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On the Cohomology Groups of Moduli Spaces
of Vector Bundles on Curves

G. Harder and M. S. Narasimhan

Introduction

In this paper we take up the idea in [9] which established a connection
between the cohomology groups of certain moduli spaces of vector
bundles on projective non-singular curves and the Tamagawa number
of SL,. This method gained strength through the recent results of
Deligne on Weil conjectures.

We now state the main results of the paper. Let k be an algebraically
closed field and Y/k a non-singular projective algebraic curve. Let Ly/Y
be a line bundle with deg(Ly)=r and n>2 an integer with (n,r)=1.
We consider the moduli scheme M/k= M(n, Ly)/k of stable vector
bundles on Y of rankn and determinant isomorphic to L,. It is known
that M is a non-singular projective variety. We suppose that (p,n)=1,
where p is the characteristic of the field k. The group T, of n-division
points of the jacobian J/k of Y /k acts on M by tensorisation.

Theorem 1. If [ is a prime number with (I, p)=(l,n)=1, then T, acts
trivially on the I-adic cohomology groups H'(M, @Q,).

If k=C then an analogous result holds for the ordinary cohomology
with complex coefficients; this follows immediately from Artin’s com-
parison theorem. This result, for k=, was conjectured by Narasimhan
and Ramanan in [12].

Let us now assume that Y is defined over a finite field IF,. If we
choose L, to be in Pic(Y)/IF,, we may assume, by going over to a finite
extension of IF, if necessary, that M is defined over IF,. The group scheme
T,/IF, acts on M/IF, and the quotient N/IF, = (M/T,)/IF, exists. Regarding
the number of rational points on these schemes one has

Theorem 2. We have
|MFql = ,NF.,I

where Mk | and |Ng | denote the number of rational points over IF, of M
and N respectively.
Theorem 2 is proved by an extension of the methods of [9]. Theorem2,

combined with the results of Deligne on the Weil conjectures and a
specialisation argument, implies Theorem 1.
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We shall also give some results on the Betti numbers of M = M x ]Fq]l_:q.
We mention only

Theorem 3. The third Betti number, dim H>(M, Q)), is 2g, where g
is the genus of Y /IF,.

This result has been proved in [11] except when g =2, n=3.

The second named author would like to thank the ,,Sonderforschungsbereich fiir
Theoretische Mathematik an der Universitit Bonn* and the Mathematics Institute,
University of Warwick, for their hospitality at the time of the preparation of this paper.

I. Vector Bundles and Projective Bundles over Curves
1.1. The Moduli Spaces of Stable Vector and Projective Bundles

Let k be a field and Y/k be a projective non-singular absolutely
irreducible curve over k. Let K/k be the function field of k. If k is an
algebraic closure of k, we set Y=Y x,Speck.

We shall consider locally free ¢y modules of finite rank and by
abuse of language we shall call them vector bundles. If E/Y is a vector
bundle then rkE will denote its rank. If rkE=n we put detE

= /\E and call this line bundle the determinant of E. We define
deg E =deg(det E). For E +0 we introduce the rational number

w(E)=degE/rkE .

We shall also consider projective bundles X — Y i.e., locally trivial
bundles with respect to the Zariski topology whose fibre is IP"~!/k.
More precisely, there exists a covering Y = u, U; by Zariski open subsets
of Y such that for every i we have a commutative diagram

X xyU—-P1x,U

Ui

Each vector bundle E/Y gives rise to a projective bundle which is the
scheme of lines in E/Y. On the other hand, it is easy to see that a pro-
jective bundle X/Y comes from a vector bundle E/Y and that this vector
bundle is unique up to a tensorisation with a line bundle. Since for a line
bundle L/Y and a vector bundle E/Y we have deg(E® L) = (rkE)- (degL)
+degE we see that degX =degE(modn) is well defined. We call
deg X €Z/(n) the degree of the projective bundle X/Y.

" Let us assume for the moment that k is algebraically closed. A vector
bundle E/Y is called stable (resp. semi-stable) if for all proper subbundles
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F (%0, E) we have u(F) < u(E/F) (resp. u(F) £ u(E/F)). One observes that
these inequalities are equivalent to

u(F) < w(E) (resp. p(F) S p(E)) .

A projective bundle is called stable (resp. semi-stable) if the corresponding
vector bundle is stable (resp. semi-stable). This notion is well defined
since a vector bundle E is stable (resp. semi-stable) if and only if EQ L
is stable (resp. semi-stable) where L is a line bundle. It is easy to see that
if E is semi-stable and (degE, rkE) =1, then E is stable.

Let n and r be integers n=>1 with (n,r)=1 and L, be a fixed line
bundle of degree r on Y. It is known that the set of isomorphism classes
of vector bundles E/Y of rankn with detE= L, is parametrised by a
non-singular projective variety M = M(n, L,) over k, [17,18]. Let us
assume that the characteristic of k is prime to n. If L is a line bundle on Y
such that its n™ power L®" is trivial; then det(E®L)=detE® L®"
=detE, so that the group T, of n-division points of the jacobian J/k
of Y acts on M/k. The quotient of M for this action of T, is again a
projective scheme N/k and N/k provides the solution for the moduli
problem for projective bundles of degree r modn.

We now drop the assumption that k is algebraically closed. A vector
bundle E/Y is called stable (resp. semi-stable) if E/Y is stable (resp. semi-
stable) where E/Y is the extension E to Y/k, k denoting the algebraic
closure of k. If the line bundle L, is given over Y/k we may assume, by
passing to a finite extension if necessary, that the moduli spaces M and N
are defined over k i.e., we have

k
However M/k and N/k are only coarse moduli schemes in the sense of

Mumford [10] i.., for any field L, kC L Ck, if M; and N, denotes the set
of L-rational points of M and N respectively, we have maps

bundles E— Yx, L with rkE =n and
detEx L,

Set of isomorphism classes of stable
PL: M,

bundles X— Y x, L withrkX=n—1

Set of isomorphism classes of projective
v =N,
and deg X =rmodn

which are functorial in L and which become bijections if L =k; but for
L =k these maps are neither injective nor surjective in general.
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1.2. Moduli Schemes over a Finite Field

We now assume that k is a finite field IF, and investigate the maps
¢, and yp, defined above.

Proposition 1.2.1. The map g, is bijective and the map vy, is
surjective.

Proof. Let m be a point of Mg, and let E—Y be a stable vector
bundle in the class m. Since m is a rational point over IF,, we have for all
o € Gal(IF,/IF,) an isomorphism

A, E—E°,

where Gal(FF,/IF,) denotes the Galois group of the extension ]E/]F,r
Since the automorphisms of a stable bundle are given by multiplication
by scalars [13, Corollary to Proposition 4.3], we see that

Aode=1lis @

where a} e [F* and 47 denotes the transform of A, by . It is clear that a,,
is a 2-cocycle. Since the Brauer group H2(FF,, G,,) is trivial [15, p. 170]
we can modify the 4, in such a way that a, , = 1. But then it follows from
the theory of descent that there exists a vector bundle E on Y such that
E is isomorphic to E x, Y. Using the fact that H'(F,, G,)=0 we sce
that E is unique and detE~ L,. This proves that ¢ is bijective.

To prove that yg, is surjective we apply similar arguments for

projective bundles. f X » Y isa pro_]ective stable bundle, then the group
of automorphisms Aut(X) of X/Y is a subgroup of the group T, of n-
division points of Jg,. In fact, let E be a vector bundle on ¥ giving rise
to X. Since E is stable the group of automorphisms of E is k* and it
follows that Aut(X) is isomorphic to the group of isomorphism classes
of line bundles L/Y with LE~ E, L necessarily satisfying the con-
dition that L®" is trivial (see [6], Corollary to Proposition 2). Now if
X~X° for all o€ Gal(]F /]F) then Aut(X) is defined over IF, and
the obstruction to desccnt is contained in H*(F,, Aut(X )) But
H*(F,, AutX)=0 [16, Chapter II, 3.3] and hence YE, IS surjective.
This proves Proposition 1.2.1.

