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Introduction

Several years ago, Hironaka [17] raised the following two problems:

Problem A. Let X be a Kihler space. Is the Douady space of X Kéhler?

and its weaker version

Problem B. Let n: X —» X’ be a proper flat surjective morphism of complex spaces.

If X is Kébhler, is X' Kéhler?
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Actually problems A and B were raised for compact X but we will consider the
non-compact case as well.

Problem A seems inaccessible for the moment.

Problem B was solved affirmatively in [23] for smooth X, X'. The aim of the
present paper is to generalize the result to singular spaces. It appears that the
flatness hypothesis on 7 is too strong, so it will be replaced by a less restrictive
property which we call geometric flatness.

A closely related problem, raised by Lieberman [18] is

Problem C. Let X be a Kihler space and B, (X) the Barlet space of compact
complex m-cycles of X. Is B,(X) Kihler?

A solution to problem C would imply one to problem B for geometrically flat =
and reduced X".

Finally a problem which is of fundamental importance in the theory of
complex cycles is

Problem D. Let X be a complex space and &e H™(X,Q%). Is the function
F;:c+(c- &) holomorphic on B,(X)?

Our results can be summarized as follows: Problems B and C are reduced to
problem D; problem D has a solution (for fixed X,m) if every compact
m-dimensional complex-analytic subset of X has a smoothly embeddable
neighborhood (Chap. I, Proposition 3.5.4).

In order to formulate our results completely, and as long as problem D remains
unsolved in its full generality, we are led to introduce the notion of weakly Kdhler
spaces. The most useful properties of geometrically flat morphisms and weakly
Kdihler spaces are

(i) A geometrically flat morphism is proper open surjective with pure
dimensional fibers and reduced base. The converse is true if the morphism is flat or
the base is normal.

(i) If G is a finite group of automorphisms of a reduced space X then the
canonical projection X — X/G is geometrically flat.

(iii) Kéahler spaces are weakly Kdhler. Subspaces of weakly Kéhler spaces are
weakly Kahler. X is weakly Kéhler iff X, is weakly Kédhler. A weakly normal
space is weakly Kahler iff it is Kahler.

(iv) A compact space is weakly Kéhler iff its weak normalization is Kdhler.

Now we may enumerate our main results:

() f n:X->X' is geometrically flat with m-dimensional fibers, then
problem B has a solution for  if problem D has a solution for X, m. Otherwise all
we can say is that X’ is weakly Kdhler. But this is enough to ensure that X' is
Kibhler if it is normal (Chap. IV, Theorem 3-Corollary 1.2).

(ii) Problem C has a solution for X, m if problem D has a solution for X, m.
Otherwise all we can say is that B, (X) is weakly Kéhler. But this is enough to
ensure that, if X is compact, the weak normalization of B,(X) is Kédhler (Chap. IV,
Theorem 4-Corollary 2.2).

(iii) The solution of problem B for normal X’ implies that any reduced
compact complex space in Fujiki’s class ¢ (holomorphic image of a compact
Kahler space) is bimeromorphically equivalent to a compact Kéihler space
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(Chap. IV, Theorem 5). An alternative proof of this was given in [24] using the
solution of problem C for smooth X.

Our paper is organized as follows:

In Chap. I we give a rapid discussion of the sheaf €5 in the sense we choose for
a complex space X. €% is not a subsheaf of the sheaf ¢ of continuous complex-
valued functions on X; there is only a canonical morphism ¢+ [¢] from €5 to
%y. This is important for the formulation of a smoothing lemma (2.5) for
continuous strongly plurisubharmonic (p.s.h.) functions which is essentially due to
Richberg [21]. We also remind some of the main properties of the Barlet space
B,(X) which we will use. Geometric flatness is defined in 3.3.

In Chap. II we define the notions of Kihler metrics, classes, spaces, and
morphisms and prove Theorem { (valid on any complex space) according to which,
a space is Kéhler if it admits an open covering % with 0-cochain ¢ =(¢p,) of
continuous strongly p.s.h. functions and a 1-cocycle h=(h,s) of pluriharmonic
functions such thatdg=[h] in C}(%, €y). (The cocycle condition on h is redundant
only for X reduced). As a consequence we solve problem B for finite n: X —» X' such
that either = is flat and X' arbitrary (not necessarily reduced) or 7 is geometrically
flat and X’ reduced. If X is a Kéhler space and G a finite group of automorphisms
of X, X/G is Kihler. In particular, Sym*(X) is Kéhler for any k=1 (Corollary
3.2.1). Finally we define weakly Kéhler spaces in 4.1.

