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It is well known (see [8-10, 13, 14]) that parabolic partial differential equations
and systems admitting the strong comparison principle define strongly monotone
dynamical systems. If the domain and the coefficients in such an equation exhibit a
symmetry then this reflects in the dynamical system being equivariant, i.e. the flow
commutes with the action I" of some group G (see Sect. 3 for examples and e.g. [6,
18, 20] for the general background).

As shown by Hirsch [9, 10] trajectories in strongly monotone dynamical
systems have strong tendency to be nonchaotic: almost all of them are
quasiconvergent, that is, their w-limit sets (limit sets, in short) consist of equilibria.
More precisely, points which are not quasiconvergent (see Subsect. 1.2 for the
precise definition) but have compact trajectory closures form a meagre set.

Our purpose in this paper is to show that if the action I" is monotone [the
homeomorphism I'(g): X — X is monotone for each ge G] then, loosely speaking,
“symmetry is included in nonchaotic behaviour”. For instance, almost all
trajectories (in the sense as above) eventually symmetrize (their limit sets consist of
symmetric equilibria).

To be more specific, suppose that X is a strongly ordered metric space with
order relation <, @ is a strongly monotone flow on X and I': G-HomX is a
monotone representation of a compact connected metrizable group G (see Sect. 1
for definitions). Assume (for simplicity) that all trajectories are relatively compact.
Then our results assert that:

1) every equilibrium stable from above (or from below) is symmetric:
I'(g)(x)=x for all gegG,

2) if X is a separable Banach space then the set Y of points whose limit sets
consist of symmetric equilibria is residual in X,

3) if the flow is order-compact then Y is open and dense in X.

Note that we do not impose any smoothness conditions on the flow (so that,
unlike [11], the principle of linearized stability is not assumed to hold).

The following fact appears to be crucial in our reasoning, If x € X and g € G then
one cannot have I'(g) (x) < x unless I'(g) (x)=x (see Proposition 1.3). Therefore in
any neighbourhood of a nonsymmetric equilibrium x one can find another one
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I'(g) (x) which is not in the relation < to x. This prevents x from being stable. For
such an equilibrium even more is true: the group orbit Gx is not stable.

One of fundamental technical tools made use of is Hirsch’s Limit Set
Dichotomy (see Theorem 1.1). We also use other results of Hirsch and Matano to
get more precise information about the behaviour of a flow.

The paper is organized as follows. In Sect. 1 we collect definitions and basic
facts concerning strongly monotone dynamical systems and monotone group
actions. Section 2 contains main results. In Sect. 3 we give some examples of
semilinear and quasilinear parabolic equations for which our abstract theorems
from Sect. 2 apply.

1. Preliminaries
1.1. Strongly Ordered Metric Spaces

Let X be a metric space with metric d. By an ordered space we mean X endowed
with a closed partial order relation RC X x X. We write

xsy if (x,y)eR,

x<y if x=Zy and x=y,

x<y if (x,y)eintR and x=y, where int denotes the interior of a set.

For two subsets A4, BCX we write A<B (4<B, A<B respectively) if x<y
(x<y, x<y respectively) for all xe 4, yeB.

The reversed relation signs are used in the usual way.

Following [10, Sect. 1] we say that an ordered space X is strongly ordered if
every open set U C X satisfies the following:

(SO) If xe U then there exist a, be U such that a<x <b.

We define the closed order interval

[a,b]:={xeX:a<x<b},
and the open order interval
[[a,b]]:={xeX:a<kx<b}.
More generally, for two subsets 4, BC X we introduce the notation
[[4,B]]:={xeX:A<x<B}.

A set UCX is order-bounded if we have UC[[4, B]] for some compact
nonempty sets 4, BCX. UCX is order-convex if it contains [x,y] whenever
x,yeU.

The space X can be topologized by taking the collection of all open order
intervals as the neighbourhood base. This topology is called the order topology (for
a set UCX, U"will stand for U endowed with the relative order topology). The
identity map id: X —» X" is continuous (the order topology is not finer than the
original one). Clearly, if K is compact then K=K".