Next we consider how many points are mapped by g into the same
point in Ng , i.e.,, we consider how often does it happen that X 4 X' but
X~ X where X and X’ are projective bundles on Y. Given X - Y it
is well known that the number of IF, forms of X is equal to the order of
H! (IF,, Aut(X)). On the other hand it is known (and this fact is crucial
for us) that

|H'(IF,, Aut X)| = |Aut (X)g,|
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[15, Chapter VIIL, Proposition 8]. [To apply this proposition we have
to take for G a sufficiently large quotient G = Gal(IF,r/IF,) of the Galois
group. Actually we require that Aut(X)g,,=Aut(X)g, and that the
norm mapping Aut(X)g,,— Aut(X)g, is zero.] Thus we have

Proposition 1.2.2. Let me Ng,. Then the number of points in w;ql (m)
is equal to the order of Aut(X)g , where X —Y is any projective bundle
whose isomorphism class is mapped into m by g, .

1.3. Canonical Filtrations on Non-Semistable Bundles

We first assume that k is algebraically closed and collect some
results on the structure of non-semistable bundles. It will turn out at
the end that the assumption that k is algebraically closed is superfluous.

Definition 1.3.1. Let E be a vector bundle on Y which is not semi-
stable. A subbundle F of E(F +0, E) is said to be SCSS in E (“strongly
contradicting semi-stability”) if the following two conditions are fulfilled:

a) F is semi-stable.

b) For every subbundle F' of E with F ¢ F' CE we have u(F)> u(F’).

Remark 1.3.2. Condition b) is equivalent to b’) for any subbundle Q
of E/F with 04 Q C E/F we have u(Q) < u(F) and b’) is equivalent to b”)
for any stable subbundle Q of E/F with 0+ Q C E/F we have u(Q) < u(F).

Clearly b) and b’) are equivalent and b’) implies b”). If b") is fulfilled,
let 0+ QCE/F be subbundle of E/F. Then there exists a stable sub-
bundle Q'=+0 of Q with u(Q)=u(Q) [13, Proposition 4.5]. Hence
wQ) = (@) < u(F).

Remark 1.3.3. If E is not semi-stable and F+0 a subbundle of F
satisfying i) F and E/F are semi-stable and ii) u(F)> u(E/F) then F is
SCSS (in E). In fact for any bundle 0+ Q C E/F we have u(Q) < w(E/F)
< u(F) so that the Condition b’) in Remark 1.3.2 is fulfilled.

Proposition 1.3.4. If E/Y is not semi-stable then it contains a unique
SCSS subbundle.

For the proof we need two lemmas

Lemma 1.3.5. Let F, and F, be subbundles of E such that F, is semi-
stable and F, satisfies Condition b) of Definition 1.3.1. If F, is not contained
in F, then we have u(F,) > u(F,).

Proof. Consider the canonical map F; to E/F, which is non-zero by
assumption. Since Y is a non-singular curve we have a factorisation
F,—F —0

!
E/F,«—F{«<0.
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where Fj—F] is an isomorphism on a non-empty open set [13, §4].
Since F, is semi-stable, u(F,) < u(F;) and since F, satisfies Condition b)
we have u(F{) < u(F,). On the other hand A(F{) < u(FY) as deg F; < deg Fy
and rkFj =rkFy. It follows that u(F,) < u(F,).

Lemma 1.3.6. If F, and F, are subbundles of E which are SCSS then
Fl = Fz‘

Proof. If F, is not contained in F, we have, by Lemma 1.3.5, J71029)
> pu(F,). Applying again the lemma, we must then have F, C F, . But since
F, is semi-stable we have u(F,) < u(F,), which is a contradiction. Thus
F, CF, and similarly F, CF,.

Proof of Proposition 1.3.4. Since the uniqueness of a SCSS bundle
follows from Lemma 1.3.6 we need only to prove the existence of a
SCSS bundle. Let m=F qup*ou(F). Since E is not semi-stable, we have

CE,

m > u(E). Among all subbundles F for which u(F)=m (the set of such F
is non-empty since the values of y are discrete and bounded from above)
we choose one, say F,, which has maximal rank. If 0+ F’ CF, is sub-
bundle we have u(F') < m = u(F,) so that F, is semi-stable. If on the other
hand we have a subbundle F’ with F, ¢ F'CE then rkF' > rkF, and by
the choice of F, we have u(F’) < u(F,). Thus F, also satisfies Condition b)
ie., Fy is SCSS. This proves Proposition 1.3.4.

Lemma 1.3.7. If a vector bundle E is not semi-stable we have a flag
0=Fo§ Fi§ - §F§ g F=E
satisfying the conditions
A) {1) F/F,_, l:S semi-sfable Jor i= 1., vk,
1) F/F,_, isSCSSinE/F,_, fori=1,....,k—1.
Moreover such a flag is uniquely determined.

Proof. The existence follows from Proposition 1.3.4. In fact, let F,
be a subbundle of E which is SCSS. If E/F, is semi-stable we are through.
Otherwise we find F, C E/F, which is SCSS in E/F, and define F, to be
the inverse of F, by the map E— E/F,. By repeating this construction
we find a flag satisfying A. The uniqueness is proved by induction on
dimE applying Proposition 1.3.4 and noting that {F,/F,_ 1}, 122, form
a filtration of E/F, satisfying A.

Lemma 1.3.8. Let
0=F¢F ¢ ¢F=E
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be a flag. Then Conditions (A) in Lemma 1.3.7 are equivalent to the con-
ditions:
B) { ') F/F,_, is semi-stable for i=1, ... k,
i) p(F/F-)> uF4 o /F) fori=1, ... k-1

Proof. Suppose that Conditions (A) are satisfied. We have the exact

sequence
0—F/F,_—E[F,_, > E/F;-0.

Since F;,,/F;CE/F; and F,/F,_, is SCSS in E/F,_, we must have
w(F,/F,_ 1) > u(F;/F) [see Remark 1.3.2, Condition b’)].

Now suppose that Conditions (B) are satisfied. We first show that
F,_,/F,_,is SCSS in E/F,_,. Consider the exact sequence

0—-Fy/F ;> E/F_ ;> E/F,_,—0.
We have by Condition ii’) in (B)
U(F—1/Fy_3)> WE/Fy,_ 1) ;
since E/F,_, and F,_,/F,_, are semi-stable, we see, by Remark 1.3.3,
that F,_ , /F,_, is SCSS in E/F, _ ,. We proceed to prove that Condition ii)
in (A) is satisfied, by downward induction on i. Consider the exact
sequences
0—-F/F,_,—>E/F,_{ > E/F,—0

and
0-F;y /F,>E/F,>E/F,,—0.

To prove that F,/F,_, is SCSS in E/F,_, it is sufficient to prove, by
Remark 1.3.2, b"), that for any stable subbundle Q40 of E/F; we have
WE/Fi- 1) > n(Q).

Now if Q CF,, ,/F; we will have u(Q) £ u(F;,,/F) as F,,,/F; is semi-
stable and by hypothesis we have u(F;, ,/F;)<u(F;/F,_,) so that u(Q)
<u(F/F;_y).

Suppose Q is not contained F;,,/F;. By induction hypothesis we
may assume that F,, /F; is SCSS in E/F,. Since Q is semi-stable and
QCF,, /F, we have, by Lemma 1.3.5, u(Q)<u(F;;,/F). Since by
hypothesis u(F;, /F) < u(F;/F;, ) it follows that u(Q) < u(F/F;-,).

Combining Lemmas 1.3.7 and 1.3.8 we have

Proposition 1.3.9. Let E be a vector bundle which is not semi-stable.
Then E contains a uniquely determined flag

0=Fy¢F, ¢ $FK=E
satisfying

a) F/F,_, is semi-stable fori=1, ... k
and

b) u(F/F;-1)> p(Fi1/F) for i=1,.. . k—1.
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Now it is clear that the assumption that k is algebraically closed can
be dropped. In fact, if E/Y is not semi-stable then by definition E/Y,
where Y=Y x,k, is not semi-stable. Hence E/Y has a unique flag
satisfying the conditions of Proposition 1.3.9. But then it is clear, at least
when k is perfect, that this flag is already defined over k i.e,, it is induced
by a flag in E.