Chapter I1I is entirely devoted to the proof of Theorem 2: if X is a complex
space and m >0 an integer, then there are open sets U, C X and Ul,CU,nUj such
that any compact m-dimensional complex-analytic subset of X (resp. U,nUp) is
contained in some U, (resp. U.z). Moreover, if w is a Kdhler form on X, then there
are (m,m)-forms y,=%, on U,, i, on Ui, such that w™*!|U,=id0y,, Otiz=0,
(Xa— 2p)|U%s="1i5 +Tig and the -cohomology class of 7}, lies in the image of the
canonical morphism H™(Uj, Q™)— HF ™(U}).

Theorem 2 is the main original element of this paper. It relies on Barlet’s result
[6] according to which m-dimensional compact complex-analytic subsets admit
m-complete neighborhoods. For smooth X, Theorem 2 can be easily deduced from
this [23, Lemma 3.6] and [24, 2.8] using the Dolbeault isomorphism. For singular
X, this is considerably more difficult. Our method can be described as follows:
When a complex of sheaves (£, D) fails to be exact, we replace it by the single
complex associated to the double complex (8, D) where § is the Cech differential
with respect to some open covering. We call this new complex the Cech transform
of (£°, D) and apply it to the do-complex %, (defined in 3.1). The key step is the
existence of a cocycle &, , ; of degree 2m + 2 (defined in 4.3) of the Cech transform
of the complex %, . ; whose final component is w™* !. Using an elementary lemma
of algebra (Lemma 2.2) we prove that &, , bounds near every m-dimensional
compact complex-analytic subset of X, so w™* ! is d0-exact there. The last part of
Theorem 2 relies on two morphisms f and 7y (defined in 3.5) connecting the 00-
complex to the direct sum of the Dolbeault complex and its conjugate. Chapter III
is self-contained.

Finally Chap. IV proves the main results we obtain as consequences of
Theorems 1 and 2, namely Theorems 3-5 and corollaries.
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(g*

X will always denote a complex space, not necessarily reduced unless explicitly
stated. X,.4— X denotes the reduction of X. 0 = Q% is the structure sheaf of X and
Q7% the sheaf of holomorphic m-forms on X. € is the sheaf of continuous functions
on the topological space underlying to X. If & = %5 is any sheaf on X, #(U) will
denote I'(U, %). If #y is a sheaf of C-vector spaces with a natural C-antilinear
involution, #x g will denote the subsheaf of elements left fixed by the involution
and #(U,R):=I'(U, %y g). We always assume X countable at infinity.

1. € Forms and Functions on Complex Spaces

There are two inequivalent definitions of €% in the literature. The first, which we
call the “old” one [5, 10, 21] defines €5 as the subsheaf of € consisting of local
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restrictions of € functions under smooth embeddings. So ¥ = €x._, in this sense.
The second which we will call thee “modern” one [8, 12] is the one we give below.

1.1. Definitions. We define on X the sheaves €5 of real-analytic functions, PHy of
pluriharmonic functions, € = A} of €~ functions, A} (resp. A%') of € m-forms
[resp. (k, l)-forms] as follows: For smooth X, they are well defined. Now suppose
X—D is an embedding of X in a domain D of C" and £,C0, is the
corresponding coherent ideal sheaf. Set

2=+ I)Es,  IF i =(Ix+INEp
and
%:=%€p/I%x, CxX:=€p/I%, %:=Ap/IY Ap+dIF AR
A%':=the image of 4%' under the canonical morphism A%'—A4%*!.

It is clear that these sheaves are independent of the choice of the embedding X —D
so they extend to arbitrary X. There are canonical morphisms

Oy~ 62—E2—Fy .