We say that a metric d" for X" is ordered if

d\a,b)<du,v)

provided that a<b, u<v and [a, b]C[u,v]. For technical reasons, our standing
assumption will be that there is an ordered metric d* for X* (it will be clear,
however, that many of our results hold without this hypothesis).
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When X is an open subset of a Banach space V with norm || - |, it is always
understood that V is strongly ordered by a cone with nonempty interior, d is the
metric induced by | - || and d" is the (ordered) metric induced by the order-unit
norm | - |, for some >0 (see [1] or [10]).

1.2. Strongly Monotone Dynamical Systems

A map f: X —Y between ordered spaces is called monotone if x <y implies f(x)
< f(y), and strongly monotone if x <y implies f(x)< f(y).
By a dynamical system we understand a pair (X, @) consisting of a metric space
X and a continuous map @:D(P)— X such that
i) The domain D(®) is an open set in [0, o) x X containing {0} x X.
ii) For every xe X, @(0,x)=x.
iii) For every xe X, s=0, t=0, we have

(s, P(t, x))=D(t + 5, x),

where the equality sign is to be understood in the sense that if one side is defined
then so is the other and the equality holds.
We call @ the flow. The map @, is defined as

D(x):= P(t,x).

The set J,:= {t 20: x e D(®,)} is a half-open interval [0, 7,), 0 <1, < 00, where 7, is
called the escape time of x.

We often write x - t instead of @(t, x). By the trajectory of xe X we mean the

image of the map
(-, x):J,—X.

A set KCX is said to be invariant if it contains the trajectories of all its
members, and totally invariant if all its members have infinite escape times and
@,(K)=K for all t=0.

The limit set of xe X is

w(x):= {ye X: there is a sequence t,—1, such that x-t,—y}.

Its members are called limit points of x. If the trajectory of x is relatively compact
(i.e. its closure is compact) then w(x) is nonempty, compact, connected and totally
invariant.

An equilibriumis a point pe X such that p- t =pfor all t = 0. The set of equilibria
is denoted by E. If x-t—p as t—1, then peE and t,= co. In this case x (and its
trajectory) are called convergent (we say also that the trajectory of x converges to p).
A point xe X is called quasiconvergent if its trajectory is relatively compact and
o(x)CE.

Let x, ye E. A trajectory connection from x to y is given by a continuous map
¢:IR—X such that

a) lim,_, _ c(t)=x,

b) lim,, , c(t)=y,

c) cs+t)=c(s)-t forall selR,t=0.

A dynamical system (X, @) (or its flow @) is strongly monotone if for each t >0,
&, is a strongly monotone map. From now on, it is assumed that every flow is
strongly monotone.
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We say that & is compact (resp. order-compact) if @,(B) has compact closure
whenever t>0 and BCD(®,) is bounded (resp. order-bounded). If & is compact
(resp. order-compact) then every bounded (resp. order-bounded) trajectory has
compact closure and is therefore global (i.e. its escape time is infinity).

An equilibrium x is said to be stable from above if for every ¢ >0 thereisa § >0
such that if y=x, d(y,x)<d and 0=t <1, then d(y-t, x) <e. An invariant set K is
said to be stable if for every ¢>0 there is a § >0 such that if

d(y,K):=inf{d(y,x): xe K} < ¢

and 0=t <7, then d(y-t,K)<e.

If one replaces in the above definitions the metric d by the metric d*, then one
obtains the definitions of an equilibrium order-stable from above and of an order-
stable invariant set, respectively. Stability (and order-stability) from below are
defined in an analogous way. (Note that our order-stability from above is called
upper stability in [10].)

If there exists an ordered metric for X*(as is the case for X an open subset of a
strongly ordered Banach space, see the preceding subsection), then it is straightfor-
ward that stability implies order-stability. The notions of stability and order-
stability coincide if the flow @ is order-compact (see [9, p. 47]).

Finally we state without proof a result which will be extensively used in the
sequel.

Theorem 1.1 (Limit Set Dichotomy, [10, Theorem 6.8]). Assume that x<y and
that their trajectories are relatively compact. Then either

w(x)<aw(y),
or else
o(x)=w(y)CE.