Definition 1.3.10. A flag

0=Fo§F, - ¢E¢ - SF,=E
is said to satisfy Condition (N) (“Numerical Condition”) if
W(EF/Fi_)>wFy,/F) for i=1,.. k—1

ie, p(Fy) > u(Fy/Fy) > - > u(E/F,_ ).
Lemma 1.3.11. If a flag satisfies Condition (N) of Definition 1.3.10,
then it also satisfies the condition
1(Fy) > p(Fy) > - > p(E).
We first note the following lemma whose proof is trivial.

Lemma 1.3.12. Let 0—>E,—»E,—~E,—0 be an exact sequence of
vector bundles E; +0. Then the following conditions are equivalent :

i) H(Ey) > p(Es)

1) p(Ey) > p(E,).

1)) p(E,) > u(E,).

Proof of Lemma 1.3.11. First consider the exact sequence
0_’F1_’F2—’F2/F1 ""0 .

Since by hypothesis u(F,) > u(F,/F,) it follows from Lemma 1.3.12 that
#(Fy) > u(Fy). Let us assume by induction that u(F,_,)> u(F;) and con-
sider the exact sequences

0-F_>F—-F/F,_,—-0
0-F/F_,—>F.,/F,_1-F.,/F~0.
Since by hypothesis pu(F/F;_,) > u(F,, ,/F), we have by Lemma 1.3.12
W(E/F-1)> p(Fi41/F,_ 1) > w(F;y , /F)

and the assumption u(F;_,) > u(F) implies u(F)> u(F,/F,_ ). Hence we
have u(F)> u(F,,,/F); this in turn implies that u(F)> u(F,,,) on
applying Lemma 1.3.12 to the exact sequence

0"E"E+1"F}+1/F}’*0~

Thus Lemma 1.3.11 is proved.
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The next two definitions are motivated by considerations in § 3.

Definition 1.3.13. Let #, ={0=F,CF,---CF,=E} be a flag on E
and let %, be a flag on E which is a refinement of %,. We say that the
pair (#,, %,) satisfies the Condition (%) if for each i, 1 <i<k, the flag
on F;/F;_, induced by &, satisfies Condition (N) of Definition 1.3.10.

Definition 1.3.14. Let C={%,,..., %} be a chain of flags on E,
ie, ;4 is a refinement of &; for j=1, ... | — 1. We say that the chain C
satisfies the Condition (Num) if

a) the flag %, satisfies Condition (N) of Definition 1.3.10 and

b) for each j, 1 £j<1— 1, the pair (¥, &, ,) satisfies Condition (%)
of Definition 1.3.13.

Proposition 1.3.15. Let F be a subbundle of E occuring in a chain of
flags satisfying the Condition (Num) of Definition 1.3.14. Then if F+ E
we have u(F) > u(E).

For the proof we need

Lemma 1.3.16. Let 0—>E, »E—E/E; >0 be an exact sequence of
vector bundles with u(E,)> u(E). Let F be a subbundle of E containing E,
and satisfying u(F/E,)> w(E/E,). Then we have u(F)> u(E).

Proof. We use Lemma 1.3.12 several times in the proof. From the
exact sequence

0—-F/E,—>E/E,—»E/F-0

we see that the condition u(F/E,) > u(E/E,) implies that u(E/E) > u(E/F).
Since u(E,)> u(E) we have u(E) > u(E/E,) so that u(E)> u(E/F) which
in turn implies that u(F)> u(E).

Proof of Proposition 1.3.15. We prove the proposition by induction
on rkE, the proposition being clear for rk E = 2. Consider the flag

F1={0=F,CF,C--CF,=E}.

Since by definition, &, satisfies Condition (N) of Definition 1.3.10, we
have, by Lemma 1.3.11

P(F) > > p(F)> - > p(F) = p(E) .

In particular the proposition is proved for F = F; and we are through if
the chain consists only of #,. Now suppose F + F; for any i. If FCF,_,,
we have, by the induction hypothesis, u(F) > u(F, _ ,); since u(F, - ;) > u(E)
it follows that u(F)> u(E). If F > F,._; we have, by the induction hypoth-
esis, u(F/F, ;) > u(F,/F,_ ). Since we also have u(F,_ ) > u(F,) it follows
from Lemma 1.3.16 that we must have u(F)> u(F,)= u(E).
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II. Tamagawa Numbers and Siegel’s Formula
2.1. Tamagawa Numbers of SL, and PL,

We first recall some results on Tamagawa numbers. We assume that
the field of constants is a finite field IF, and denote the field of functions
on the curve Y/IF, by K/IF,. If G/K is a connected affine algebraic group,
we denote the group of adeles of G/K by G,. The group of K-rational
points of G, is a discrete subgroup of the locally compact group G,.
If w, is a right invariant measure on G, then it induces a measure on
G ,/Gx and we may consider the volume

Vol, (G,/Gy)= | w,
G .4/Gx
which may be infinite.

There exists a procedure to construct a right invariant measure w,
starting from a right invariant non-zero differential form of highest
degree on G/K, defined over K [19, §2.3]. This gives the so-called
Tamagawa measure on G ,, which in some cases is uniquely determined
(e.g. if G is semi-simple or unipotent) and which in some cases depends
on the choice of a system of convergence factors. The volume

G@= [ o

Ga/Gx

of G,/Gx with respect to this measure is called the Tamagawa number
of G/K.

Let GL, (resp. SL,) denote the full (resp. special) linear group over K.
Let PL, denote the projective group, namely the quotient of GL, by its
centre which is the multiplicative group G, /K. It has been proved in

[19, Theorem 3.3.1] that
SL,)=1
©(SLy) 2.1.1)
t(PL,)=n.

One checks easily that the canonical mapping n: GL,(4)—PL,(A4)
is surjective. If x e PL,(A4) and n(y) = x, then det(y) € G,(A) = I, where
I is the idele group of K. The idele norm of t =dety is

[dety| =t = g~ %8¢,

where degt = X n, ord,(¢,), where n, denotes the degree over IF, of the
of the residue field at a closed point p of Y. Since for an element

=2 Z) eGL,(4)
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of the centre we have detu =g", we see that deg(dety) modn does not
depend on the choice of y and we obtain a homomorphism

deg:PL,(4)-»Z/Z.
For veZ/nZ we put
PL.(4)={xe PL,(4)|deg(x)=v} ;
this set is invariant under the right action of PL,(K)
Lemma 2.1.2. For veZ/nZ, we have

wy=1.
PL} (4)/PL,(K)

Proof. The Lemma is obvious since in this case the Tamagawa
measure is left invariant and since the map deg is surjective.

