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0. Introduction

A basis B={b,},., in a Banach space E is called 1-uc (1-unconditional) if for every
x=ZXxhb,eE and every choice of &= +1, with ¢;=—1 for finitely many i, | x|
=|2ex;b;||l. B is called a transitive basis if for every two indices i, there exists an
“onto” isometry g of E such that g(b,)=b;. Let G(E) denote the group of all “onto”
isometries of E. A subgroup G of G(E) is called a permutation transitive group (with
respect to B) if G consists of operators which act as finite permutations on the set B
and if G is transitive on B, that is, given any i, j there exists ge G such that g(b,)=b;;
in this case B will be called a permutation transitive basis. A 1-uc basis B is called 1-
symmetric if G(E) contains all the operators induced by the finite permutations of
the set B.

One of the main results proved here is Theorem 2.12 which states that if
B={b;},», and B, are two (4) bases for the same Banach space, then
B,={e}b};»,, where ¢;=+1, that is a (4) basis is essentially unique. This
generalizes the result proved in [5] about the uniqueness of a 1-symmetric basis in
a Banach space which is not isometric to a Hilbert space. The definition of a (4)
basis is very general and appears in Sect. 2, roughly, this is a 1-uc normalized basis
for which subsets of the basis are permutation transitive, and each of the subsets
satisfies any one of two other conditions (a), (b). For example, a 1-symmetric basis
for a space not isometric to a Hilbert space is a (4) basis if the dimension of the
space is not 2 or 4. A 1-uc normalized permutation transitive basis for an n-
dimensional space which has a finite group of isometries is a (4) basis if n is odd
and indivisible by 7. If E;, i=1,2, ..., has a (4) basis then ( Z @E,-) also has a (4)

i1 Ip
basis (1 <p < ). B

To prove the uniqueness of a (4) basis all the results developed in Sects. (1) and
(2) will be needed. Section 1 is concerned with the case when dim(E) < oo and G(E)
is an infinite group. Theorem 1.5 proves that under certain conditions E has a
proper subspace F such that G(F) is also infinite. This result is used in the proof of
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Theorem 2.12. The case when dim(E) < co and G(E) is a finite group is discussed in
§2. We prove various results on algebraic number fields and use combinatorial
arguments to establish in Lemmas 2.7 and 2.8 the form of every reflection point in
an n-dimensional Banach space which has a normalized 1-uc permutation
transitive basis. It is then shown in Lemma 2.10 that if E has (4) basis B every
reflection point must have one of two possible forms with respect to this basis, and
this fact is used to prove the uniqueness of a (4) basis; it follows that every onto
isometry of E must act as a permutation and changes of signs on B.

In Sect. 3 we consider the following problem: If G is a group of linear operators
on R" (1 £n<w), is it possible to construct a Banach space E=(R", || - ||) such that
G(E)=G? The answer is affirmative (Theorem 3.1) if n <w and G is a finite group
which contains — I, where [ is the identity operator on R". This answers a question
raised by Lindenstrauss. However, if n=ow, the situation is more complicated
because the algebraic conditions alone on G may make G(E)=G impossible to
achieve. For example, if G contains the group of operators induced by the even
finite permutations of the linear basis {e;}2, of R, then whenever E=(R®, | - ||) is
a normed space such that GCG(E), G(E) must contain also all the finite odd
permutations of the basis. Because of such complications, Theorem 3.3 does not,
and indeed cannot, yield the existence of a solution E to the equation G(E)=G, but
rather shows that in a certain sense an approximate best solution does exist when
G is a subgroup of the group induced by changes of signs and permutations of the
basis {e;};2, of R®.

Other aspects concerning spaces having t symmetric basis, or isometrically
unconditional transitive bases, notions similar to some of our definitions, ap-
peared in [6] Sect. 3. Results on finite-dimensional spaces such that G(E) contains
the group of all permutations of a given basis may be found in [3].

1. E is a Finite-Dimensional Space and G(E) is an Infinite Group

Let E be an n-dimensional real Banach space. Let (.,.) be the scalar product
generated by the ellipsoid & of least volume containing the unit ball B(E)={xeE;
x| =1}. Let ||x|,= ]/(x,x) for all xe E. Since & is unique ([5]), each ge G(E) is a
(.,.) orthogonal transformation, that is g(§)=¢& for all geG(E). Denote by
= {xz Y xiey xP< 1} and by S,= {X;inz = 1}. Then there exists an in-

1 1 1

vertible operator T'such than §=T(Z,), hence T~ 'G(E)T={T " 'gT:geG(E)} is a
subgroup of the standard orthogonal group O, on X,

Lemma 1.1. If B={b,}!_ is a 1-uc basis for E, then (b, b
B is a transitive basis, then ||b;||,=b,|, for every i.

)=0 forall 1<i%j<n If

i’ J

Proof. If i%j, there exists ge G(E) such that g(b,)=b, and g(b j)=—b;, hence
(b, b)=(g(by), g(b))=(b;, —b)).

If B is transitive, given i there is geG(E) st g(b)=b,, then
Ibill ;= llg®ll,=1byll,- O
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Theorem1.2. Let B={b,}!_, be a normalized 1-uc transitive basis for a Banach
space E and suppose G(E) is infinite. Then each of the following conditions implies

n

1/2 n
E=0I and |x| = (Z xlz) for every x=Y xb,eE:
1 1

(1) G(E) contains the shift operator t,, defined by t,(b,)=b,,, if 1<i<n, and
tn(bn) = bl .

(2) n is a prime number and G(E) contains a permutation transitive subgroup.

(3) n<3.

For the proof of the theorem we need two lemmas. First, observe that by
Lemma 1.1 if B is a normalized 1-uc transitive basis there exists A>0s.t. (b;, b))
=10, ; (i,j=1,2,...,n). Let ;=" '?b, then {e;}] is also a l-uc transitive basis
which is (.,.)-orthonormal as well. In this case the ellipsoid of least volume which
contains B(E) is

i=1

(a‘"={x= Y. xe: ||x||2§1} =X, so G(E)CO,.

If G(E) is infinite then by a well known theorem on Lie groups it has a one
parameter subgroup, that is there exists a linear operator u=0 such that
{e"; — oo <t< oo} is a subgroup of G(E), and G(E)CO, implies u+ v’ =0.

Lemma 1.3. Suppose E is an n-dimensional Banach space and u is a linear
operator such that {e"; —o0<t<ow}CG(E)CO, If xeE is such that
span {gug~'(x);ge G(E)} is (n— 1)-dimensional, then E=1,.

Proof. Note that for any yeE and geG(E) (gug *(»),y)=(, (g~ \Yu'g ()
= —(»,gug™'()), hence dimspan{gug™'(y); ge G(E)} =n—1.

Let {g,}1”' CG(E) be such that dim span{gug; '(x);i=1,...,n—1}=n—1, and
¢ :R""'>8, be the map

Oty ..o t,_1)=9g,€"g'19,€"g5...q,_ " g, _(2)

where z=x/|x||,. Then ¢(0)=2z, and (ZT(p) =gug,(z) (k=1,..,n—1) are (n—1)
k/t=0
independent vectors, hence ¢ maps an open neighbourhood of the origin in R" ™!

onto a neighborhood of z in §,,.

Let N ={yeE; there exists ge G(E) such that g(z) = y}. Since G(E) is compact, N
is a closed subset of S,. However N is open because if ye N then the map ge G(E)
for which g(z) =y maps any neighbourhood of z onto a neighborhood of y (in the
relative topology of S,). Therefore S,=N, which implies ||y|=||z|| for every
veS,. O

Let A"={1,2,...,n} and H be a transitive subgroup of the symmetric group on
A" (i.e.,, the group of all permutations). For i,je A", i=j, we say iTj iff there exists
oceH such that {d(l), 0(2)}={i,j}. Note that iTj iff jTi. Define the following
relation R on A"

(a) iRi for all ie &

(b) If i=j then iRj iff there exist

Iy =i, iy .0, iQ,,=j suchthat §iTi , forall r=1,2,.. k.
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Lemma 1.4. R is an equivalence relation on A", and the cardinality of C,={je /"
iRj}, |C}l, is not dependent on the choice of ie /.

Proof. It follows immediately from the definition of R and the fact that T is a
symmetric relation that R is an equivalence relation.

Let se 4", we shall prove |C|=|C,|. Since H is transitive, there exists 0 H such
that 6(1)=s. Consider 6(C,), suppose that jeC, and j#1, then there exist i,
=1,i5, ..., I, 4y =jin A" such that i, Ti,,, forallr=1,..., k. We claim 6(i,)e C, for
allr=1,...,k+1. Clearly 6(i,)=seC,, and assume by induction that 6(j,_,)eC,.