In the latter case for any sequence t,— oo and any pe E we have x - t,—p <>y - t,—D.

1.3. Equivariant Group Actions
on Strongly Monotone Dynamical Systems

From now on G is a metrizable group with unit element e.
We begin by stating a useful fact.

Lemma 1.2. Let G be compact. Then for every g€ G there exists a sequence {n,} of
positive integers, ny— oo as k— oo, such that g"—e as k— 0.

Proof. By [15, Sect. 1.22] there is a right-invariant metric ¢ on G. Suppose to the
contrary that for some >0 one has g(e,g")>¢ for all n. This implies that
o(g", g™ >¢ for all positive integers n+m. We have a discrete infinite subset
{g":neZ.} of the compact space G, a contradiction. []

We say that G acts on a topological space Y if there is a group homomorphism
I':G-HomY into the group Hom Y of homeomorphisms of Y such that the map

P:GxY-Y, (g ):=T()®),

is jointly continuous. We will call I" (or y) a group action. It is well known (see [5,
Theorem 1]) that if G is a Baire space (in particular, if G is compact) and Y is
metrizable then it suffices to verify only separate continuity in the definition above.
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For yeY the orbit of y is the set

Gy:={I'(g)(y):geG}.

(Note that we use the word “orbit” in connection with the action of the group G,
whereas “trajectory” refers to the flow.) By the continuity of y, if G is compact
and/or connected then so is Gy, for each ye Y.

The set I,:={ge G:I'(g)(y)=y} is called the isotropy subgroup of yeY.

Proposition 1.3. Let a compact group G act monotonely on an ordered space Y (i.e.
Jor every ge G the map I'(g) is monotone). Then for every ge G, y€ Y, the relation

I'(g)(y) <y implies I'(g)(y)=y.

Proof. Assume that I'(g) (y) < y for some ge G, ye Y. Since I'(g) is monotone, we
have

SSTEHOSIEYYIS.. . STER(Y)Sy.
By Lemma 1.2 and the continuity of y,

yZy(gNZNE Y2 ... 2@ y)ZyE™ L y) -y,
Because < is closed, y=y(g,y)=y, so y=T'(g)(y). O

We say that the triple (X, @, G) satisfies Axiom(GO) if (X, ®P) is a strongly
monotone dynamical system, G is a compact connected group, and the following
holds.

(GO1) G acts monotonely on X.

(GO2) I'(g)(x-t)=T(g)(x) t for all xe X, ge G and 0 <t <min(t, Try))-

The condition (GO2), referred to as equivariance, implies that 7, =1y, for
each x € X, g € G. Indeed, if this were not true, then we would have for some xe X

and some geG
‘Cx> Tr(g)(x) =. T.

Butforse[0, T), I'(g)(x)- s=TI'(g)(x - s), hence, by continuity, I'(g) (x) - s has limit as
s—T. From the definition of the flow we deduce that T <1y, ) a contradiction.

By (GO) and the continuity of I'(g), the trajectory of I'(g)(x) is relatively
compact (resp. quasiconvergent, convergent) if and only if so is the trajectory of x.

For (X, @, G) satisfying Axiom (GO), a point xe X is said to be symmetric if
I'(g)(x)=x for any geG. Otherwise it is called nonsymmetric. The set of
quasiconvergent points whose limit sets contain only symmetric equilibria is
denoted by H.

2. Main Results

In the present section our standing assumption is that (X,®,G) satisfies
Axiom (GO).

Since in this section we consider a fixed group action, we suppress I’
notationally: we write simply gx instead of I'(g)(x).

Let X denote the set of all points having compact trajectory closures, and let Q
denote the set of all quasiconvergent points.

Lemma 2.1. Let x € E. Then for any compact totally invariant set K such that K > x
one has K> Gx.
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Proof. By strong monotonicity and total invariance, K > x. Consider the set
U:={zeGx:z<K}. Uis nonempty (since x € U) and open in the relative topology
of Gx. For each zeclU CE (where cl denotes the closure) we have z< K, and, by
Proposition 1.3, z<K, and, again owing to strong monotonicity and total
invariance, z< K. Therefore U is open and closed in the connected space Gx, so
U=Gx. O

Proposition 2.2. Let x € E be nonsymmetric. Then x is isolated in M* (hence in M ),
where M:=){w(z):ze X z2x}.