2.2. Truncated Tamagawa Numbers of Parabolic Subgroups of SL, and PL,

Let us now consider a parabolic subgroup P/K of SL,/K. Without
loss of generality we may assume that P consists of the matrices p in
SL, of the form

*

0 Ay
where a;;€ GL,,, and £ m; =n. We introduce the characters

»=yr:P->G,

7y p [ detay;
i=1

3

and A,: pr>deta,,. Set x;;=A7A; ™ and put o;=x; ;4.
If p e P, then y,(p) € Iy we define d,(p) by

@l =q">®.
We then obtain a surjective homomorphism & : P, ~Z*~' by setting
o) =061p) .-, 5k-1() -
IfneZ* ! we define

P,m)={pe P,|6(p)=n}.
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Then P,(0) is a subgroup of P,. We also define a map &' P,->Q* ! by
setting

‘5,(13) =(5,1(B), veey O 1(2»,

where |o;(p)| = g~ %@

We now construct a Tamagawa measure on P, ; in this case we have
to introduce convergence factors. The algebraic group P/K is obtained
by base extension from an algebraic group Po/IF,, Py CSL,/IF,. Let us
choose a right invariant differential form w,=+0 of highest degree on
P, /IF,; this gives also such a form w on P/K. For each closed point p
in Y, the form w defines a measure on Pg,, where K, denotes the comple-
tion of K with respect to the valuation defined by p [19, §22]. If O,
denotes the ring of integers in K, and P@p = P,gvaL,,((Op) is the group of
integral points in Py, we then have

vol,, (Ps,) = |Py(k(p))] (Np)~¢imP

where k(p) is the residue field at p and N p =|k(p)|. (Compare [19],
Theorem 2.2.5 and its proof.)
Now we have obviously

Po(k(p)l = (Np)*™P | Mo(k(p))l (Np — 1)~ *
where U, is the unipotent radical of P and M, is the semi-simple group

ag

a 0

22

MO = . aiiE SLmi
ik

It follows that 4,=(1 —1/N,)™**! is a system of convergence factors
since [ ] (IMy(k(p)I/(N,)*™M0) is well known to be convergent [19].
P

We define the Tamagawa measure %, on P, by taking A, as a system of
convergence factors.

Proposition 2.2.1. We have

) T

P.4(0)/Px (q—1)q° !

where |Jg | denotes the number of TF -rational points of the Jacobian J/IF, p
of Y.
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b) For pe Py, we have
k-1 k-1
- X Jidip) - I @dip)
wy=q ‘= wy=q ‘= |
PPa(0)/Px P4(0)/Pk P4(0)/Px

where fi=m;+m; | and a;=s;,,(n—s;.|)/mm;,, with s;= Y m.
i<i<k

Proof. Let U C P be the unipotent radical of P; then H=P/U is a

reductive group over K. We apply Theorem 2.4.4 in [19] and obtain
wy = j Oy, 4 j w}y,4="7(H,(0)/Hg)
P4(0)/Pk Ua/Uk H4(0)/Hk

since normalisation in Tamagawa measure gives measure 1 for the
unipotent group U,. To compute t(H ,(0)/Hy) consider the exact sequence

1>M->HLG 11

where y=(y; ... y,—1). We apply again Theorem 2.4.4 in [19] to this
exact sequence. If S/K~ G /K then the maps H,—S,, Hy— Sy are
surjective since H'(K, SL,)=0 ([15], Chapter X, Proposition 3,
Corollary). Now we take for f in Theorem 2.4.4 of [19], the characteristic
function of S,(0)/Sk and get
| wha=tIISL,) | wi.= [ 5§
H4(0)/Hx S4(0)/Sx S4(0)/Sx

since t(SL,,) =1 by 2.1.1. To evaluate | w ,, let A denote the canonical
maximal compact subgroup of S,. Then the number of double cosets
AM\S ,(0)/Sk is |Jk, [*~! and, by the choice of our convergence factors,
volw§ ,(A)=q"*~ D=1 Now the exact sequence

1 8,0)/USx— S 4(0)/S—> S /Sg— 1
shows that
I o a=(Jrlllg—1) 1 gt 72¢ D
54(0)/sx
on remarking that
AS/Sx=W/SkNU=WNFE} 1.
This proves a).

To prove b) we note that the measure Y is not left invariant and that
the modulus of the left translation by p is precisely g~ Z/1%(") = g~ Za:di),
(See e.g. [3], Chapter VII, § 3, No. 3.)

Next we consider the corresponding parabolic subgroups P of PL,/K
and P in GL,/K. The characters A, = deta,; are defined on P, and the
roots y;; =A™ A; ™ are defined on P,. We set a;=; ;+,. We define

deg(p)=0 and }
lxi;(p) =1 forall i,jf"

£2(0)={126£A
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We see that
P%0)={peP,|deg(p)=0 and |y(p)l=1 for 1<i<k-1}.
We also note that the character
R= n Lij= n)’ii= H“'i"'
i<j
is defined on P,.
Proposition 2.2.2. We have
, e )“‘- »
a w = .___._.__‘L__
) B,Q(t!)/zx 2 ( @—1g ™!

b) For pe P§ one has
J' wi’,A =q*Zai6€(g) j’ w;_,’A
PPL(0)PK PlO)Px
where the @; have the same meaning as in Proposition 2.2.1.
Remark. The main assertion of the proposition is that these volumes
are the same as those corresponding to the parabolic subgroup P.

Proof. Referring to the proof of Proposition 2.2.1 we see easily that
we have to prove that

J oha= | ofa
H4(0)/Hk H%0)/Hx

where H C P is the reductive part in H corresponding to H. We consider
the diagram of algebraic groups

— Q) «— —~
3

1-»SL,-GL,—»G,—~1
ln
PL,
1

Let fI be the reductive subgroup of GL, corresponding to H and H
i.e. H is the inverse image of H. Let

H,0)={heH,||deth] =1, m (k) € H,(0)} .
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We then have a diagram of exact sequences

1

l
R
|
1> H,(0)—> H3(0)— I >1
!
HS(0)
l
1

where Ig=G,, ,(0)={xely |Ix|=1}. It now follows by [19, Theo-
rem 2.4.4] that

T — T
| Ot 4 -
H,4(0)/Hk H%(0)/Hx

2.3. Siegel's Formula

Let E,/Y be a vector bundle of rankn over the curve Y/IF,. Put
Ly=detE,. Let V/K be the generic fibre of E, ; V/K is the n-dimensional
vector space of all meromorphlc sections of E,/Y. For a closed point p
we denote by @, the ring of integers at p and by Cf) and K the com-
pletions of 0, and K respectively with respect to the valuatlon defined
by p. If EO » denotes the completion (with respect to the valuation
defined by p) of the stalk E, , = 11m I'(U, E,), then E, pisan 0 lattice in

Uap
V®KK We can reconstruct E from the family of lattices {E, o) (see
9,821

The bundle E, defines a maximal compact subgroup & of SL(V),;
namely, & = I[1 ], where R, =SL(E, ,,)CSL(V®K)

For any x e SL(V)A we con81der the family of lattices

{E’%,p} = {xp_ 1E"O,p} .
Then this family defines a locally free sheaf E¥ by
I'(U,E§)={veV]|vex, ! EO o)

for all pe U. It is easy to see that the isomorphism class of the vector
bundle E3 depends only on the double coset Sx SL(V)x and that the
mapping

Set of isomorphism classes of bundles
K\SL(V),/SL(V)k—

2.3.1
E/Y of rankn and detE~ L, } @23.0)
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is surjective [9, § 2]. Let ! be the maximal compact subgroup of GL(V),
defined by E,. Then the following facts are obvious

1) The group of automorphisms of E% is x ™! {RxNGL(V),.

2) Ej~Ejifandonlyif ye RxGL (V).

These facts give information about the number of points in the
inverse image of an isomorphism class under the mapping in 2.3.1. Let
D =8/xSL(V)x be a double coset and D'=RySL(V) a_double coset
defining the same isomorphism class. If Yy=kxawith ke K] aec GL(V)g
then x™'y=x"'kxa Hence det(x 'kx). deta=1 and det(a)~!
=det(x™'kx)elF}. If y=k, xa,,k, € ], a, e GL(V), then k, xa, =kxa
so that x 'k~ 'k, x=aa;'; this means that aa;'ex '{xnGL(V),
= Aut E3. Hence, if we consider the map

det: AutEZ =x~ ‘ﬁmeL(V)KﬁlF;“

we see that the pair (D, D) defines a class in IF}/det Aut(Eg). Moreover
YeRxSL(V)k if and only if this class is trivial; in fact if y=kxa and
deta=deth for b=x"'k, x e AutE%, k, € &, then y=kk,xb™'a; since
detb™'a=detx=dety=1 we have det(kk,)=1 so that yE€K]XSL(V)g.
On the other hand it is clear that given x e SL(V),, we can find yeSL(V)g
such that y=kxa, ke R, ae GL(V)g and det(a) is a given element in IF}.
Therefore we see that for a given x € SL(V), there are exactly [IFy/Aut E3|
double cosets in K\SL(V),/SL(V)x which map into the same iso-
morphism class of vector bundles. Since the automorphisms of a stable
bundle consists only of scalars, we have, from the above considerations,
the following