1.2. Elementary Properties and Conventions. (i) The canonical morphisms @0y — %%
and €3— €5 are injective. (The first is elementary and the second is a consequence
of the fact that € is a faithfully flat €3-module by Malgrange [19, Chap. VI,
Corollary 1.12].) They will be considered as inclusions

Ox CE3CER

and so we may define PHy:=0x+ 0, C%%.
(i) In €2 we have Oy 0Oy = C and there is a commutative diagram with exact

TOWS
—2Im

0 R—— 0y — ™ PHyg— 0
L
0 C "(Oxe')(ﬁx——‘——) PHX ———)0,

where A(f)=(f,f) and the unspecified morphisms are the canonical inclusions.

(iii) The canonical morphism ¢: €5 —% is not injective in general even for X
reduced; for fg=0in Oy does not imply fg=01in ¢%. However, for X reduced and
locally irreducible, ¢ is injective. (It is elementary that the restriction of ¢ to €5 is
injective; we deduce that ¢ is injective by Malgrange [19, Chap. VI, Theorem
3.10])

We write [¢]:=0(¢), [€5]:=0(%¢%). So [¢%] is the €= sheaf of the “old”
theory. For normal X the two theories coincide, by the above remark.

(iv) The kernel of the canonical morphism PHy—%y is Ny + ./ where Ay is
the sheaf of nilpotent sections of 0. In particular, for reduced X, PH, may be
considered as a subsheaf of €.

(v) If f: X > Y is a morphism of complex spaces, ¢ € ¢(Y) and p e €*(Y), write
@ o fe¥(X)and f*ype€*(X) for the corresponding induced elements. Write o f
instead of [y] ¢ f, so that [ f*p]=vyof in €(X).
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(vi) The canonical morphisms Q% — A%° are injective and will be considered as
inclusions.

(vi) The inclusions A%'CcA%*' give a direct sum decomposition

»= @ A%'and Ay is a bigraded algebra with respect to the wedge product.
k+I=m
The natural involution ¢ — @ applies A%’ on to A4%*.

(viii) There is a canonical morphism d=0+09: AT— AT* ! satisfying the usual
identities d*>=0?=0>=00+00=0. However, none of the resulting complexes
(Dolbeault, De Rham, etc. ...) is an exact sequence of sheaves in general.

(ix) Any morphism f:X—Y of complex spaces gives rise to a linear
f*: A™(Y)— A™(X) which is compatible with the wedge product, bigraduation and
the operators d,d,0. We have (fg)*=g*f*.

2. Strongly Plurisubharmonic Functions

We write p.s.h. for plurisubharmonic.

2.1. Definitions. We define on X the sheaves of real convex cones P% (resp. SPY) of
continuous p.s.h. (resp. strongly p.s.h.) functions, P¥ (resp. SP¥) of ¥* p.s.h.
(resp. strongly p.s.h.) functions as the subsheaves of €y y (resp. €5 g) consisting
of elements induced by corresponding functions on open sets of €" under local
embeddings. Also define [P§]:=0(P¥), [SP¥]:=0(SPy) where g:€¥ —»%y is the
canonical morphism.

2.2. Examples. (i) On the subspace X of €C? defined by z,z,=z2=0, set
0z,,2,):=2,Z, +tz,Z, for real t. Then [p,]eSPX) is independent of t,
@, €€*(X,R)for all ¢t but ¢, P*(X) only for t=0 and @, e SP®(X) only for t>0.

(ii) On the subspace X of € defined by z,z, =0, set (for real t) ¢(z;,2,):=2,Z;
+1(z,2,+2,2,)+2,Z,. Then [¢,] € SPY(X) is independent of t, p,e €°(X,IR) but
¢@,€ P*(X) only for || <1 and ¢, SP®(X) only for |f|< 1.

(iii) On €" set @(zy,...,z,):= Y |tj* where t,...t, are the roots of
i=1
X"—z, X" '+ ... +(—1)"z, Then ¢ € SPY(T").