Proof. Assume to the contrary that x is notisolated in M". Then thereis a sequence
yn€ M\{x} such that x is its limit in the order topology. By the Limit Set
Dichotomy (Theorem 1.1) and Lemma 2.1, for any ze€ X, z> x, one has either
o(z)={x} or w(z)>» Gx. Therefore Gx <y, for all n, and, because of the closedness
of the relation < in X" x X" (see [10]), Gx < x. Proposition 1.3 yields Gx={x}, a
contradiction. []

Proposition 2.3. Let xe E be nonsymmetric. Then there do not exist three points
Z1522,23€ X 21 <2,< 23, such that xe w(z,)Nw(z3).

Proof. Suppose that such three points exist. By the Limit Set Dichotomy w(z,)
= w(z,)=w(z,). Without loss of generality assume z, <z, <z, (if not, replace them
by z, -1, z, -1, z5 - 1, respectively).

Let t,— oo be a sequence such that z, - t,—>x.Set P:= {ge G: gz, € [[z,,23]]}. P
is a neighbourhood of e. It follows from the Limit Set Dichotomy that gz, - t, > x
for all geP (recall that gz,e X ). On the other hand, from equivariance and
continuity of the group action we deduce that gz, - t,—>gx. So PCI.. Thus I, has
nonempty interior, this implies that I, equals the connected component of e in G.
By connectedness, I, =G, so x is symmetric, a contradiction. []

Theorem 2.4. Let x€ E be nonsymmetric. Assume that x is not isolated in
{zeXciz2x}.

Then x is not stable from above. Furthermore, Gx is not stable.
If x is not isolated in (zeXeiz2x)",

then the statement holds for order-stability.

Proof. Suppose that a nonsymmetric equilibrium x is stable from above. Due to
strong monotonicity, the hypothesis enables us to construct a sequence z,€ X,
X<z, <2, z,—x. From Proposition 2.3 and the stability of x it follows that
arbitrarily close to x there is a y> x, y being a limit point for some z, € X ¢, contrary
to Proposition 2.2.

Now suppose that Gx is stable. A reasoning similar to the above one assures us
of the existence of a sequence y,>Xx, y,€w(z,) for some z,eX,, satisfying
d(y,, Gx)—0 as n—co. By Lemma 2.1, y,> Gx for all n. Since Gx is compact, by
passing to a subsequence if necessary we may assume that y,—y for some ye Gx.
This contradicts Proposition 2.2 (with x replaced with y).

The proof for order-stability is quite similar. []

Corollary 2.5. If the flow ® is compact (resp. order-compact), then no nonsym-
metric equilibrium is stable (resp. order-stable) from above.
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Proof. If x e E is stable from above then for any z > x, z near x, the trajectory of z is
bounded, hence relatively compact. Similarly for order-stability. [

Remark. Needless to say, all the above results have their analogues for the
reversed inequality sign.

Corollary 2.6. Assume that X is an open order interval in a strongly ordered Banach
space V, and that the flow @ is order-compact. Let x € E be nonsymmetric. If

S*(x):={z€E:z>x}

is nonempty, then there exists a symmetric v E such that
(i) v>Gx,
(ii) v is least in S*(y) for each yeGx,
(iii) for every ye Gx there is a trajectory connection from y to v.

Proof. First observe that the assumptions imply that for all BCX and all t>0,
&,(B) has compact closure (so, in particular, X =X ).

A theorem of Matano [13, Theorem 5] asserts that there exists a continuous
map c:(—00,0]—X such that

a) c(f)> x for each te(— o0, 0],

b) c(t)-s=c(t+s) for t<0, s=0 with t+s=0,

¢) lim,, _ c(t)=x.