Lemma 2.3.2. The number of double cosets in K\SL(V),/SL(V)
which are mapped into the same isomorphism class of stable bundles is
IF3 3",

We now exploit the fact that the Tamagawa number of SL(V)gis 1:

wy=1.
SL(V)4/SL(V)x
Decomposing SL(V), into double cosets R xSL(V), we have
1= [} wy=)y [} wy
SL(V)4/SL(V)x x R-xSLV)k/SL(V)k

where x runs through representatives of double cosets. Since

(vol(R; SL(V)K/SL(V)K)) = (vol,,,,A(R)) JxTTRxXNSL(V)g !
we obtain

1
(23.3) 1/volg(R)= ). ( [x"'RxNSL(V)gl )

X

where x runs through representatives of double cosets.
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We now assume that deg(L,) = r is coprime to n. In this case all seml-
stable bundles are stable. Moreover, if xe SL(V), is such that EX
stable, we have Aut E§ =IF} and hence

[x ™! RxNSL(V)xl = number of nth roots of unity in IF,
= I3 /3"
It then follows from Lemma 2.3.2, that the contribution to the sum in
(2.3.3) from the double cosets for which E3 is stable is exactly the number
of isomorphism classes of stable bundles E/Y with detE~x L,. But by
Proposition 1.2.1 this number is the same as the number IMg,| of IF,

rational points of the corresponding moduli scheme M /IF,. On the other
hand

Vol (R) =g~~~ (n vo](R,,))

2 1
(- 1)(g—1) 1=
-1 1:[( (Nv)z) ( (Np)")
(see [19], pp. 22, 33)
=g NN L)
where { denotes the Zeta function of K. Thus we obtain
Proposition 2.3.4. We have

1
=g™-De-D ). —
IMg,| =4 {2 ... 4:_‘, T RxSLV)]
where x runs through representatives of double cosets (in R\SL(V),/SL(V)x)
such that E§ is not stable.

Next we consider the projective bundle X,/Y where X, =1IP(E,).
Then the scheme of automorphisms of X,/Y is locally isomorphic to
PL,/Y and the generic fibre is PL(V).

Let

8= [ (Aut X,)g, CPL(V),.

We easily see that
' Isomorphism classes of projective
KR\PLO(V),/PL(V)g =~ { bundles X/Y with fibre dimension
(n—1) and deg(X)=(deg Lo) modn.

(This is proved by the same kind of arguments as used for SL(V),. In
contrast to that case we have bijectivity here since PL,=AutlP(V)
while in the case SL, AutV =GL but we take double cosets in SL.)
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We get, as above,

1 1
vol,, (R]) - ZeR\PLO(V)4/PL(V)k X 'RxNPL(V)il

Now x™ ! RxNPL(V)x = Aut(X/Y)g,, where X = X3.

It may happen that a stable X/Y has non-trivial automorphisms:
but in that case there are exactly |Aut(X)g, isomorphism classes of
projective bundles which are mapped into the same point as X on the
moduli scheme N/IF, (Proposition 1.2.2).

Hence

{/lx™* 8xPL(V)gl = Ng.|

FeR\PLO(V)4/PL(V)Kk

+ 5 1/lx™ ' 8xAPL(V)g
£ QLI APLO K
X3 not stable .

On the other hand
V0l (R) ="~ 101 Q) .. {(n).
Thus we obtain

Proposition 2.3.5.
INg|=¢" 00" V(Q2) .. L) -

X

1
Ix"'RxNPL(V)kl

where x runs through representatives of double cosets in \PL°(V),/PL(V)x
such that X§ is not stable.

III. Proof of the Theorems

3.1. The Summation over the Unstable Part in Siegel's Formula.
Proof of Theorem 2

We prove Theorem 2 by showing that the summation over unstable
bundles in Proposition 2.3.4 and 2.3.5 are the same.
To prove this let us assume that

Eo =L0®@Y®"'®@Y .
| —
(n — 1) summands

We define a (complete) flag 0CF, ;---CF, ,-; CE, on E, by setting
Foi=Lo®0Oy@--- @0y and call it the standard flag on E,. If m;=> 1

N —
(i — 1) summands
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k
are integers with ) m;=n, we call the stabilizer of the flag 0C Fy
i=1
CFo my+m, C - CE, astandard parabolic subgroup (of type (my, ..., my)).
Suppose that X € SL(V'), is such that E} is not stable. Then by Propo-
sition 1.2.9 we have a uniquely determmed flag

OCF,CF, - CF,_,CF,=E3

such that F/F;_; is semi-stable and u(F;)> u(F,/F,)--- > u(E/F,_ ).
If dim(F,)=m,, dimF,=m; +m,,...,then consider the flag on E,
defined by 0CF, ,,, CFy p, +m, - CE, and the stabilizer of this flag
in SL(V) 4, which is a (standard) parabolic subgroup. Thus to each x with
Ej not stable there corresponds a standard parabolic subgroup and this
parabolic group depends only the double coset containing x. Thus if
Inst CR\SL(V),/SL(V)x is the set of double cosets which give rise to
vector bundles which are not stable, then we have a decomposition

Inst= () Inst?
P

where P runs through the different parabolic subgroups fixing subflags
of the standard flag. A similar decomposition holds for the set of double
cosets Inst C R\PL(V) ,/PL(V) giving rise to projective bundles which
are not stable.

If P is a standard parabolic subgroup of type (m,, ..., m,) and pePl,,
then E§ has a canonical flag

OCFg’mCF€’m1+m2"'CE6

and an analogous assertion is clear for PC PL(V)/K. Now we see easily
that, writing v, =m, + --- +m;,

deg(F§ ,/F§ . _)=deg(F,,, /Fo,, )+ —n_y)
=(m—n_y)+d,

where d, =r and d; =0 for i > { and n; = §,(p) with the notation of § 2.2.
We then define a subset P, ,,,, of P, by

L )
my

my

PA num {BEPA

where I,(p) =d; + n;—n;_,. We easily verify that
={peP|lop)<C; for 1<i<k—1}

PA num

where o, = A7+ 1 A" and C; = gl4imi+ 1~ divimd,
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We also define P§ .., similarly:
P oum={pe Py l(p)l<C; for 1<igk—1}

noting that a; are defined on P. Moreover we define
Peum=1{plp€ Py pum and F§ /F§,  is semi-stable}
and
Pys={plpePS um and P(FE,/F§, _,) is semi-stable}.
It is now clear that we have mappings

KNP NP um/Px— Inst?
and
KNP \PY /Pg—Inst®

and these mappings are bijective by Proposition 1.3.9. Moreover we have

P 'S/pASL(V)k=p 'SKpnP; for pePy ..
and
Osst

P '8KpnPL(V)k=p '8pnP; for pePlst .

since the flag structure is unique. Thus we get
> TR :
xelnst?P Il_ ! REmSL(V)Kl P4nS\PE hum/Px !B_ ! RB(\PKI

and an analogous formula for PL(V)/K.

