be the least class which contains the given class of “axioms” and has the property
that Z is provable whenever X and Y are provable and Z is an immediate
consequence of X and Y.

If more details of the structure of S were suitably specified, condition (5)
could be given a more metamathematical appearance, such as the following
(analogous to Goédel’s condition of w-Widerspruchsfreiheit, S.187): for no relation
F (z,y) and natural number £ are all of the formulas F (£,0), F (k,1), ..., (Ex)(y) F (z,y)
provable. On the further assumption that for no relation F (z,y) and sequence
of natural numbers kg, k;, ... are all of the formulas F (0, %), F (1, %), ...,
() (Ey) F(z,y) provable, the conclusion could be given the form, that there are
2’s for which 4 is formally undecidable, i. e. for which neither 4, nor A is provable.
(The condmons need to be assumed merely for certain relatxons F (z, ¥).)

20) The undecidable proposition 4, can be effectively constructed for a given
logic, whenever the number a,, recursxve definitions of 4 (2); z,y Bz; f(y) and C(n),
and effective means of constructing 4, from f, are given.

Whenever the supposition in t}ns proof, that there is a k such that 4, is
provable, is not realized, the theorem bolds trivially.
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XIV. The function ¢y [T, (z,x,y)] is non-recursive?).

For, if po(x) is any recursive function, the function #(=z)
= Val (H (z, 0 (2))) + 1 is recursive, and 7 (z) = Val (H(f,ey[T, (f,2.¥)]))
holds for any number f defining 7(z) recursively. Now if o(f) = ey [T, (f,f. %)},
two different values are obtained for #(f). Hence o(f) + ey [T, (},f, %)l
Thus ey[T,(x,z,y)] differs from each recursive function for some value
of x. Note also that (Ey) T, (},f, y)-

XV. The class (Ey) T, (x, 2, y) is non-recursive.

Thus non-recursive functions can be defined by the schema
[0 if (By)R(2,y)

L1if (Ey)R(z,y)

where R (z,y) is primitive recursive. This follows from XIV, since, if
(Ey) R(k,y) and A(2) = [l -7 ()] -2+ v (z) -k then ey[R(z, y)]
=[1-7(a)] - ey[R(A(z),y)], which is recursive if 7(z) is recursive.

To analyze the situation more fully, let S(x) be any recursive class
such that (z){S(z) -~ (Ey) T,(z,%,y)}, and o(z) the representing func-
tion of S(x). If k£ is any number which defines a function recursively,
then (Ey)T,(k, %k, y), and we set u(zr)=[1—-—o(x)]-2+o(z)-k and
o(@)=[l-=—0o(@)] ey[T, (u(@),n(x),y)]. o(x)is recursive, and as in the
proof of XIV, there is an f such that o (f) + ey [T, (f,f,y)] and (Ey) T, (}.1, ).
If S(f), then o(f) = 0 and o(f) = ey [T,(/,f.y)]. Hence S(f).

XVI. The class (Ey) T, (=, z,y) is not recursively enumerable?3).

For by III, the complementary class (Ey) T, (. z, y) is enumerated by
a recursive function y (m). Now if (Ey) T, (2, z, y) is enumerated by x (m)

2n =[] v | +1j2en=n([25]))

we have (By) T, (z,x,y) = em[&(m) = 2]|2, which would contradict XV
if % (m) were recursive.

XVIL. Given a recursive relation R(x,v), there is a number e such
that (x)(Ev) R(z,9) = (z)(Ey) T,(e,z,y). Gien a recursive relation R (p),
there ©s a number e such that (Ey) R (y) = (Ey) T, (e, e, y)%).

T(z)=

and we set £ (m) = en {[m

21) We recall that £y [R (z,y)] = 0 when (Ey) E (z, ¥)-

22). The proof given here is non-constructive. The writer has a constructive
proof that for certain recursive relations R (z,y) the class (Ey) B(z,y) is not
recursively enumerable. From that proof, the existence in certain formal logics of
undecidable propositions involving only one quantifier (which can be concluded
non-constructively from present results) is obtainable in the same manner as XTII.

23y From the great generality of the problems, which €’s define recursively
functions of one variable, and which ¢'s “determine recursively” the ¢'® value of a
function of one variable, as displayed by this theorem, the result, that they are
not “effectively” soluble, could have been anticipated.
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For, to every proposition of the form (x) (Ey) R (z, 1), there is an
equivalent proposition of the form (z) (Ey) R (=,y) obtained by utilizing
the recursive enumerability of n-tuples of natural numbers, or introducing
fictive variables®*); and the Godel number e of the system E of equations
which defines ey [R(z,y)] in the proof of V on the supposition that
(z) (Ey) R (z,y) satisfies the present theorem. Similarly, (£y) R(y) has
an equivalent (Ey)R(y), and for ¢ we may take the Gddel number of
the equations defining ¢y [R(y) & z = ] on the supposition that (Ey) R (y)*).

My thanks are due to Prof. Paul Bernays for the suggestion of
improvements in the presentation.

24) B. g. (%, %3, 23) B (2, %9, 23) = (2) (BEy) [R(1Qlz, 2Gl 2, 3Gl 2)=& y = y].

25) XV, XVI, and XVII are similar, respectively, to results obtained in a
different connection by Prof. Alonzo Church (An unsolvable problem of elementary
number theory, see Bull. Amer. Math. Soc. Abstract 41 —5— 205), Dr. J. B. Rosser
(unpublished), and the present writer (A theory of positive integers in formal logic,
Part II, Amer. Jour. Math. 87 No. 2, pp. 230 ff.).

(Eingegangen am 7. 7.1935.)