Since i,_, Ti,, then either (i) o(1)=i,_,, o(2)=i, for some ce H; or, (ii) o(1) =i,
0(2)=i,_, for some ce H.

Without loss of generality assume (i) holds. Then 6(i,_ ;) =0(c(1)) =(6-0) (1) and
0(i,)=(0-0)(2), whence 6(i,_ ) T(i,), and since by assumption 0(i,_ )€ C,, it follows
that 6(i))e C,. Hence 6(C,)SC,, whence |C,|<|C|. But the converse inequality is
also true since H is transitive, completing the proof. []

Proof of Theorem1.2. Let {e;}"] be the 1-uc transitive and (.,.)-orthonormal basis

for E. Let x= Y ¢, and let 0%y be any vector orthogonal to span{gug™'(x);
1

geG(E)}. Since u+u =0, u can be written as u= u;(e;®e;—e;®e,), hence gug’

i<j

=3 u;(g(e)®gle;) —gle;)®g(e))), therefore for all ge G(E)

i<j

Oz(gug'(x)’ Y)——- z uij[(g(ei)7 X) (g(ej)7 J’)*(g(e,)y x) (g(ei)s Y)] .
i<j
Since u+0 at least one u;;#0, suppose that u,,+0. Let A={e=(¢,¢,,...,8,);
¢, =¢,=1,¢=+1 for 3=<i=<n}, then setting g,(e)=¢e(1<i<n)

0=2"""2% (gg,ug,g'(x), y)

ted

=270"D %0 Y ueie;lgle)), ) (gle)), ) —(gle ), %) (g(e;), y)]

ced i<j
=u,,[(g(e,), x)(g(e,), y) —(gle,). x) (gle,), )],
that is for all ge G(E)

(g(ey), x) (gle,), y)=(g(e,), x) (g(ey), y). (*)

In case (1) taking g=t,"', we see that (*) implies y,,,=y; for all

i=1,2,...,n—1, implying y=Ax, this however means dimspan{gug '(x);
geG(E)} =n—1 and Lemma 1.3 implies E=1j.

In case (2) if  is a permutation of 4" denote by g, the operator defined by:
g.(e)=e,;,and let H={n;g, eG(E)}. Since B is a permutation transitive basis, H
is a transitive subgroup of the symmetric group. Equation (*) implies y,,,= V..
for every ne H. We shall see that y, =y, for all j.

Let C; be as in Lemma 1.4. Since the identity permutation is in H hence
{1,2}eC,, and since all the C;’s have the same cardinality, and every pair C; and
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C; are disjoint or equal sets, it follows from the fact that 7 is a prime number that
-¥"=C,. This implies that for any 14 je 4", IR}, that is there exist L=1i,,..,i,
ly+y=jsuch that i Ti . for all r=1,.. k, that is Yi,=Vi,,»1n particular y, =y
As in (1) we conclude that E=1I.

In case (3), if n=2, taking g =1 the identity on E, we obtain Y=y, from (*¥), so
E=01.1fn=3, replacing g in (*) by g,g we obtain

0=(gle,).9,(x)) (g(e,), 9.(») — (g(e,), 9,(x)) (g(e, ), g,(»))

jr

3
1€ (gley), ej)aiajyj— ‘ Zl (g(e,), ej) (g(e,), ei)gigjyi

LJ=

3
= Zl (gle
= ; (ge;), ) (gle,), ej)sigj(yj'—y.')

= z aigj(yj'-yi) [(g(e,),e) (g(e,), ej) —(gley), ej) (g(e;). )]

i<j

Fixing the indices i and j, 1<i#j<3, and averaging the last equality over all
e=(gy,€,,¢€;) With &=¢;=1, ¢=+1, then for any geG(E)

;= y) Lgle,).e) (gle,), )~ (gle,). ) (gle,), e)] =0.

Taking g=1, i=1, j=2 it follows that Vi=Y,. I y;%y, then taking j==3 and
i=1or 2, let he G(E) be such that h(e;)=ej, then (h(e,),e;)) =0, so (h(e,),e;)=0, and
since [[h(e,)|,=le,|,=1, h(e,)= te,, contradicting h(e;)=e5. The conclusion
V1 =y,=y,; implies E=13. The fact that [bl=1 and (b, b))=44;; implies that

n n 1/2
Y éibi“ = (Z éf) forall  ¢beE. O
i=1 i=1

The following theorem will be needed in the proof of Theorem 2.12.
Theorem 1.5. Let B= {b,}3 be al-uc basis for E,n> 3, and assume G(E) is infinite.

k
Let k=2, and I; (j=1,2,...,k) be non-empty disjoint sets satisfying U I;
ji=1

={1,2,...,n}. Let E;=[b,;vel;] and suppose G(E)) contains a permutation tran-
sitive subgroup G; such that for every ge G; the extension operator § defined by

g(bv)={g(ll;“)f :Z;J is in G(E). Then there exists a proper subset 0G{1,2, ..., k),
v J

such that the subspace [bv; ve U 1 jJ has an infinite group of isometries.

Jjea
Proof. Asin Lemma 1.1, (b,,b,)=0if v, and since G;is transitive ||b, ||, = Ib,ll, for
tovel;. Lete,=b,/||b,|l, (u=1,2,...,n), then {e,} is a 1-uc and (.,.) orthonormal
basis for E and satisfies the same conditions as the basis B.

Since G(E) is infinite, there exists u+0 as in Theorem 1.2 such that {¢*; — 0
SI<©}CGE)CO,. Letu, = —u,, for ISvsu<n, sothatu= Y u, e,®e,.

uv=1
Define now the following relation on {Ij}jf=1 :1; and I; will be called friends if
i+j and there exists pel;and vel, such that u, ,+0.

If I, has no friends, then u=u,+u, where u;= ) u, e Qe,u,
u,vel,

=y u, e,®e,. If u; 0, then e, =e™|, is an infinite subgroup of G(E)). If
uovel, ’ ’ ’

Uy =0, then u,=+0 and | #,=€"lg, is an infinite subgroup of the isometries of E ;
=[b,;ne{1,2, i~
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We can therefore assume I, has a friend, then let P be the maximal subset
having the following property: 1€ P and for each pe P there exist q,, q,, ...,4,,€ P,
4o=1, g, =p, such that I, and I, _| are friends (1<i<m).

Without loss of generality assume P={1,2,...,p,}, 2<p,=k. Let I= (j I,
p=1

then u=v, +v,, where v, = Y u, e,®e,, v,= ) u,e,®e,.
uvel wuvel .
If p, <k, then the same argument as above shows that e'”* or €2 restricted to

the proper subspace is an infinite group of isometries of that subspace If p, =k, for
every p there exists g such that I, and I, are friends. Let x= Z e;, and y=+0 be

orthogonal to span{gug Y(x); ge G(E)}. Given any p, choose ueI vel, such that

,=0, then as in the proof of Theorem 1.2, we get an equation sxmllar to (*) with
,u,\) instead of 1,2, from which y,, =y, for all permutations n such that g, € G(E).
Since I,nI,=@ and G, are permutation transitive and extend to isometries of
G(E), it follows that y =y, for all sel,, tel,, and since P={1,2,...,k}, we get
y=Ax. Hence, dim span{gug~'(x); ge G(E)} =n— 1, therefore E =1, by Lemma 1.3,
proving the theorem. []

Corollary 1.6. Suppose E; (j=1,2,...,n) is a finite-dimensional normed space,
dim(E) =2, G(E)) is finite, and E; possesses a 1-uc permutation transitive basis. Then

the space | Y. @E j) has a finite group of isometries.
Jj=1

153

Proof. Otherwise, applying Theorem 1.5 several times, each time reducing the size
of the set a, we shall eventually obtain a={j,} for some j,, implying G(E;) is
infinite, but this ontradicts the assumption. []

Remark. The Corollary is false if dim(E;) = 1, since 5 is a counter example. Since [}
for p+2 has G(I}) finite, the Corollary applies for sums of these spaces.