If we introduce right invariant measures wp , and wp 4 on P and P
such that the maximal compact subgroups KNP, and KNP, have
volume 1 we see that the values of the summation over the unstable
part are

wp 4 for SL(V)g

P P:!’.‘num/PK
and
wp 4 for PL(V)g
P PYium/Px

where P (resp. P) runs through standard parabolic subgroups. But still
it is not clear that these two expressions are equal; the difficulty is due
to the fact that the condition for p to be in P§ is difficult to handle.
Therefore we write

sst wP’A = I wP’A - j sst wP’A ’
PA,num/PK PA,num/PK (PA,num/PK)—(PA.num/PK)



Moduli Spaces of Vector Bundles on Curves 235

(It will be seen later that the integrals are convergent.) To understand
the second (“error’ ) term on the right, we observe that an element
PE€ Py num— Piftum gives rise to a bundle E§ with a flag

OCFO.vlcFﬁvz “'CF&vk=EO

for which at least one of the quotients F§ , /F§, | is not semi-stable.
Therefore we can find, by Proposition 1.3.9 unique flags in the non-

semi-stable quotients satisfying the conditions of that proposition. Thus

we see that [ wpa— _ [ wpa=Y | wpu

P4 num/Px P4 num/Px QL¢P Q4/Qx
where Q runs through proper standard parabolic subgroups of P and
Q7 is the subset of Q 4 consisting of elements g € Q 4 satisfying the follow-
ing two conditions:

l) ﬂ € PA,num’

ii) if 0CV,---CV,=V is the flag defined by P then the image Q"
of @ in GL(V,/V;_,) by the canonical homomorphism P—-GL(V,/V;_,)
is a parabolic subgroup of GL(V;/V;_,) and the second condition is
g; € 09 where g; denotes the image of g.

These considerations lead to the following definitions. (Compare
Definitions 1.3.12 and 1.3.13))

Definition 3.1.1. Let Q and P be standard parabolic subgroups with
Q CP. We say that ge Q, satisfies Condition ¢ with respect to P, if the
following holds: IfOC V, § --- ¢ V, =V is the flag defined by P, Q; is the
image Q in GL(V;/V; _,) and g; € QY is the image of g € 0, , then we have
7,€09 umfori=1,... k.

Definition 3.1.2. Let C be a chain of parabohc subgroups: Q=0Q"¢ -

-~ £Q*¢ Q** ... ¢ Q" Then we denote by QF . the subset of Q 4 deﬁned

by g€ QY .um and g € QF satisfies
Condition € (of Definition 3.1.1) with
respect to Q4" for A=1,... I—1.

Q/C{,num = {H € QA

We then have

Proposition 3.1.3. Let C be a chain of parabolic subgroups of SL(V),
and let us denote also by C the corresponding chain of parabolic subgroups
in PLY. We then have

1) c .[ wQ,A= OCJ (l)g’A<w.
QA,num/QK QA’.num/gK
1
2 — = (_ 1)|C| +1 wy,
) )_?G;‘lst |E ! RlnSL(V)Kl ; Qs,nxj:m/QK o4

1
- %_ x TRxAPL(V)l

11}
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where C runs through chains of (standard) parabolic subgroups and |C|
denotes the length of the chain.

Proof. From the considerations above we see that

! = — e+
> [x"'RxNSL(V)l _;( D

C
xelnst Q4 num/Qk

and
1
- =Y (-t wo,
Ee%-g X" 'RxNPL(V)g| ; gﬂ’,f,{m/gx 24
and (2) follows from (1).
We first show that | w, 4 is finite. We decompose QS ..., into
Q4 num/Qx

the fibres of the map g+>(d,(g), ... d,-(g)) e Z*~*. We have, by Propo-
sition 2.2.1b

J‘ Wg 4= q-}:fxn. j W4
494(0)/Qx Q4(0)/Qx

where n; =;(q) and f;=m; + m, , ,. Each n; is, up to an additive constant,
equal to the degree of the bundle F§ ;> E§and as g e 0S num these degrees
are bounded below by Proposition 1.3.15. It follows that | wou

. . QS snum/Qy
is finite.

Now we have 0 ,um/Q4(0)~ 0%:S,/Q5(0). In fact if we consider the
map Q,— Q" given by g(81(g), ... i ,(g) where o, (g)l=g;*"2,
then QS .. is the inverse image of a certain subset X§ of @** (defined
by certain inequalities) and we see that 9 Cum I8 also the inverse image
of X§ by the corresponding map 04— Q*~! given by the roots a; of QC.
Moreover we have, for g€ Q ..

wp 4 =q %@ [ @, , by Proposition 2.2.1,
404(0)/Qx 24(0)/Qx

and for g e Q%< we have

Wo4=q %@ [ @, , by Proposition 2.2.2.
404(0)/0x 24(0)/9x

Thus to complete the proof of the proposition it is enough to show that

| weu= ®g,4-
04(0)/Qx 09(0)/Q,

By Propositions 2.2.1 and 2.2.2 we have equality if we take the Tama-
gawa measures instead of the measures wg 4 and wg 4.
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So we have to prove that
[ wha= [ wpa-
KNQ4 KnQa
To prove this we observe that
J’ w;]’A - f w;_I,A = q(l-g)dimUﬂJ(Q)
KU, KnUag

where U denotes the unipotent radical and p(Q) is the numerical in-
variant of the parabolic group scheme Q/Y defined by the flag in E,
(see [8, § 1, 3]). Thus it is enough to show that

Iw;{,A = jw;j,A
H H

where R and K are the obvious maximal compact subgroups in
H,=0Q,/U,and H,=Q,/U, defined by E, and the flag. But this equality
is clear in view of [19, Theorem 2.2.5]. This completes the proof of
Proposition 3.1.3.

Propositions 2.3.4, 2.3.5, and 3.1.3 together yield Theorem 2.

3.2. The Action of T, on the Etale Cohomology of M

We first recall briefly some results on the l-adic cohomology and
zeta functions of algebraic varieties. Let X/IF, be a projective variety
over the finite field IF,. Let X= Xr, x]F If lis a prime coprime to g
and @, is the field of l-adlc numbers then the l-adic cohomology groups

H'(X,Q)= (lirlei(f;Z/l”Z)) ®Q
of X are defined by means of etale cohomology [1, 7] [5, Exposé III].
The Frobenius map ¢ : X — X defines an endomorphism
of H'(X, Qt)_’Hi()?a Q).

The spaces H'(X, Q) are finite dimensional and vanish for i>2 dim X.
We define

Py(t)... Pyy—4(1)
Py(t)... Py(1)

where N = dim X. By a theorem of Grothendieck we have

Z%( 1
"
ZX (t) nzl I Fq"l

where | X ,| denotes the numbers of IF,. rational points [9].

2N
Zy ()= ] det(ld — @Ft) " Div: =
i=0
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Recently Deligne [4] has proved the Weil Conjecture: If X/IF, is
projective and smooth then the eigenvalues of

oF H (X, Q)-H'(X Q)

are algebraic integers of absolute value q'?. (This means each conjugate
has absolute value ¢'/2)

This has the following consequence. If X /IF, is smooth, then the
polynomials P (t)=det(Id — @¥t) are pairwise coprime and this implies
that the nuberator || P(t) and the denominator [T P(¢) are deter-

i odd i even

mined by Z,(¢) i.e., by the number of rational points |Xg_,| for all n.
We need the following proposition for which we could not find a
reference.

Proposition 3.2.1. Let X /IF, be a projective variety and let G be a finite

group of automorphisms of X. Then X/G exists as a projective variety.
If (|G|, ) =1, the mapping

Hi()?/G’ Qz)—>H"(X QI)G

is an isomorphism, where H'(X, Q)¢ denotes the invariants of G in
H'(X, Q).

Proof. The existence of X/G is well known [14, Chapter III, No. 12].
To prove the second part, it is sufficient to prove that

H'(X/G,Z/’T)>H X, Z/'Z)° .
Let f:X—X/G denote the projection. It is known [1, Exposé VIII,
Proposition 5.5] that
RIf,(Z/'Z)=0 for q>0.

The sheaf F=R°f, (Z/I'Z) is constructible and the group G acts on F.
Moreover it is clear that the constant sheaf Z/’Z on X/G injects
into F. We claim that Z/I"Z- FC. To see this we consider the fibre at
any geometric point ye X/G (Compare [1], Exposé VIII). Then we
have to show that @ZNLy=Z/’Z=F¢. _

Let X, = f~!(y), then we have, for f;: X;— 7,

Fp=R°f; @/’ T)=C(X,, I/1'Z)

where the last term denotes the set of mappings from the underlying set
X into Z/I'Z. The group G acts on X5 and €; the only invariants in €
are the constants.