2.3. The Cone SP®=(U,V). This is an auxiliary notion introduced to give a
meaning to smoothing lemmas of strongly p.s.h. functions. For U, V open in X,
SP% (U, V) s defined as the set of pairs ¢ =(¢°, ¢®)e SPY(U) x SP*(UNV) such
that [¢*]=¢°y.y. We set [¢]:=¢°. The following are obvious
@) SP%=(U,V)=SP%=>U,UnV).
(i) SP**(U,P)=SPU) canonically.
(iii) SP*=(U, X)=~SP*(U) canonically.
(iv) For fixed V, U+ SP%®(U, V) is a sheaf on X.
(v) For @o=(¢%¢®)eSP>>(U,V) and he PH(U,R), the element ¢ +h
=(@°+[h], 9 +hyy.y) is in SPO2(U, V).
The following is a slight improvement of a result of Richberg [21, Satz4.1]. For
X=C", a complete proof is in [23].

2.4. Richberg’s Lemma. Let U,V,W be open in X with UCCW. Let
@eSP%®(W, V). Then there is a compact S such that UCSCW and an ele-
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ment weSPO*(W,UuV) such that olyps=ylps in SPO(W\S,V)
—SPO*(W\S, UUV).

Sketch of Proof. Take a finite number of open sets U, CC ¥, CCW, (1<k<m) such
that U= (J U, and each W, is embedded in an open subset Dy of €™ such that
k=1

[#1lw, is induced by an element of SP%(D,). Using the method of [23] one can
construct inductively elements ¢, € SP® (W, U,;u...0U,UV) such that Pulw\p,
=@ 1lw\p,. Then set S=V,u...UV, and y=g,,.

2.5. The Fornaess-Narasimhan Theorem [10, Theorem 5.3.1]. Let ¢ € 4(X,R).
Suppose that for any holomorphic f:A— X, where A is the unit disc of C, pof is
subharmonic on A. Then ¢ € P%(X).

2.6. The Cone SPY(X). Let n:X—Y be a morphism of complex spaces. Let
pe€™(X,R). We say that ¢ is strongly p.s.h. relatively to n and write ¢ € SPX(X) if
for any xe X there are open subsets UCX, VCY and ypeSP®(V) such that
xeUcCxn™ (V) and (¢ +n*y)|y € SP2(U).

3. Barlet’s Space of Analytic Cycles

3.1. Symmetric Powers of Complex Spaces. If k=1 is an integer, let
Sym*(X): = X*/%, be the quotient of X* under the action of the symmetric group
k

permuting components. Denote by Y {x;} the image of (x,,...,x,) in Sym*(X)
under the canonical projection. =t

3.2. Analytic Families of Complex Cycles. B,(X). Let X be reduced and m=0 an
integer. A compact complex-analytic m-cycle (or briefly m-cycle) of X is a formal
finite sum
c= Z niY;' ’
iel
where n, =1 are integers and Y; are compact irreducible m-dimensional complex-
analytic subsets of X. |c|:= (] Y; is called the support of c.
iel

Let ¢ be as above and ¢: V- U x B an embedding of an open set V' C X into a
connected open set U x B of C¥=C™ x C¥ ™ We say that ¥ =(o,V, U x B) is a
well-adapted chart with respect to c if o extends to an embedding ¢,: V; - U, x B,
such that VccV,cX, UccU,c@™ BCCB,CC¥ ™ and o,(|c[)n(U x 6B)=0.

If we set Z;:=06(VCY,)CU x B, then the projection U x B> U restricted to
each Z; is a branched covering n;: Z;—» U of finite degree k; and defines as
such a morphism y;: U-Sym*(B). Set k:=Y nk; w:=Ynuy;: U—Sym*(B),
deg(c,?):=k.

Now let S be a reduced complex space and (c,),.s a family of m-cycles of X
parametrized by S. We say that (c,) is an analytic family of cycles if for any s, €S
and for any well-adapted chart ¥~ with respect to c, there is a neighborhood T of
5o in S such that
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(i) ¥ is well-adapted with respect to c, for all se T.
(i) deg(c, ¥")=k is independent of se T.

(iii) The resulting map y: U x T—Sym*(B) is holomorphic.

The Barlet space B,(X) of m-cycles of X is a reduced complex space,
constructed in [3], whose points are the m-cycles of X forming a tautological
analytic family and such that for any analytic family (c,),. s of m-cycles of X, there is
a unique morphism of complex spaces H:S—B,,(X) such that

H(s)=c, forall seS.
For X not necessarily reduced, we set
Bm(X ) = Bm(X red) .