2. Uniqueness of a (4) Basis

The main result of this section is the uniqueness of a (4) basis for a finite or infinite-
dimensional real Banach space E which is proved in Theorem 2.12. The Lemmas
preceding the theorem are all essential for the proof. We shall assume throughout
this section that G(E) is a finite group and dim(E)< oo unless it is mentioned
otherwise.

|l - I, will always denote the ellipsoid of least volume which contains B(E). A
point xe E is called a reflection point (cf. [1])if [ x||, =1 and I —2x®xe G(E), where
I is the identity operator and x®x the rankone operator defined by x®x(y)
=(x, y)x. Let R be the set of all reflection points. Observe that g(R)=R for all
geG(E), since if xeR and geG(E), then [|g(x)|,=Ix[|,=1 and I—2g(x)®g(x)
=g(I -2x®x)g e G(E), since G(E)CO,,

Lemma 2.1. If x, yeR, then (x,y)=cos(rn) where r is a rational number.
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. 0
Proof. By choosing the coordinate system we may assume x=e, and y=cos (E) e,

+sin (g) e,. Then, if g=1—-2x®x and h=1—-2y®y we get in matrix form

cosm@ sinm0 0.. 0

—sinm@ cosmb 0.. 0

gh" =1 0 0 1 0.0
0 0 0 1.0

and since G(E) is finite there exists an integer m such that cos(mf)=1, completing
the proof. [
The next is Lemma 2.2 [3]:

Lemma 2.2. Assume ze E and xe R satisfies

0<|(x,z)|=min{|(y,z)|; yeR and (z,y)+0}.

(1) If yeR and (z,y)=0, then |(x, y)|=cos (%) for some integer m=2.
(2) If zeR, then |(x, z)| =sin (%) for some even interger m=2.

Lemma 2.3. (i) If O<r<1/2 and 0<s<1/2 are two rational numbers, then
1 cos(sm) = cos(rm).

. . . . _ . [T
(i) If m=5isaninteger, then for every rational number r,2~ /% sin (—) % cos(rn).
m

Proof. We use some well known facts about algebraic number fields, in particular
automorphisms of such fields (cf. [4]). Given any positive integer [, let &, = e*™' then
¢ is an I-th primitive root of 1, and Q(¢)), the extension field obtained by adjoining &,
to the rational field Q, is of degree ¢(l) over Q, where ¢(l) denotes the Euler function

J
of I, defined by : ()= [T (p;—1)p}* ', where [ =pf'p%2...p% and the ps are distinct
i=1

primes.

If B is any automorphism of Q(¢)), then there exists a positive integer k such
that (k,[)=1 and B(&)=¢EF. Conversely, if k is a positive integer and (k,[)=1, then
there exists an automorphism f of Q(&,) such that B(&)= ¢

Let a and b be relatively prime positive integers. Let [Q(cos(2na/b)); Q] and
[O(,); 0] (= ¢(b)) denote the degrees of Q(cos(2na/b)) and Q(&,), respectively, over
Q. We shall show

2[Q(cos(2ma/b)); Q] =[Q(,): Q1. ()

Clearly, cos(2ma/b)=2"1(&+¢&, %, so Q(cos(2ma/b))CQ(&)=0Q(E,). Since
(isin(2ma/b))* = (cos(2ra/b))® — 1, it follows that [Q(&2); Q(cos(2ma/b))] < 2. But the
identity automorphism of Q(¢,) as well as the automorphism that sends &, to &,

2na

leave cos <T) fixed, whence [Q(&}); Q(cos(2ra/b))] =2 and (%) follows.
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We now turn to the proof of (i) and (ii). Suppose that r=p/q, where p and q are
positive relatively prime integers. If p is odd, then cos(pn/q) = cos(2pn/2q), while if p
is even, then ¢ is odd and for p=p/2 we have cos(pn/q)=cos(p-2n/q). Hence there
exists an automorphism f (of an appropriate algebraic number field containing
cos(rm)) such that

_Jcos(n/q) if pis odd
ﬂ(cos(r“))”{cos(zn/q) if piseven’

M

To prove (i), suppose that equality holds in (i) for s=p,/q,, where p, and q, are
positive relatively prime integers. For the automorphism f given by (I) one can
show in a similar way that there exists p, such that

B(cos(p,m/q,))=cos(p,m/q,),  (Py.q,)=1 (11

while clearly f(3)=3. Therefore, cos(n/q)=1cos(p,n/q,) if p is odd, and cos(2n/q)
=4cos(p,m/q,) if p is even. Thus, if p is odd, cos(n/q) <3, s0 =3, and then p=1, so
1cos(sm)=cos(n/3)=3% implies s=0 which contradicts s>0. If p is even,
|cos(2n/q)| <4 implies g=3,4, 5 or 6 but since q is odd, g=3 or 5, but p is even and
p/g<%, hence p=2 and g=5. We then obtain

27 cos(p,m/q,) =cos(2n/5)= 1/34 ! (I11)
hence [Q(cos(2n/5)); Q]1=2. If p, is odd then by (¥) and (III) ¢(2¢,)=4, but the
only integers [ such that ¢(l)=4 are 5, 8, 10, 12, whence ¢, =4, 5 or 6. But in these
cases (III) cannot hold. If p, is even, then g, is odd, and so ¢(q,)=4, hence q, =5,
and again (III) cannot hold.

To prove (ii), let r be as in (i) and S be the automorphism given by (I), and

assume equality holds in (ii). Since ([/i)2 =2, B2 V%)= 42712 whence
B2~ 12 sin(n/m))= B2~ /%) B(cos((m — 2)m/2m)) =2~ /% cos(p,m/2m) )

for some positive integer p,. Suppose first that p is odd. Since m25 it is clear by
(IV) that equality in (i) implies ¢=4, so r=1/4 or 1/3 and obviously
27 Y2gin(n/m)# cos(rm) in these cases. If p is even then g is odd and since
27 Y2 cos(pym/2m) +cos(2m/q) whenever g=9, it remains to consider the values
g =>5or 7, in which cases r=2/5 or 2/7. It is easily seen that 2~ /2 sin(rt/m) % cos(rn)
in these cases. [J

Lemma 2.4. Assume {b;}!_, is 1-uc basis for E, and let e,=b,/||b,|, (i=1,2,....n). If
cos(km/m)e; +sin(kn/m)e; is in R where (k,m)=1, then cos(tn/m)e; +sin(tn/m)e;€ R
forallt=1,2,...,2m.

Proof. Without loss of generality assume i=1,j=2, and write /2 =nk/m. Let g=1
—2e,®e, and h=1-2y®y, where y=cos(kn/m)e, +sin(kn/m)e,. Since {e;}’; CR,
then

—cos(l#) —sin(l8) 0...0

—sin(l6) cos(l6) 0...0

l__
glghy = 0 0 1.0
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is in G(E) and equal to I—2z®z where z=cos(kln/m)e, +sin(kln/m)e,, so zeR.
Since (k,m)=1, ku=mv+ 1 for some integers u,v. Taking /= ut, implies cos(¢tn/m)e,
+sin(tn/m)e,eR. [

Lemma 2.5. Let {b;}] and {e;}}| be as in Lemma 2.4. If cosae;+sinae; and
cos fe; +sinfe; are in R, then cos(ka + IB)e; +sin(ko+ IB)e ;€ R for every integers k, L.

Proof. Similar to the proof of Lemma 24. [

Lemma 2.6. Let n, denote the group of all permutations of {1,2,...,n} and let G be a
transitive subgroup of m,. If nisodd, then given any i=j, 1 <i, j<n, there exists ne G
such that n(i)=j and n(j)=i.

Proof. We assume for simplicity that i=1, j=2. Suppose to the contrary that
n(1)=2 implies n(2)=1 for all neG. Let F,={ceG;a(1)=i}, i=1,...,n. We show
first that for any i, i=1,...,n, there exists an integer g; such that ¢(2)=gq;, for all
oe F;. Indeed, let O G be such that 6(i)=2, then for any ge F,, we have (8-0) (1)=2,
so by our assumption (6-0)(2)=1, therefore ¢(2)=60""'(1) for any e F, hence
d(2)=a; independent on the choice of ge F,.

We claim that a,=a; if i#). Suppose a;=a; choose se F;, ne F; and let 0eG
be such that 0())=2. Then (f-0)(1)=0()=2, so 6H(a)=(0-0)(2)=1. Now,

(2) a;=a;= 1(1) therefore m '07'(1)=2 hence n '07!(2)=1, that is
0~ 12)=n(1)=j

We shall now see that a, =i. Let ceF; and 6eG be such that 6(i)=2. Then
(000)(1) 2,50 (0-0)(2)=1, that is~Y1)= 0'(2) a;, therefore 6~ '(2)=a, , but also

671(2)=i.