Since (|G|, )= 1, we see that we get a decomposition

F=F°@R=Z/'Z®R
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where R is the sheaf of elements of trace zero. By the Leray spectral
sequence [1, Exposé VII, 1.5] we have

H (X, Z/I'Z) = Hi()?/G, Rof*(Z/l“Z)) :
since
H"(X_/G, R(’f,|= Zrz)= H(X/G, Z/'Z)®H (X/G, R)

the proposition is proved.

We now proceed to prove Theorem 1 in the case Y is defined over
a finite field IF,. We apply Proposition 3.2.1 to the projection M/IF,
—(M/T,)/IF, = N/IF, and obtain

H(M, Q)" =H'(N, Q).
Then, if
wF =respmi,q (0 H(M, Q) H'(M, Q)),

we see that det (Id — ¥ ) divides det (Id — ¢¥*t). On the other hand, we
have, by Theorem 2, Z,,(t) = Z(t) and we know from Weil conjectures
that there are no cancellations in the expression for Z,(t). It follows
that det (Id — y* t) = det (Id — @¥*1).

This proves Theorem 1 when Y is defined over a finite field.

We now remove the restriction of the field of constants to be a finite
field. Let k by any field with char(k)tn and let Y/k be a smooth pro-
jective curve. We shall derive the validity of Theorem 1 for ¥ = Y X k —

k
where k is an algebraic closure of k — by means of a specialisation
argument. One tool will be the proper base change theorem of Artin
([2], Exposé XVI, Corollary 2.2). The other tool needed is the theory
of Mumford and Seshadri on the action of reductive groups on pro-
jective schemes, which is essential for the construction of our moduli
schemes. At this place it would be very convenient if we knew that
Seshadri’s theory [18] works also for families of curves, especially for
curves over valuation rings with unequal characteristics. Unfortunately
we do not know whether this is actually true; in any case it does not
seem to be obvious. To avoid this difficulty we shall use a rather crude
argument which shows that over a Dedekind ring the construction of
the moduli scheme is almost everywhere compatible with specialisation.

Lemma 3.2.21. Let A be a Dedekindring with quotient field k. Let
Y — Spec(A) be a smooth projective curve. Let L, be a line bundle on

Y X k of degree r prime to n. This line bundle has a unique extension to
Spec(A4)
a line bundle L, over Y/Spec(A). Then there exists a non empty open

! We are thankful to C. S. Seshadri for pointing out an inaccuracy in an earlier version
of the proof of this lemma.
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subset U D Spec(A) and a projective smooth scheme M — U, such that for
all points p e U with residue field k(p) the scheme M X Spec(k(p))= M,

U
is isomorphic to the moduli scheme M(n, L,)/Spec(k(p)) (Compare 1.1).
If moreover the residue characteristics for all pe U are prime to n,
we have an action of T, on M— U, which induces on all fibres the
standard action.

Proof. We have to analyse Seshadri’s construction of the moduli
scheme M(n, L,) over an algebraically closed field (Compare [17, 18]).
We choose first of all an ample line bundle L on Y/A. Moreover we

N
choose N points Py, ..., Py on Yzsuch that the divisor Y P, is rational
i=1
over k and such that these points are pairwise distinct and remain
pairwise distinct after reduction mod a prime p € U, where U C Spec(A)
is suitably chosen. We also choose an integer m >0 such that for this
choice of m and P, ... Py, the Corollary 7.1 in [17] will be true for any
specialisation of our curve induced by a homomorphism A—k or
A—k(p) for Ge U. Then we get a functorial mapping ©

isomorphism classes of

stable vector bundles .
. . ¥
with determinant L, +

basis on H°( , ® L")

where ¥— U is a twisted form of the projective scheme %Y,—~U and
where the twisting comes in since the P, are not necessarily defined
over k. Here d = dim H°(Y, ® ™).

The group GL,/U acts on %/U in the usual way (Compare [17, § 4])
and we choose on %/U the standard ample line bundle which has a
GL,-linearisation [10].

We claim that there exists a closed subscheme %,,C %/U whose
geometric points are exactly the non-stable geometrie points of %/U.
To see this we refer to the proof of Theorem 3.1 in [18]. We first choose
a split maximal torus T C GL,/U (for example the standard diagonal
torus) and a Borel subgroup BC T. Then we know that there exists a
finite set of one parameter subgroups in T such that a geometric point
which is stable with respect to this finite set of one parameter groups
is also stable with respect to all other one parameter subgroups of B.
Therefore these finitely many one parameter subgroups define a closed
subscheme #°C%/U of non-stable points. Then we proceed as in the
proof of Theorem 3.1 in [18] by using the action of GL, and the
completeness of GL,/B.
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We set /U =(9—9,,)/U. This is a quasi-projective smooth scheme
over U which is GL, invariant. Then we know that %, X k and ¥, Xk(p)

are the schemes of stable points respectively. It follows from [17], that
the image of 7 is a closed smooth subscheme

X— Y,

N/

Moreover it is clear that the quotient X X k/GL, X k= M’ exists. (A pri-

_ U U
ori M' is defined only over k; but by a standard argument of descent we
see that it is defined over k) We know that in this special case M’'/k
is a smooth projective scheme and that

p:XXk->M
U

is a principal fibre space with structure group PGL,. Making U smaller
if necessary we can extend M’ to a smooth projective scheme M/U and
we can extend

P
X—M

such that X is still a PGL, principal fibre space over M. This follows

by standard arguments from the fact that p’ is locally trivial with respect

to the etale topology. But then it is clear that M X k(p) is the quotient
U

of X X k(p) by the action of GL,; X k(p) for p € U because
U U
X Xk(p)— M Xk(p)
U U

is still a PGL, X k(p) principal fibre space. Therefore

M X k(p)=>M(n, L, ,)/Spec(k(p)) .
The action of T, on M X k= M’ extends to an action on M if we make U
smaller if necessary. Tﬁen it has to induce on M X k(p) the action we

U
want, since we know what happens on the bundles, which are the points
on M. This completes the proof of Lemma 3.2.2.

Now it is more or less clear how we can deduce Theorem 1 for an
arbitrary algebraically closed ground field. If Y/k is any projective non-
singular curve we find a field k C k which is finitely generated over the
prime field in k and such that ¥ = Y’ X k. We may find a Dedekind ring

k
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A C k with quotient field k and infinitely many closed prime ideals and
such that Y’/k extends to a smooth curve Y/Spec(A4). We apply Lemma

2.2 and get from Artin’s proper base change theorem ([2], Exposé
XVI, Corollary 2.2) that Theorem 1 is true for ¥k if it is true

for Y X k(p) where p runs over the closed prime ideals in 4 and k(p)
Spec(A)
is an algebraic closure of A/p = k(p). But the transcendence degree of

k(p) over the prime field is less than the trancendence degree of k over
the prime field if the characteristic does not change. Therefore we can
reduce Theorem 1 by induction to the case that k=@ or k=IF,. Only
the first case is still of interest for us. Now we apply again the method
above but this time we will have a change of the characteristic; our
Dedekind ring will be the ring of integers in an algebraic number field
and the residue field is finite. Therefore we can reduce the first case to
the second one.

3.3. The Computation of Some Betti Numbers

We shall now derive some explicit formulas for Betti numbers of
M/IF, in low and high dimensions. This will be done by estimating the
sum over the instable part in our formula for [Mg | (Proposition 2.3.3).
It turns out that this part has a lower order of magnitude than the term
g™ D=V ¢(2) ... {(n) and therefore we can read off the Betti numbers
in a certain range from the expansion of that term. To obtain these
estimates we have to consider the expressions (Proposition 3.1.3)

W 4 -
Q.4
Qf!,num/Q‘
Let us assume that Q is of type (my, ..., m,).
We consider the map
d: QA -')Zk_l ’

6:.4'_)(61@) 5k—1(9))=("1a M )=n.