From a) and b) we deduce that

c(T)<c(0) for some T<O. (2.1)

According to the convergence criterion for strongly monotone flows [10,
Theorem 6.4], (2.1) together with relative compactness of trajectories implies that
(c(0))={v} for some ve E, v>c(0)> x. We have obtained a trajectory connection
from x to v. Because ¢(T) < ¢(0) < v and these points have {v} as their common limit
set, from Proposition 2.3 it follows that v is symmetric.
Again by a) and ¢), for any z> x we have w(z) = v. Therefore v is least in S*(x).
Let for some ye Gx (say y=gx) w be a point obtained as above. We have

w=g lw>g ly=g71gx=x,

so w> x, hence w=v. Interchanging x and y we get w=<v, so w=v. This concludes
the proof of parts (ii) and (iii). Part (i) follows from Lemma 2.1. []

Recall that H denotes the set of all quasiconvergent points whose limit sets
consist of symmetric equilibria.

Theorem 2.7. Let LC X be simply ordered. Then for each re(LNQ)\H there is a
neighbourhood U, of r in L such that for every ue U,\{r} its trajectory converges to
a symmetric equilibrium. In particular, the set (LNQ)\H is discrete.

Proof. For any re(LNQ)\H take a nonsymmetric equilibrium xew(r). By
Proposition 2.3 and the Limit Set Dichotomy, for every u € L, u=r, we have either
o) <w(r), or w(u)>w(r). Proposition2.2 assures us that there exist
V1 V2, V1 €x <Yy, such that

o) é¢[[y:,y,]] forall ueL,u%r.

Since x € w(r), there is a T>0such thatr- Te[[y,, y,1]. By continuity, we can find
a neighbourhood U, of r such that u- Te[[y,,y,]] for all ue U,
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Define U,:= U,nL. If ue U, and u<r, then for some s>0 we have
u'(T+S)<,V1<u'T.

Since u has compact trajectory closure, the convergence criterion for strongly
monotone flows [10, Theorem 6.5] implies that there exists a v € E such that w(u)
={v} and v<u-t for all t>T. Then there are three points v<u-(T+s)<u-T
having {v} as their common limit set, hence by virtue of Proposition 2.3 v is
symmetric. The argument for ue U,, u>r is quite similar. []

Recall that a set is said to be meagre if it is contained in a countable union of
closed nowhere dense sets.

Theorem 2.8. Let X be an open subset of a strongly ordered separable Banach space
V. Then the set X \H is meagre.

Proof. For any simply ordered LC X, L\Q is countable by [10, Theorem 7.3].
The preceding theorem asserts that (LNnQ)\ H is discrete, hence countable. But a
subset of a strongly ordered separable Banach space is meagre provided that all its
simply ordered subsets are countable [10, Lemma 7.4]. []

Remarks. (a) Note that by [10, Lemma 7.7] one can prove that under the

assumptions of Theorem 2.8, u(X -\ H)=0 for any Gaussian measure u on V.
(b) The conclusion of Theorem 2.8 holds if, instead of separability, the ambient

Banach space V satisfies any of the hypotheses (a), (b) in [10, Theorem 7.3].

Theorem 2.9. If, in addition to the hypotheses of Theorem 2.8, X = X . and the flow
is order-compact, then H contains an open dense subset of X.

Proof. By [10, Theorem 8.12 and Proposition 9.5], the set intQ is dense in X. We
shall prove that int H is dense in X. Take any open nonempty set U C X. We have

B:=UnintQ 0.

If BC H we are through. Otherwise, let re B\ H C Q\ H. By an argument similar to
that used in the proof of Theorem 2.7 we find an open neighbourhood VCB of r
such that the trajectory of any member of the nonempty open set

D:=Vn{yeX:y>rjcU
converges to a symmetric equilibrium. Hence DCH. [

Remark. If for some strongly monotone dynamical system it is known that there
exists an open dense subset X ; C X such that for any x € X, its trajectory converges
to a stable equilibrium (as is the case for some smooth dynamical systems [11, 17]),
then Theorem 2.9 follows immediately from Theorem 2.4.