The map ¢en, defined by @(k)=a,(k=1,2,...,n) satisfies ¢?=identity and
o(k)=k for all k, hence n must be even, contradicting the assumption. [
Lemma 2.7. Assume B={b,}!_, is a 1-uc permutation transitive basis for E, and
let e;=b,/||b;]l, (1=i<n). Assume m=+2,4,6 is the integer such that sin(m/m)
=min{|(& e,)|; ({,e,)%0, EeR}. Then m and n are even integers and there exists a
subset SC{1,2,...,n} x {1,2,...,n} such that

R = {esin(kn/m)e; + 6 cos(kn/m)e;; |e| =[6| =1, 1 =k =m, (i,j)e S} .

Proof. First recall that by Lemma 1.1 |b],=[b,|, and (b,b)=0 for all
1<i%j<n. {e;}} is then a 1-uc permutation transitive and (.,.) - orthonormal basis

for E, hence R2{e;}]. By (2) of Lemma 2.2 m is an even integer. Let {= Z ¢eeR

be such that &, —sm; and &, 20 for all i. By (1) of Lemma 2.2 &;=cos(n/m,) since
(e,e,)=0 for all i>1.
Since Y ¢2=1 and ¢, +0, & cannot contain more than four non-zero coef-

1
ficients. There are exactly four cases where ¢ has three or more non-zero entries,
namely the set of non-zero entries is {1/2, 1/2, 1/2, sin(n/m)}, {1/2,1/2,sin(n/m)},
{1/2,1/ ]/5, sin(n/m)} or {1/2,cos(n/5), sin(n/m)}, but the assumption on m and the

fact that ) ¢2=1 clearly exclude these cases.
1
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Hence it remains to consider the case ¢=sin(n/m)e, +cos(n/m)e; where

l<j<n. Let x=) x;e; be any point in R. Without loss of generality assume
1

t= 1/x +x7>0. We'll prove t=1. Let x,=tsinf, x;=tcosf. Let z,=cos(kn/m)e,
+sm(kn/m)e then z,e R and (I — 2z, ®z,)(x), e )= —tsin(6 + 2km/m). There exists
such that |0+21n/m| <n/m so replacing x by y'=(T—2z,®z)(x) we may assume
|6 <n/m. Note that yi=x; for all i,i=1,j.

If 640 then t=1, since otherwise 0<|x,|=|tsinf| <sin(n/m). It remains to

check the case 0=0. We have x= ) x.e;+te;. Let ge G(E) be a permutation on
i1 j
{e; }1 such that g(e;)=e,. Let y= g( x). There are two cases:

(@) gle))*Fe;. Here( (&), €)=2""1 sin(2r/m), which is not cos(rn) for rational r by
Lemma 2.3 (i), hence this case cannot occur.

(b) gle,)=e; Hence y;=0, define h=1—-2y®y. Then h({)eR and (h(S),e,)
=(1—2t?)sin(rn/m).

If t<1 then |[(1—2t?)sin(n/m)| <sin(n/m), so by assumption of the Lemma
1—-2t2=0, so t=2"%2. By Lemma 2.3 (ii), (y, £)=2"'/?sin(n/m) cannot be cos(rn)
for rational r. This contradiction implies t=1.

We conclude that x= tsin(kn/p)e, +cos(kn/ple; for some k,p such that
(k,p)=1. If p does not divide m, then by the right choice of integers a,b, we get
0 <|sin(akn/p + br/m)| <sin(n/m), and since by Lemma 2.5 sin(akn/p+bn/m)e,
+cos(akn/p+bn/m)e;eR, this is a contradiction. Hence p divides m and the
representation for R follows. It remains to show n is even. Assume n is odd, let
¢=sin(n/m)e, +cos(n/m)e;e R. By Lemma 2.6 there exists ge G(E) a permutation
on {e;};_, such that g(e;)=e; and g(e;) *e,. Hence (g(¢), {)=2" sin(2r/m) which is
impossible. Therefore n is even. O

Lemma 2.8. Assume {b,}!_, is a 1-uc permutation transitive basis for E, and let
e,=b;/|bll,, i=1,2,...,n. Assume min{|(,e))|; (&, e,)*0, EeR}=1/2. Then every
xeR has one of the following forms:

(1) x=+e, 1ZiZn

(2) x=2"Y%(te,te), 1Si*j<n.

3) x=2_1(iei1iei2iei3iei4)’ 15i, <i,<iz<ig=n.
(4) x=2""(+e;+ ]/ 3e), 1<i%jsn.

(5) x=2""(+e ,,ire )+27 12, 1<i #i,+iy*i Sn

Proof. Write x = Zx €, then x;=0 or |x;/=1/2 for each i, we may assume x, =0.
1

i

There are several distinct possibilities:
(a) Only one of the x;’s is not zero. Then x=e;.
(b) At least four x;’s are not zero, then x is as in (3).
(c) Exactly three of the x;’s are not zero, say for simplicity 12<x,=x, x5

Then, 1—2x2>3x1 implies 2~ 1<x <3712 similarly 1—2x2>2x +471 im-

plies x, <x, < |/3/2}/2, and I—Zx2>x3+1/2 implies x, <x, <27 Y2
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Let g=1-2x®x, y=Xx,e,—x,e,+x3e;eR. Then, (g(y),e;)=x,(1-2x3
+2x3—2x3)=x,(4x3—1). If 4x3=1, then (5 follows. If 4x%Z#1, then
271 <x,(4x3—1)£x,(3-4—1)=x,/2, implying 1 <x,, which is impossible.

(d) Exactly two of the x;’s are not zero, say x, and x,. Then x =sin(kn/m)e,
+cos(kn/me,, (k,m)=1. By Lemma 24, y=sin(n/m)e,+ cos(n/m)e,eR. So
sin(n/m)=1/2 hence m=3,4,5, or 6. If m=3,4 or 6 then Lemma 2.8 is proved. So

assume m =5, and consider = ) ¢, e;e R such that &, is the least possible positive
i=1
value which is attained by R. By Lemma 2.2, &, =sin(n/k) where k is even, since
sin(m/k) must be less than sin(n/S), hence k=6, so &, =1/2. Conrider two possi-
bilities for &:
(i) There exists £ R with [£,|=1/2 such that £=2"'(+e;, +e; +e; te;)
(i) No £eR with [£,|=1/2 has the form in (i).

In case (i), (&, y)= + 27 *sin(n/5) or 27 *(+sin(n/5) + cos(n/5)), but by arguments
similar to those in Lemma 2.3, these values cannot be cos(rn) for any rational r.
Hence (ii) holds. Then arguing for & as for x, £=+27e, 1(1/5/2)6',( or +27 ¢,
+27 ', +27 Y%, . In the first case, if k=2, (£ y)=2""sin(n/m) which is im-
possible, and if k=2 then by Lemma 2.5 sin(n/5 — n/6)e, +cos(n/5 —n/6)e, € R, and
since sin(n/5—m/6)<1/2 this is also impossible. If = +27"e, 27 e, +£27%¢,
then (&,y)=42"'sin(n/5), 2" (& sin(n/5)+ cos(n/5)) or +2~ !sin(n/5)+2" /2 cos(n/5),
and arguing as in Lemma 2.3 shows that this is never cos(nr) for any rational
number r, completing the proof. [J

Remark. Lemmas 2.7 and 2.8 determine the form of every point in R, and by
Theorem 3.1 of §3 each of the cases listed can be realized in some n-dimensional
Banach space.

Lemma 2.9. Under the assumptions of Lemma 2.8, if R contains a point having the
form in (3), then either n is even, or n is odd and divisible by 7.

4
Proof. First observe that if x=2"" " e; € R then the operator (i,i,)(i3i,) (defined
k=1
to be the operator which maps e; —e;,, e,—e; , ¢, e, e, —e¢; and e, —e, for
k+1i,,i,,i5,1,) is in G(E). This follows easily from the equality

(i1iy) (i5i ) =h (I =2x®@x)h k(I —2x ®X)
where h, =1—2e, e, .
4 n
Let M= {x: Y e 2" ‘xeR}, and denote by (¢, &,, ..., &,) the points Y, Ee,.
k=1 i=1

Obviously, if u,ve M then (u,v)=0,2 or 4, because 1/4 and 3/4 cannot be the scalar
products between points of R.

We shall split the set {1,2,...,n} into connected components by defining the
following equivalence relation: Say that i,j(1<i,j<n) not necessarily distinct
integers, are in relation Q, iQj, iff there exist Uy, Uy, ..., u,€M such that
(uy,e)=(u,e)=1and (u,u,, )>0 for all r=1,2,..,k—1.
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Claim. Every connected component (i.e. equivalence class of Q) must be of the
following form:

(@) A set consisting of an even number 2m(=4) of integers.