We know that Q9 .. is the inverse image of a certain subset Y5 Z*~*
which is described by inequalities derived from the Definition 3.1.2; the
actual shape of Yg is not of interest for us at the moment. It follows
from the considerations in the proof of Proposition 3.1.3 that

j' Wy 4= Z q"fmx'-"'-fk—xmc-x J’ g4
Q4. numro, ney§ Q4(0)/Qk

where f,=m;+m;,,. If H=0Q/U where U is the unipotent radical of Q
then we see as in the proof of Proposition 3.1.3 that

1
| Wg,4=

ol . a Wo.4
04(0)/Qx V°1w5, 8 o.0n0x
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where wg 4 is the Tamagawa measure (Compare 2.2) and R, =8nQ,
is the compact subgroup defined by means of E, (Compare 2.3). We use
the formula a) in Proposition 2.2.1 and get

1 (k=1)
Wg,4 = ( e, ) .

oaovox . Volup ,(R) \(g—1)g¥ ™"

If U is the unipotent radical of Q we find

vol,;, ,(Rg) =g\~ 94mU+P@ vol o (Rp)

W, 4
(Compare proof of Proposition 3.1.3) and for the last factor we obtain

product of values of {x at some

R,)=ql-9dimH
Rr)=q Xof the arguments 2,3, ...,n,

VOIW}-I. a

since we have only to take into account the semi simple part of H which
is isogeneous to a product ITSL,, . The central part of H gives contribu-
tion 1 because of the choice of the convergence factors. This shows that
the order of magnitude is
3‘ W4 = q(dimQ) (g-1)-p@Q) (1 + O(q_*)) X

04(0)/Qk
We shall abbreviate this and just write
wg 4~ qEm® e-1-p@
Q4(0YQx

and we shall say that the integral on the left hand side has the order of
magnitude q(dimQ)(y— DH-p(Q
Therefore we get in total

- — o=y _ di -1)-
j’ W4 = ( Z q fim Sre-1m 1) q imQ(g-1)-p(@Q)
QA.num/Qx ﬂEYS

To estimate the infinite sum in the bracket we use a very crude ma-
jorisation of Y§. Let us put d;=m, +m,+ --- +m; then fi=d;y, —d;_,.
We started from a flag

OCFOJC Fo’2c - C FO,k=EO

where
Fo,=L,®0y--- @0y (Compare3.1).

First of all we observe that for g € 0, we have

degFg',,- = ngLO,i + ni =r+ ni
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if n,=0;(g). Then it follows from Proposition 1.3.15 that 4€05 num
implies
r

r+ni _r

13

u(Fg,,.)—_-

and this is equivalent to

r
ni>di‘——r.
n

This is a necessary condition for a point n to be in Y5. We remark that
for a maximal parabolic subgroup this condition is also sufficient
(Lemma 1.3.12). Therefore we see that the order of magnitude of

Z q—nif-‘ vrmme-t fie-1

C
nelg

k-1 d,r
i=1 h
dir]. 7 dyr
where [—”1—} is the smallest integer which is greater than or equal to —.
n

is less than or equal to

On the other hand one checks easily from the definition that

k—1

* k-1
PO~ 3 fideeFo,~di-y degBo= (T i) r—diorr.
i=1 i=1
This altogether gives that the order of magnitude of

Wg,4
Qﬁ,num/QK

is less than or equal to

. U [dr
dimP(g-1)— Y f; [_;l—] +d_r.
q i—-1
This gives the exact order of magnitude if Q is maximal parabolic as we
see from the above remark.

We have

{
Mg [=qg" V-1 ¢2) .., -
Mg, |=4q )¢@) ... Lm) _&;m lx~ TRxNSL(n, k)|

and we obtained above an estimate for the second term on the right
hand side. The difference in the exponents in ¢ for both terms is

) k=1 d.
2(codimo (g~ 1)+ % i [ | ~rdcy
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and therefore we have to look for the minimum of this expression if Q
runs over all parabolic subgroups.

We have
Proposition 3.3.1. We assume g =2 and 0 <r <n. Then the minimum
of the expression k-1 dr
(codimgQ)(g—1)+ > f; [ ;1 } —rdg_y,
1

i=

where Q runs over the parabolic subgroups, is obtained only once. The
parabolic subgroup for which the minimum is obtained is maximal and
defined by a line bundle or a hyperplane bundle. The value of that
minimum is
max(r,n—r)+(n—1)(g—1).
Proof. Without loss of generality we may assume that r< 2—,

otherwise we pass to the dual situation. We perform some easy cal-
culations:

k=1 k=1 ,
. {dir}~ Y di_, —d;'li}—dk_,r

i=1

k-1 dir k-2 [dle
' n ‘ n

i=1

k2 d;r digqr dy_yr

= z<di+, . }—d,-[ ;1 D+dk[ "n1 }—dk_lr
i=1
-1

¢ dir divy?
_i=1(di+1{_’r}_di{ n })

where {x} =[x]— x. Then our expression above becomes

stz

This last expression is strictly positive and since it is an integer it is = 1.
We check first what happens if Q is maximal and defined by a line
bundle or a hyperplane bundle. In that case we have d, =n and

. dr
(codimgQ)(g—1)+n {T}

dr
n

_ [(codimgQ) (g—1)+r if d =1
_{(codimGQ)(g—1)+n—r if dyj=n—1.
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Therefore our assumption r < —- implies that the minimum is obtained
ra

in the case d, =1. It is now sufficient to show that for the parabolic
subgroups that are different from these two maximal parabolic sub-
groups we have

(codim;Q)(g—1)+1>(mn—1)(g—1)+r.

Case 1. @ itself is maximal and therefore of type (m) where 1 <m
<n-—1. Then we have to check that

m—mmg—1)+1>m—1)(g—1)+r.

It is clear that the left hand side takes its minimum value at m=2,
therefore we must check that

20-2)(g—-D)+1>mn—-1)(g—1)+r
m=3)g—-1)>r—1.

This is certainly allright if n>6. For n=5 and n=4 it is easily checked
and for n=3, 2 this first case cannot occur.

or

Case 2. Q is the intersection of the two maximal parabolic groups
defined by d; =1 and d; =n—1. In this case we have to prove that

Cn=-3N@g-D+1>m—-1)(@g-1)+r.
But it is clear that this is covered by our considerations in the first case
since 2n—4 <2n—3.

Case 3. Q is arbitrary but different from the two maximal ones
defined by d, =1, d, =n— 1. In this case it is clear that we can find a
parabolic subgroup Q'> Q, which is covered by one of the first two
cases; since the codimension decreases we are through.

Now Proposition 3.3.1 yields that for r < -:L

Mg | =q(n2—1)(q—1) 2@Q)... C(n)_q(n2~n)(g—1)—r+0(q(n2-n)(9—1)-r—4}) .
We express the {-function in the usual form

I —wig™)
(1-g97)(1~q-q7%

In the expression for {(m), m=2, ... n, we substitute (— T) for each of
the w; and T2 for q. Then we get rational functions

(1 + Tl—lm)Zg
(1 — T—Zm)“ _ T2(1-m)) :

()=

Z,(T)=
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Let us define
P(T)=T*"~16-Y 7 (T)... Z(T).

This is a Laurent series in the variable T-! and define b,(v=0,1,...) by

P(T) = T?"-16-1) (i b, - T—v).

v=0

It is now obvious that for 0<v<2(n—1)(g—1)+r the number b, is

equal to the number of terms in our formula for |Mg,| which have
n2— —
absolute value q( ey
For v=2(n—1)(g - 1)+r) this number of terms is equal to b, — 1.

Using the Weil conjectures and Poincaré duality this gives us
Theorem 3.3.2. dimH*(M Q) = b, for 0 < v < 2(n—1)(@—1)+r).

dimH"(M,Q)=b,—1 for v=2(n—1)(g—1)+r).

Corollary 3.3.3. The third Betti number of M, /F is always equal to 2g.

Corollary 3.3.4. If r £ +r' modn then the corresponding moduli spaces
(of vector bundles of rankn) are not topologically equivalent.
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