3.3. Proper Open Morphism. Geometric Flatness. Let D,(X) be the Douady space
[9] of compact subspaces of pure dimension m of X. In [3, Chap. 5], Barlet
constructed a canonical morphism

c: (Dm(X))red —)Bm(X) -

If Y is a point of D,(X) (a subspace of X) then c(Y)=Y n;Y; where Y; are the
irreducible components of Y., and n;=>1 integers called multiplicities. If Y is
generically reduced, all n; are equal to 1.

Now suppose that 7: X — X’ is a morphism of complex spaces such that, for
some fixed m=0

(i) = is proper open and surjective,
(3.3) (i) all fibers of = are of pure dimension m,
(ii)) X' is reduced.

[If X, X' are pure dimensional, then (i) implies (ii).]
We will say that 7 is geometrically flat if there is a morphism of complex spaces

H:X'-B,(X)

such that H(x') = c(n ™ !(x)) generically on X’. We call H the classifying morphism of
7. The domain of validity of the equality H(x') = c(z ~*(x')) is the dense Zariski open
set U’ of points of flatness of = (Frisch [11]).

3.3.1. Proposition. Suppose n: X — X’ satisfies (3.3). Then:
(@) If mis flat, then it is geometrically flat.
(i) If X' is normal, then & is geometrically flat.
(iii) If = is geometrically flat, then H defines an isomorphism of X' onto a
subspace of B, (X).

Proof. (i) If = is flat, then there is a morphism X'—D, (X), factoring through
(D,(X)),.q since X’ is reduced, taking the value n~(x') at x". Composing with
¢:(D,(X));ea—B.(X), we obtain the required H.

(ii) This is part of Theorem 1 of [3].

(iii) This is shown in [24, Appendix, p. 259].
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3.3.2. Examples. (i) Let X be the union of two planes defined by z,z, =2z,z,=2z,2,
=2,2,=0in C*, Y’ the union of two lines defined by x,x, =0in C?, n: X > X' =C?
and ¢: Y'— X’ defined by n(z,,2,,23,24) =(z, + 25,23 + z,) and @(x,x;)=(x4,0)

X — Y=Xx,Y

" |

X’(—Q‘Yl

Then = is geometrically flat be 3.3.1(ii) but =, is not since Y consists of one triple
line over one branch of Y’ and two single lines over the other. z is not flat.

(ii) Let X be the union of two single lines and one double line defined by z,z,
=2z3—2z2=0in €* and X’ the union of two lines z,z, =0 (as ¥’ above).

If n(zy, 25, 23) =(24, 2,), then w: X - X' is flat, X" is reduced but if r: X 4— X is
the reduction of X then nr: X,.4— X' is not geometrically flat.

3.4. Integration of Differential Forms. If o€ A™™(X) and c=Y n;Y;eB,(X), define
Fold:=fo=2m] o

If n: X - X' is geometrically flat with m-dimensional fibers and ¢ is a above,
define

np:=F,oH,.
We have the following:

3.4.1. Proposition [4, 5, 23]. With the above notations.
(i) F, (resp. m, ) is continuous on B,(X) (resp. X').
(i) If dp=0, then F, and n, @ are locally constant.
(iii) If ¢ =¢ and id0p 20 then F, and ¢ are p.s.h.
(iv) If o=@ and id0p> 0 then F, and n,¢ are strongly p.s.h.
(v) If dp=0then F, and n,¢ are weakly holomorphic; if moreover X is smooth,
they are holomorphic.

3.4.2. Remark. Case (iii) above needs the Fornaess-Narasimhan theorem if we
look at the proof of Proposition 1 of [5].

3.4.3. Definition. A J-closed te A™™X) is said to represent an element
¢e H™(X, Q%) (or to be a d-closed representative of &) if the class of t in HF"™(X) is
the image of € under the canonical morphism H™(X, Q%)— HZ-™(X). In that case we
define F(c): = F(c) for c e B,,(X) and also write (c - {) for F {c) (since it depends on &
alone).