(b) A set consisting of exactly 7 distinct integers.

Obviously, every equivalence class contains at least 4 distinct integers, since
every ue M has 4 non-zero coordinates. To prove the claim, let / be the number of
integers in some connected component C. Clearly I+ 5. Henceforth when we talk
about a connected component we shall consider the coordinates of the points in M
which are “in” this component (we shall say a point ueM is “in” a given
component iff all the indices i for which (u,e,)=1 are in this component).

We have to consider the case [=9. By relabeling the integers, using the fact
that G(E) contains a permutation transitive subgroup, we may suppose

=(1,1,1,1,0,...) and u,=(1,1,0,0,1, 1,0, ...) are “in” C, applying (13) (24) on
uz, alsou;=(0,0,1,1,1,1,0,...)is “in” C. Smce C is connected, there exists u “in” C
with 1 entries appearing in the 1,2, ...,6 places and in the 7,8, ... places.

If two 1 entries of u appear in the 7,8, ... places, without loss of generality say
in the 7 and 8th places, then the other two 1 entries must appear in the 1 and 2, or,
3 and 4, or, 5 and 6 places. But since (13)(24), (15)(26) are in G(E), applying them
on u shows that u,=(1,1,0,0,0,0,1,1,0,...), u;=(0,0,1,1,0,0,1,1,0,...),
us=(0,0,0,0,1,1,1,1,0,...) are “in” C, that is {u;}?_, are “in” C.

If only one 1 entry of u appears in the 7,8, ... places, say in the 7th place, then
the three other 1 entries must appear in the 1 or 2, and 3 or 4, and 5 or 6 places.
Since the permutations (12) (34), (12) (56), (34) (56) are in G(E), if we apply them
on u we get that u,=(1,0,1,0,1,0,1,0,...), us=(0, 1,0, 1, 1,0, 1, 0,...),
ug=(0,1,1,0,0,1,1,0,...), u5,=(1,0,0,1,0,1,1,0, ...) are “in” C (one must keep in
mind the fact that the scalar product of any two distinct points “in” the same
component must be equal to 2 or zero). Since C is connected there is a uy with 1
entries appearing in the 1,2, ...,7 places, and in the 8,9, ... places. Checking scalar
product of ug with u;, u;(1<i<3<j<7), uy has three 1 entries in the 1,2,...,7
places, and we may suppose ug has 1 entry in the 8th place. Checking the
possibilities the three 1 entries appear in the 127 or 136 or 145 or 235 or 246 or 347
or 567 places.

The cases 127 or 347 or 567 immediately show that {u,}?_ are “in” C. The case
235: ug=(0,1,1,0,1,0,0,1,0,...), and applying on wug the permutation
(13)(57)e G(E), we get (1,1,0,0,0,0,1,1,0,...), and again {u;}?_, are “in” C. By
similar arguments the other cases also 1mply {u;}$ is “in” C.

Since 129, there exists a v “in” C with 1 entries appearing in the 1,2, .
places, and in the 9,10, ... places Checking scalar products with elements of
{u,}¢_,, v must have two 1 entriesin 1,2, ...,8 places, and two 1 entries in, say, the 9
and 10th places. Continuing, in this manner, it is now obvious that [ must be an
even number, proving the claim.

We shall prove now that if n is an odd number then 7|n. Let k be the number of
connected components of length 7. k=1, since nis odd. Let S, S2, ..., S, be the sets
of indices corresponding to such components, and S, ,,...,S,, the sets corre-
sponding to components of even length. We may assume S;={7i—6, 7i—5, ..., 7i}
(1=i<k). Let ge G(E) be a permutation on {e;} and P be the permutation mduced
by g on {1,2,...,n}.
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We claim that if P(S)nS;+0 (1 <i,j<k) then P(S;)=S;. Assume i=1. Observe
that if ue M has some of its support on S, then all its support is in S, since S, is
connected, so without loss of generality we can assume u, =(1,1, 1, 1,0 ) and
u,=(1,1,0,0,1,1,0,...) are “in” §,. Following earlier arguments also u,, u, 5, ug,
u5 are “in” S,. It is easy to check that no other ue M can be “in” S, so only these
seven points form S,.

If P(S,)#S; and P(S;)nS;#@, pick i;,i,eS; so that P(i,)eS; P(i,)¢S;
Considering the seven points of M “in” §,, there is ueM “in” S, w1th (u, e, )
=(u,e;,)=1, but then g(u)e M has only a part of its support in S, which is
impossible because S; is connected. This proves the claim.

m

Let S= U S, It now follows that if P(S;)nP'(S)NS=+0 (1 <i,j<k) for some

t=k+1

permutations P, P’ corresponding to elements in G(E), then P(S;)=P'(S;)<S. Since
[S;/=7 (1=i<k) and G(E) contains a permutation transitive subgroup, it is now
obvious that |S| is divisible by 7, hence 7|n. [0

Definition. Let B={b,},,, be a normalized 1-uc basis for a finite or infinite-
dimensional Banach space E. We shall say B is a (4) basis if in addition the
following conditions hold:

(I) There exists a sequence 0=n,<n, <n, <... [with n,=dim(E) if it is finite]
such that n;—n,_, =23 for each i If we denote by B,={b;}, ., and
E;=span(B,), then G(E, is a finite group, contains a permutatlon transitive
subgroup G; (with respect to B;), and every ge G, extends to an isometry je G(E) by
defining:

_ . [g(b);beB,
w)—{ bi¢B,

J’J

(IT) For each i=1, one of the following two conditions holds:

(@) n;—n,_, is odd and indivisible by 7.

(b) For each pe{2,4} and every p distinct integers {k;}/_,, n,_ <k;=<n;, there
exists ge G, such that {g(b, Ni=10{b, -1 has cardlnallty equal to one or three.

Remarks. (1) A 1-symmetric basis for a space not isometric to a Hilbert space is
obviously a (4) basis if the dimension of the space is not 1, 2 or 4.
2) If Bi-—-{b:f’}u;1 is a (4) basis for F(i=1,2,...), then under the proper
ordering | ) B; would be a (4) basis for ( Y (—BF) (1£p< ). The same
i=1 iz1
statement would be usually false if “(4) basis” is replaced by “1-symmetric basis”;
for example (@), is “highly” non-symmetric by [2], but it has a (4) basis.
(3) If B is a (4) basis for a finite-dimensional space E, then G(E) is finite. This
follows from Theorem 1.5, since we can select I,={v}}_, ., (i=1,2,...,k), so
[I]=3, and if G(E) were infinite, by reducing the size of « in Theorem 1.5
sufficiently many times, we would eventually obtain that G(E, ) is also infinite for
some i,

Lemma 2.10. Assume E has a () basis B={b;};_,. Then, ife,=|b;|; b, (1<j=<n),
every xe R has the form (1) or (2) of Lemma 2.8.
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Proof. By (2) of Lemma 2.2, min{|(¢, ¢;)|; (€ R, (, e;)+ 0} =sin(n/m)), where m; is an
even integer (j=1,2,...,n). Suppose m;>6, then exactly as in the first part of
Lemma 2.7, the minimum is attained for feR of the form E=sin(n/m))e;
+cos(n/m;)e,, where 1=j, [<n.

Claim. There exists i, | Si<k, such that {e;, ¢} Cﬁ‘i, where §i= {ej;n_y<jsn;}.

Otherwise, for example, 1 <j=<n,<I, then since m; is even, by Lemma 2.4 also
n=cos(n/mje;+sin(rn/m; )e,eR Since G, is permutatlon transitive on Bl, there
exists ge Gl such that g(e;)#e;, then (g§(),n)= s1n(2n/m) which is an im-
possible scalar product by Lemmas 2.1 and 2.3(i)

Having proved the claim, if case (a) applies for n;,—n;_, then by Lemma 2.6,
there exists ge G, such that g(e;)=e, and g(e,) #e¢;; if case (b) applies, there exists
geG; such that {g(e)), g(e,)}n{e e,;} contains only one element, so in all cases
(&), &) or (g(&),n) is 2 s1n(2n/m) which is impossible.

We therefore proved that m; 56 We can now repeat the proof of Lemma 2.8
step by step to show that every xeR must have one of the forms listed in Lemma
2.8. We claim that only forms (1) or (2) are possible.