3. Examples from Parabolic Equations

In this section we give examples of second order parabolic partial differential
equations which generate strongly monotone dynamical systems satisfying Axiom
(GO).
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Let QCIR" be a bounded domain with smooth boundary 0Q. Consider the
initial-boundary value problem:

u(t,x)=Fu(t,x)) for t>0,xeQ:=QudQ, (3.1)
Bu(t,x)=0 for t>0,xe0, (3.2)
u(0,x)=uy(x) for xeQ, (3.3)

where u takes on values in RV, N>1, # :(C*(Q)¥—>(C°(Q))" is an autonomous
strongly elliptic partial differential operator of second order (semilinear or
quasilinear), and 4 is a boundary operator which is for each component u; of u
either of Dirichlet type:

uft,x)=0 for t>0,xe0Q,
or of Neumann type:
Ouyt,x)/ov=0 for ¢>0,xe0Q

(here v is the unit normal vector field on 02 pointing out of Q).

Under appropriate smoothness conditions imposed on functions included in
the operator & the problem (3.1)—(3.3) defines a flow on a closed subspace X
(corresponding to the boundary conditions) of a Sobolev-Slobodeckii space (see
[19]) Wy := W QRN (W (Q)", n<p<oo,1+n/p<o<2(see[2,3,4] or,inthe
case of semilinear equations, [7]). For semilinear equations one can also get a flow
on a subspace of (C*(Q))" (see [16]). Some results of Amann and Mora are collected
in [10]. In both cases X is continuously and densely embedded into the product of
N spaces, each of them being either C%(Q) or

Cy(Q):={ueClQ):u(x)=0 for xedQ}.

The latter two spaces are strongly ordered [10, Sect. 1], so X is strongly ordered by
the ordering:
usv if wu(x)Sv(x) forall xeQ and ie{l,...,N}

(see [10, Corollary 1.12]).

Assume that G is a compact connected subgroup of the group SO(n) of all
orthogonal orientation-preserving linear transformations of R"” whose action
leaves the domain Q invariant:

gQ=0 forall geG.
For a function v: Q—IR" let I'(g) (v) be defined by the formula:
I'g))(x):=v(gx) for geG,xeQ. 3.4

It is clear that the map v — I'(g) (v) does not influence the boundary conditions
(3.2). Furthermore, it is a linear isometry on (C*(Q))" as well as on Wy. Appealing to
a theorem due to Chernoff and Marsden [5, Theorem 1], we will show that (3.4)
defines an action of G on X if we prove that the map g — I'(g) (v) is continuous for
each fixed ve X. It is straightforward that for each v e (C*(Q))" this is continuous as
amap into (C%(Q))", hence as a map into X. Now we use the density of (C}(Q))"n X
in X (see [19]).
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Foreach g e G, I'(g) is positive, hence monotone. So the triple (X, @, G), where &
is the flow induced on X by (3.1)—(3.3) and G acts on X according to (3.4), satisfies
Axiom (GO), provided that @ is strongly monotone and equivariance (GO2) holds.
The latter is the case if # commutes with the action of G:

FT (@)W (x)=T(g)(Fux) for geG ue(C*Q)".
Now we give examples of such #s.
Example 1 (Scalar equation). Let N=1 and
Fw(x)): = alx,u, Vu)du+ f(x,u, Vu),

where a, f: QxR x R¥-R are sufficiently smooth (in general C? is needed) and
a(-)=o for some positive constant a. By [2, 3, 4] there is a solution flow for
(3-1)~(3.3) in a subspace of W, with o, p as above. For a independent of u and Vu
one can make use of the results contained in [7] or [16] as well. In this case the
resulting flow is compact, and order-compact when in addition f does not depend
on Vu.