Indeed, if x=2" e + ]/_/2e,eR then exactly as above there exists i, 1 i<k,
such that {e, e,}CB and in each of cases (a), (b) there exists geG; so that
{g(e;), gle)}n{e; ¢} contains only one element, so (§(x),x) is 1/4 or 3/4 or [ﬁ/4,
but none of these values is cos(rn) for any rational r, so (4) of Lemma 2.8 is
impossible.

If x=2" (e, +e,+e,+e,)eR we have to consider several possibilities. If
{e;, J 1_B for some i, 1<z<k then case (a) is not possible here because of
Lemma 2.9, but case (b) is also impossible, because otherwise there would exist
ge G, such that {g(e )}"' 1N{e; } _, consists of one or three elements, hence
g(x),x)=1/4 or 3/4, and both values are impossible.

Therefore, there exists i, 1 <i<k, such that B, in{e; }j-, contains one or two
elements only. If the intersection contains only one element say e;, since B; is
permutation transitive, there exists ge G, so that g(e; )#e¢; hence (g(x) x)= 3/4
which is impossible. If the intersection contains two elements say e; and e;,, then
as above we can find in each of cases (a), (b) a ge G; so that {g(e; ), ( Jnie e,
consists of one element, therefore again (g(x),x)=3/4, imposs1ble Hence 3) s
excluded.

If x=27"(e;, +e;,)+27 "?¢,,€R, then repeating previous arguments it follows
that there can be no i1 <l<k so that {e;, 1ﬁB contains one or two elements.
Hence, {e;, i 1_B for some i, 1 Si<k. For s1mp1101ty, assume i;=j (j=1,2,3) and
i=1. We shall show this means 4|n,. Since G, is permutatlon transitive on B,
there exists ge G, such that g(e;)=e,, it is then easy to check that y=g(x) must
have the form y=2‘“ 2e,+27'(e;+e;,) where i, >4, because any other arrange-
ment on the coordinates of y would give an impossible scalar product (x, y). For
simplicity, assume i, =4, and select he G, such that h(e;)=e, and let z=h(x), then
z=2"12¢, 427 (e, +e,), because otherwise (x, z) or (x, y) is an impossible scalar
product. Now choose fe G, such that f(e;)=e,, then f(x)=2"!(e, +e,)+2~ /%e,
(=u), because otherwise (x, u), (y,u), or (z, u) is impossible. Consider now the points
{x,y,z,u} of R. Any w=2""(¢, +e¢,,)+2" "?¢,, in R must belong to {x,y,zu} or
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must satisfy k; =5 (j=1,2, 3), because otherwise it is easy to see that w will give an
impossible scalar product with one of x, y, z,u. Since B, is permutation transitive,
this implies that 4|n,, hence case (b) applies for B, .

By (b), choose g, € G, such that {e,,e,}n{g,(e,),g,(e,)} consists of one element
only. Then g¢g,(x) does not belong to the set {x,y,zu}, and this is a
contradiction. We have shown that only cases (1) or (2) of Lemma 2.8 are
possible. []

As usual | - ||, denotes the norm defined by the ellipsoid & of least colume
containing the unit ball of E, and (.,.) is the scalar product defined by &. If xe E,
x®x will denote the operator defined by (x®x) (y)=(x, y)x; if however x'e E" and
xe E, x’®x will denote the operator defined by (x'®x) (y) =<y, x> x, where {.,.) is
the scalar product on E X E'.

If E is any Banach space and ec E, ¢'e E', we shall say €’ x e is a reflection pair,
and write ¢ x eeR(E) iff |le| =|€'|| =<e,e'>=1 and I—2¢'®@ee G(E). Let R,(E)
={e; ¢ x eeR(E) for some '€ E'}.

Lemma 2.11. If dim(E)<oo and ecE, e¢'c€E are such that {e,e>=1 and
g=I1-2¢'QeecG(E), then g=1-2|e|; *e®e.

Proof. Let H={xeE;{x,e»=0}, then g(x)=x for all xe H and g(e)=—e. To
prove the Lemma it is sufficient to observe that dim(E/H)=1 and to prove eis (.,.)-

orthogonal to H. Suppose e =z + y where ze H and y is (., .)-orthogonal to H. Since
g is an isometry, g is an orthogonal transformation, so

(Z’ Z)‘_‘(e7 Z) :(g(e)9 g(Z)) =(— e, Z) = _(Zv Z) )
hence z=0. [

We can now prove the main result of § 2.

Theorem2.12. Let E be a real finite or infinite-dimensional Banach space which has
two (4) bases B=1{b;},,, and B, ={d;},,,. Then, there exist &;= +1 such that
B, = {gibi}i; 1+
Proof. Let {n;}2, and {m,;};2, be the sequences of integers which appear in the
definitions of the (4) property of B and B, respectively. We shall break the proof
into two parts: (i) dim(E)=n is finite, (ii) dim(E)= oo.

In (i), by Remark (3) following the definition of a (4) basis, G(E) is a finite
group.

By Lemma 2.11, if ¢ x eeR(E), I —2¢'@e=1—2|e|; *e®e, meaning {x,e’>
=|le||; *(x,e) for all x= ) xb,eE. By Lemma 2.10, since |e| =1, either (a)

j=1
b;

;1

e=¢gb;, or (b) €=bik(8i—l£~— +ek-b—"—), where |e|=le,|=1, and b, = ”
' ”bin kuHz '
b,
(AP
In case (a), <x,e>=lle|;(x,e)=¢x,={x,eb}>, so € =¢b, In case (b),

(x,e'y=llell; *(x, e) =(x,e)/2b? = (x| bill , + xiexll byl ))/2b; ,»  which  implies
e = (g bill b+ byl zb;c)/zbi,lv

-1
. Let {b;} be the coefficient functionals of B.
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Let {d;} be the coefficient functionals of the second basis B, ={d;}}_,, then

d;x d;eR(E), therefore d; must have form (a) or (b). We shall see that form (b) is
b,

impossible. Assume to the contrary that d;=b, (—‘ + b—") where we take

1B, bl
¢;=¢,=1 for simplicity of notation.
Observe that if ¢ x ecR(E) and geG(E), then |g(e)ll =g~ ) ()] = {gle),
(97')e> and g(I—2¢'®e)g 'eG(E), so ¢g(R,(E)=R,(E). Since changes of

. . . ; b,
signs on {b } are isometries, also z=bi’k(”b '” b, ) IR,(E). There are then
ill2 2

two possibilities for the same reasons given above:

z=¢gd,, (1)

d d
z=d ml|€ —t +Bm_ z )a (2)
b (’ ldill ™
where
-1

i
N

In case (2), (2b; )™ " (1b;]l b= 1Byl 16i) = (2d, )" (el il o) + 2,1, 2d,)- Since

s el =l =1.

b, b,
< T+ == bl b — ”bk‘|2b;c>=0’ (dj, e lld,]ldi + &yl 140> =0,
I1Bill 2 bl

hence I, m, j are distinct integers. But then
b, ( d, d )
2b; ——=d, |&——— +¢,———| +d,,
b, dnll2)

which is impossible because b;e R, (E) so must have the form (a) or (b) with respect

to {d,}. It follows from the (4) property of the basis B that there exists p=+1, k such
b b b, b

that b (-"-— + ) or b, (—' + 2 ) is in IR,(E). Assume

“P\Ibell, T lB,lL RN [ P 2 P !

=b, p<b—" + b, )eIR (E). There are two cases to consider:
PAIIbell, “b “2

w=ed,, 3)

d, d
4 ), 4
W= dn ( ", o, uz) @

If (3) holds, ¢,d,, =(l|b, |l ,b; + [|b, Il ,b},)/2b

b, b,
: b b’ b_|l,b 0
<nb.~||2+||bkuz I1BuizBict b >='=

for both + signs, so {d;d,,> and <d,, d,,> are both non-zero, which is impossible.
If (4) holds, since <“be +— b, ” , 1Bl by + 1B |i2b'> #+0 for both 4 signs, it
2 2

follows that {d,e,|d,l,d,, +¢,ld,l,d,>+0 for t=j and t=I, and since j+I, it

or

kp’
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follows that {m,q}={jl}, so w=d,; (!”:” +9, “j”
2

) where |0,|=[d)|=1,
therefore

b. b b. b
ditw=2"1285 ¢ ) 5( ' : )}
i {’(ubiuz ) NI, T Tl

=+42'2|bll; 'b; or  £2'2[bill; by

which are both impossible. We have shown B, £ { + b;}!_ |, completing the proof of
case (i).

(ii) Let ¢ ®ecIR(E), we shall first determine the form of e. There are two cases
to consider:

(a) <e,b}> =0 for only a finite number of indices i.
(b) <e,b}>=+0 for an infinite number of indices i.

In case (a), let (e, b, > be the last non-zero coordinate of e. Choose n, = n, then
eeE, =[b,b,,...,b, 1,50 g=1-2e'QecG(E, ), thatis g is an isometry on E, . By
Lemma 2.11, g=1—2x®x where x =¢/| e]|, and | - I, is the appropriate Euclldean
norm on E, . Hence x is a reflection point of E, and by Lemma 2.10 must have the
form (1) or (2) of Lemma 2.8.

In case (b), choose N=n,_, so that if e= )y, then {y;}} contains at least
i=1
five non-zero elements. Let b= Y yb,, then b+0 and z=1—2¢'®e is an isometry
i>N
of the N+1 dimensional space F=[b,,b,,...,by,b]. In particular ec F, and the
basis {b,,...,by, b} for F is 1-uc and therefore (.,.) orthogonal with respect to the
scalar product on F.

We claim that G(F) is finite. Indeed all the assumptions of Theorem 1.5 are
satisfied for this basis if we choose I;={n;_;+1, n;_, +2,..,n;} (1<j<k) and
I,={N+1}. Hence if G(F) were infinite, there must be an iy, 1 <i; <k, such that
G(E, ) is infinite ; this follows from applying Theorem 1.5 several times, each time
reducing the size of the set o, until o= {i,}.

Let e;=b;/[[b;|, (1<j<N), ey, ,=b/||b|l,, and let R be the set of reflection
N+1

points of F. By Lemma 2.11, x=e¢/|le|| € R and from assumption (b) x= ) Xie;
j=1
has a coordinate x; with 0 <|x;|<1/2, we may assume i=1.
N+1

Let &= Z ¢;ejeR satisfy ;20 and &, =min{|(n,e,)|; neR, (n,e,)+0}. Then

0<¢, =(x,| < 1/2 so &, =sin(n/m), &;=cos(n/p) for 1<jSN+1. Since
cos(n/p))=0 or =1/2, it follows that ¢{=sin(n/m)e, +cos(n/m)e, for some I,
l<I£N+1, and where m>6.

If =N +1, then &P =sin(pn/m)e,+ cos(pn/m)ey ., € R for every integer p, and
by Lemma 2.2 m is even, so taking p=m/2—1, {=cos(n/m)e, +sin(n/m)ey. ;€R,
and applying on ¢ an isometry g which is a permutation on the basis elements and
which satisfies g(e,)=e,, gley. ) =€y 1, We get (g(&), E)=2""sin(2n/m), which is
never cos(rn) for any rational r.
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Hence 1 <I< N, then £e[e,,e,, ...,ey], and since m > 6, similarly as in the proof
of Lemma 2.10 we easily get a contradiction. Therefore case (b) cannot occur.
Hence,
b.

b,
e=¢gb, or b, e,.—'+s.—’), gl=le|=1,
J( llbin ’Hb,-llz e |J|

in which cases as in part (i) of the proof e'=¢b; or (g b;ll,b;+e¢;[b)ll, b’. )/2b;
respectively. The proof is concluded as in (i) by showing that B, {81 e O

Theorem 2.13. Suppose E has a (4) basis B={b,}, ,. Then every onto isometry of E
acts as a permutation and changes of signs on B.

Proof. If g is an isometry of E, them {g(b,)}, , is also a (4) basis for E, so there exist
¢;= £ 1 such that {g(b)};> , ={eb;}i5, -

Remarks. (1) Examples of finite-dimensional spaces having (4) bases are very easy
to construct with the aid of Theorem 3.1 which claims that if G is a finite group of
operators on R" which contains — I, then there exists a Banach space E such that
G(E)=G. Let therefore E, (n=1,2,...) be finite-dimensional spaces having (4)
bases,and let E=( )’ ®E, ) (1=p<o0), then E has a natural unique (4) basis in

nx1
the sense of Theorem 2.12. Thus, it is easy to construct spaces having a (4) basis of
a particular kind, and not having a 1-symmetric basis for example.

(2) The uniqueness of a (4) basis cannot be guaranteed if one G(E,) were
infinite, for example when E; is a Hilbert space for some i.

Each of conditions (a), (b) in defining the (4) property cannot be generally
weakened if one aims at retaining the uniqueness property. For example, if 4|n one
can construct a Banach space E=(R", || - ||) by using Theorem 3.1 with two 1-uc
permutation transitive normalized bases {b;}_, and {x;}!_, where each x; has
the form +27'(b; +b,)+27"2b,. For simplicity, if n=4, let x,=2""2b,

by —by)x,=2" 1/Zb ~2"Yby+by),x3=2"12by+27 by +b,), x,=2""2b,
—27Y(b, —b,), where {bi}‘,‘ is the standard basis of I3, so {x;}$ is also orthonormal.

Let G be the group of operators on R* generated by —1I and the operators
I-2b,®b;, I —2x;®x,; and the permutations g,, g, defined by g, :b, —b,, b,—b,,
by—b,,b,—by,and g, :b, —b,, b;—b,,b,—b,, b, —b,. Itiseasy to check that G is
a finite group, transitive on {b,} and also on {x;}. By Theorem 3.1 G can be realized
as G(E,) for some E,=(R* | -|). Both bases {b;} and {x;} are then 1-uc
normalized and permutation transitive. This can be done for any n =4k, by taking
E,=(E,®E,®... ®E,), . Similarly, examples with two “different” 1-uc normal-
ized permutation transitive bases can be constructed in the cases when n is odd
and divisible by 7, or n is even, and in other situations as well where the conditions
are weakened. We omit the details which are straightforward but lengthy.

3. Realization of Groups of Linear operators as Isometries

We saw in § 1 that if E=(R", | - ||) is a normed space then there exists an invertible
operator Tan R" such that TG(E)T ™! is a subgroup of O,. The following Theorem
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implies that any finite group of linear operators on R" which contains —1I can be
realized as the group of isometries of some Banach space.

Theorem 3.1. Let G CO, be a finite subgroup which contains —I, and let ¢>0. Then
there exists a Banach space E such that d(E,l})<14¢ and G(E)=G.

Proof. Select x,€S, such that x, +g(e,) for all geG and all i=1,2,...,n, and
x, #¢g(x,) for all geG~{I}. Let 46 be the least positive distance between the
distinct points in the set {g(e;),g(x,); ge G, 1 Si<n}.

Select now the points x,, x5, ..., Xx,€S, to satisfy the following requirements:

(1) span{x;}i_; =R".
(2) lIx;—x;ll, <0, forall 1=ij=n
(3) If TeO, satisfies {T(x,)}!_, ={x;}!_,, then T=1I.

Condition (3) is satisfied if the points x; are chosen so that (x; x;)=(x,, x;)
implies {i,j}=1{k,l}, or, i=j and k=I.

Let B=co{g(x,), g(e;); g€ G, | =i<n}, and let E, be the normed space with B as
its unit ball. Since X, is the ellipsoid of least volume which contains { +¢;}/_, (CB),
Y, is therefore also the ellipsoid of least volume which contains B, hence
G(E,)CO,, and clearly GSG(E,).

We claim that G(E,)=G. To see this let he G(E,). Since

h(Ext(B)) =Ext(B), {h(x;)}{-, C{g(x;).g(e); geG, 1 <i<n}.

If h(x;)=g(e;), then taking k=j [lh(x;)—h(x )l ;= [Ix;— x|, <. On the other
hand, if h(x,)=g'(e,) for some p and g'eG, then [g(e;)—g'(e,)| , =40, which is a
contradiction, and if h(x,) =g'(x,) then

lgle)—g'(x,), = llgle) —g'(x,), = llg'(x,)—g'(x,)|, =406 —6 =30,
which is again impossible. Hence

{h(x)}i_ S{y(x); 1=i<n,geG}.

i=1=

Assume h(x;)=g(x;) and h(x,)=g'(x,) where j£k and g+g¢'. Then since g=+g¢’'

0> 1x;=x,ll, =lg(x) —g'(x)ll
= Hg(xl)_g,(x1)H2_ “g(xl)"g(xi)“z_ ||.CI/(X;)—{J’(X,)H2
240—-06—0=26.

which is a contradiction. Hence, there exists ¢g,eG such that
{h(x)}1-, ={go(x;)}i- . but by (3) it follows that h=g,.