The strong comparison principle guarantees that the flow is strongly
monotone [10]. As to equivariance it is enough for h:=(q, f) to satisfy:

h(gx,u,g"'z)=h(x,u,z) for geSO(n),xeQ ueR,zeR",
for instance h=h(r,u,u,) in the polar coordinates.
Example 2 (Strongly cooperative system). Let N>1 and
F(u(x): = a(u)du+ f(u),

where a( - )is an N x N diagonal matrix function with all entries greater than some
positive constant, f:RY—>IR¥, a and f are sufficiently smooth and f=(fi, ..., fy)
satisfies the strong cooperativity condition: f; is strictly increasing in u; for all
i,je{l,...,N}, i%j. Using the theory presented in [2,3,4] (or in [7] if a is a
constant matrix) one obtains a solution flow for (3.1)—(3.3). If a is constant the flow
is order-compact. Strong cooperativity in conjunction with the strong comparison
principle implies the strong monotonicity of the flow (cf. [12]). Equivariance is
obvious.

Remark. Observe that applying results contained in [3, 4] one can extend our
theory to the case of quasilinear parabolic equations under nonlinear boundary
conditions.

Acknowledgements. We are grateful to Morris W. Hirsch for sending a preprint of his paper [10],
and to André Vanderbauwhede for useful suggestions.

References

1. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach
spaces. SIAM Rev. 18, 620-709 (1976)

2. Amann, H.: Quasilinear evolution equations and parabolic systems. Trans. Am. Math. Soc.
293, 191-227 (1986)

3. Amann, H.: Quasilinear parabolic systems under nonlinear boundary conditions. Arch. Rat.
Mech. Anal. 92, 153-192 (1986)



Group Actions on Strongly Monotone Dynamical Systems 11

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Amann, H.: Parabolic evolution equations and nonlinear boundary conditions. J. Differ.

Equations 72, 201-269 (1988)

. Chernoff, P., Marsden, J.E.: On continuity and smoothness of group actions. Bull. Am. Math.

Soc. 76, 1044-1049 (1970)

. Golubitsky, M., Schaeffer, D.: Singularities and groups in bifurcation theory. Applied

Mathematical Sciences 51. Berlin Heidelberg New York: Springer 1986

. Henry, D.: Geometric theory of semilinear parabolic equations. Lecture Notes Mathematics,

Vol. 840. Berlin Heidelberg New York: Springer 1981

. Hirsch, M.W.: Differential equations and convergence almost everywhere in strongly

monotone flows. Contemp. Math. 37, 267-282 (1983)

. Hirsch, M.W.: The dynamical systems approach to differential equations. Bull. Am. Math.

Soc. , New Ser. 11, 1-64 (1984)

Hirsch, M.W.: Stability and convergence in strongly monotone dynamical systems. J. Reine
Angew. Math. 383, 1-53 (1988)

Lions, P.L.: Structure of the set of steady-state solutions of semilinear heat equations. J. Differ.
Equations 53, 362-386 (1984)

Martin, Jr., R.H.: A maximum principle for semilinear parabolic systems. Proc. Am. Math.
Soc. 74, 66-70 (1979)

Matano, H.: Existence of nontrivial unstable sets for equilibriums of strongly order-preserving
systems. J. Fac. Sci., Univ. Tokyo, Sect. I A 30, 645-673 (1984)

Matano, H.: Strongly order-preserving local semidynamical systems — theory and appli-
cations. In: Semigroups, theory and applications, Vol. I, Trieste 1984. (Pitman Research Notes
Mathematics Series 141, pp. 178-185) Harlow: Longman 1986

Montgomery, D., Zippin, L.: Topological transformation groups. Interscience Tracts in Pure
and Applied Mathematics 1. New York: Interscience 1955

Mora, X.: Semilinear problems define semiflows on C* spaces. Trans. Am. Math. Soc. 278,
21-55 (1983)

Polacik, P.: Convergence in smooth strongly monotone flows defined by semilinear parabolic
equations. J. Differ. Equations (to appear)

Sattinger, D.H.: Bifurcation and symmetry breaking in applied mathematics. Bull. Am. Math.
Soc., New Ser. 3, 779-819 (1980)

Triebel, H.: Interpolation theory, function spaces, differential operators. Berlin: Deutscher
Verlag der Wissenschaften 1978

Vanderbauwhede, A.: Local bifurcation and symmetry. Research Notes Mathematics,
Vol. 75. Boston: Pitman 1982

Received November 10, 1987