To finish the proof let C=co{Bu(l+¢) 'ZX,}, and let E=(R"| -|) be the
space with C as its unit ball. Clearly G<G(E), and G(E)CO, because 2, is the
ellipsoid of least volume which contains C. Let he G(E), and xeExt(B), then
h(x)e Ext(C), and |h(x)|,=]x|,=1, so h(x)eExt(B), that is h(B)SB so
he G(E,)= G, therefore G =G(E). Finally, it is clear that (1+¢)C>2, D> C, so d(E, )
<l+e O

Let G be any subgroup of the group of operators mapping R to R generated
by the finite permutations and sign changes on the basis {e,}~; of R®. That is, for

nin=1
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each geG, there exists a sequence ¢, = + 1, with ¢, = — 1 for finitely many n, and a
finite permutation = of the positive integers such that g(e,) =¢,e,,,n=1,2,... . Let
n, <n,<... be a sequence of integers, and let

G,,={9glgn:9eG,g(R™)=R"}.
{G, }iZ, will be called a consistent sequence of groups derived from G if —1I, €G,
for all i, where I, is the identity on R".

Theorem 3.2. Let {G, };2, be a consistent sequence of groups derived from G, and let
£>0. There exists a sequence E, =(R™,|-|, ) of normed spaces, such that for all i:
(1) G(E,)=G,
(2) B(E, .) R"'mB(EmH)
(3) 1-¢2Z, CB(E,)CZ,,.

m
Proof. Let C ={m‘”2kz ge, s 1Smsnge,=+1, 1§i1<i2<...<im§nl} and
=1

select a, = Z a, j;€8, sothata,¢C,,0<a, ;<(n,—1)""*forall 1<j<n, and

gla,)*a, for all geG, ~{I,,1}
Let 40, be the least positive distance between the distinct points contained in

the set C,uU{g(a,); geG,, }. Select now the points a,= Z a; je; (i=1,2,...,n) in

S so that

(1) 0<a; ;<(n,—1)""? for all 1<i,j<n,.

2) la;— ak|l2<5 for all 154, k=<n,.

(3) span{a,}!L, =R™.

4 If TeO,, satisﬁes {T(a)}iL, ={a;}iL,, then T=1, .

Let B, =co{C,u{g(a);geG, , 1Si=n}}, and let F, =(R™,| -|,,) be the
normed space in which B, is its unit ball. Since {+e}iL 1CB CZM,Z is the
ellipsoid of least volume which contains B, hence G(F, )CO Obv1ously,
G, SG(F,). As in Theorem 3.1, our choice of {a L msures that G ,=G(F,).

We shall now construct F, =(R™, || - [,.). Let

ny

m
sz{m‘”2 Y ae s e=11,1Sm<n, 1<i <i,<..<i <n2}
=1

eeS, ~C,, O<a

it i€ <(n,—1)7Y?* for all

ni+1j

ny
As for ay, let a, ,,=Ya
1

1 §j§n2’ and g(an1+ 1)4:an|+l for all geGn2~ {Inz}'

Let D,={g(a;); 1<i<n,,ge G and g(a,) is in R"} (we consider R"C R"< R” for
1=m<n<w). Let 40, be the least positive distance between distinct points in the
sets D, C, and {g(a,.,); 9g€G,}, and select the points
a;= Y a; €8, (n,<i<n,+ny)so that:

j=1
(5) 0<a, ;<(n,—1)""? forall n,<iZn +n,, 1=Zj=<n,.
6) lla; ak|l <0, forall n, <i, kfn +n,.

(7) an_span{anl+1’ ""an1+n2}'
(8) If TeO,, satisfies {T(a,)}jL, " ={a;}jL,'2,, then T=1I,



[sometries of Banach Spaces 179

Let B, be the convex hull of C,uD,u{g(a;);n, <i<n,+n,, geG,,}, and let
F,, be the normed space with B, its unit ball. It follows easily that
G,,£G(F,)CO,,, and as above by noting that for all heG(F,),
{h(a;)}p: 112 CExt(B, ), we obtain G,,=G(F,,).

To prove B, =B, nR™ it suffices to observe that B, CB,, and to prove that if
P is the orthogonal projection of R™ on R™, then P(x)e B, for every xe Ext(B,,).

If x=m~'?Y ge, €C,, where 1<i,<...<i,<n;<i,,;<..<i,=n,, then
1

14
P(x)=m~'2% ge, .M m=n,,since p<m, it is clear that P(x) is in the convex hull
1
of points in C,, so P(x)e B, . If m>n,, P(x) is then in the convex hull of the points
ny
n; V2% +e, of Cy, hence P(x)eB,,.

1
If x=g(a), n, <i<n,+n,, geG,,, then P(x) has n, non-zero coordinates whose
absolute values <(n,—1)""2<n; "2 [by (5)], hence P(x) is in the convex hull of

ny
the points n; 2 Y +e., sois in B, .
1 J ny

1

If x=g(a), 1<i<n,, geG and xeR™, then either xe R" or x¢R". If xe R™,
since @; ;>0 for all 1 <j<n,, and since g acts as a permutation and sign changes
on {e;}%,, it follows that g(R™)=R", s0 g|g. €G,,, hence xe Ext(B, ). If x¢R™,
then P(x)eR" and has at most (n, —1) non-zero coordinates whose absolute
values <(n, —1)” /2, hence P(x) is in the convex hull of the points

‘12 . .
(=12 ge,, g=t1,150i<...<i, _;Sn,,

therefore P(x)eco(C,)C B, . We have proved B, =B, ,nR".
We shall now demonstrate the construction of B, out of B
how to obtain B, by induction. Choose 4, ,,,€S,,,

this will show us

ny?

m
-1/2 . . .
an1+nz+1¢c3: {m ! Z 8k€ik, 8k= i1,1§m§n3,1§11<...<lm§n3},
k=1

with0<a, ., .+, ;<(ny—1)""*forall 1=j<ny,and g(a,, ,, ) Fdy, s+ forall
9€G, ~ ).

Let Dy={g(a,); 1<i<n, +n,, geG and g(a;)e R™}, and select {a;}L; "2} " | in
S,, in an analogous manner as before for the suitable 6,>0. B, will be the convex
hull of Cy;uDyU{g(a;); n, +n,<i<n +n,+ny,geG, } and will be the unit ball of
F,,. As above we obtain that G,, = G(F, ), and utilizing the orthogonal projection
of R™ onto R" it follows similarly that B, =B, nR™.

To  terminate the proof, let M, =co{B,u(l1—¢2, }.  Then,
(1-¢X, CM, CZ, ., so if E,  is the space with M, its unit ball, since
{+e}r<,cM, CZ, itfollows that G, CG(E,)CO,, . As concluded in the proof of
Theorem 3.1 we have in fact G(E,)=G,. It is trivial to check that
M,  ~R™=M, forall k. [J

If B={e,}", is a basis for a Banach space E, we say that an isometry ge G(E) is
a finitely-represented isometry with respect to B, if there exists n such that g(e;)=e;
for all i>n, and g([e;]])=[¢;]}. Denote by FG(E; B) the set of all finitely-
represented isometries with respect to B.



180 Y.Gordon and R.Loewy

Theorem 3.3. Let {G, }[2, be a consistent sequence of groups derived from G and
£>0. Then there exists a norm || -|| on R®, such that if E is the closure of the normed
space (R®,| -|), then B={e,} ., is a normalized basis for E, d(E,l,)<1+e¢,

GCFG(E; B), and for every ge FG(E; B) if n, is any integer such that g(R")= R"
and g(e,)=e, for all n>n,, then glz..cG, for all izk.

m

Proof. Construct E, as in Theorem 3.2. If x= ) x,,¢ R®, then Theorem 3.2 (2)
1
implies |x|, =|x|, whenever n;>n,=m. Let ||x|| denote this common norm. (3)

implies (Zx?)'? < x| (1 —e)” 1(Zx?)'/2, so {e;} will be a normalized basis for E,
defined to be the completion of the space (R®, ||-|) and d(E, [,)<(1 —¢) 1.

LetgeGandx= ) x ;€ R. There exists n,(2m) so that g(R™)=R"™ and g(e))

=1
=e; for all j (>n,). Tjhen 9lrn €6, =G(E,) and xeE, , so |x|, =|g(x)|,,, implying
[Ixll=1g(x)|. Hence, GS FG(E; B).
Let now ge FG(E; B) and let n, be as in the statement of the theorem. Then
glgn 1s an isometry of E, for all i=k, so g|gn€G(E,)=G,, . This establishes the
proof. [
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