3.5. m-Complete and m-Admissible Neighborhoods. By the Andreotti-Grauert
theorem [1], if X is a m-complete complex space, then for any coherent analytic
sheaf # on X and any q>m we have H{(X, #)=0. We will use

3.5.1. Proposition. Let Y be a compact m-dimensional complex-analytic subset of X.
Then

(i) Y admits in X a fundamental system of m-complete neighborhoods
(Barlet [6]).
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(i) Y admits in X a fundamental system of neighborhoods V such that
HYV,R)=0 for k>2m [23, Lemma 3.5].

3.5.2. Definition. An open UCX is said to be m-admissible if
(i) U is m-complete.
(ii) There is an open V such that UCVCX and HV,R)=0 for all k>2m.

3.5.3. Remark. If X is a Kdhler manifold with a Kdhler form w and UCX is
0-admissible, then one easily sees that w|, =idd¢ for some ¢ € SP*(U). This is the
most trivial particular case of our Theorem 2.

3.5.3. Proposition. .(i) If UCX is m-admissible and k>2m, then the canonical
morphism HX,R)—H*U,R) is zero.

(ii) Any compact m-dimensional complex-analytic subset of X admits a funda-
mental system of m-admissible neighborhoods.

Proof. (i) Is obvious by the definitions and (ii) is a restatement of 3.5.1.

3.5.4. Proposition. Let B,(X) be the open set of B,,(X) consisting of cycles whose
support admits in X a smoothly embeddable neighborhood. Let ¢ € H™(X, Q%). Then
F is holomorphic on B,(X)®.

Sketch of Proof. For ce B, (X)), |c| admits a smoothly embeddable neighborhood
V therefore by 3.5.1 a neighborhood U with an embedding ¢: U— U, in a smooth
m-complete U, .

If 4 is the coherent sheaf on U, defined by the exact sequence

0> AN -Qp, —0, 250,

then H"* (U, #")=0 and hence &[ is induced by some &, e H™(U,,Qy,). By
3.4.1(v), F,, is holomorphic on B,(U,) so F, is holomorphic near c.

3.5.5. Corollary. If n: X - X' is geometrically flat with m-dimensional fibers and U’
is the set of x' € X’ such that 1~ *(x) admits in X smoothly embeddable neighborhoods
then for any &e H™(X, Q%), n,Ely is holomorphic.

3.6. Note Added in Proof. After having submitted the manuscript, the author
together with D. Barlet solved problem D of the Introduction. Proposition 3.5.4
and Corollary 3.5.5 above are now true with B,(X) instead of B,(X)©. The notion
of a weakly Kéhler space loses its importance and Theorems 3 and 4 below
(Ch. IV) become

Theorem 3'. If n: X - X' is geometrically flat with X Kdhler and X' reduced, then
X' is Kdhler.

Theorem 4'. If X is Kdhler then B, (X) is Kdhler.

IL. Theorem 1 and its First Consequences

1. Kdhler Spaces and Kdhler Metrics
Let X be a complex space.
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1.1. The Sheaf #%. Define

Hx:=5/PHy, HAywr:=€Tg/PHxr,
HNX):=HUX, Hy), A'(XR):=HX, Ay r)

A section k € A 1(X) corresponds by definition to an open covering (U,) of X
together with elements ¢,e¢*(U,) such that ¢,—¢@ze PH{U,nUy). We write
k={(U, ¢,)}. We have

{(Uw (pa)} = {(V;, lp])} lff ((pa*wj)lU,ane PH(Uan V/) .

For such x, we set 80x:=we A (X) where
wIU‘,:aa}PI-

Of course, w is well-defined and dw=0. We say that x is represented by the ¢,.

1.2. Kdhler Metrics, Kdhler Classes. A Kdhler metric on X is by definition an
element k € #" (X, R) represented by a system of sections of SP§. The Kdhler form
of (X,x) is w:=iddx (i =l/?1). We will often write (X,w) instead of (X,«),
although @ does not determine x unless X is smooth.

Similarly, if 7 : X — Y is a morphism of complex spaces, a relative Kdhler metric
for m is an element k, of # (X, R) represented by sections of SPZ.

To any element x € 4 !(X) we associate three cohomology classes as follows:

From the exact sequence 0—PH,—%¥— Ay —0, we deduce a canonical
morphism

(1.2.1) ¢y AN (X)—»H'(X, PHy)
which obviously sends o#"'(X,R) into H'(X, PHx g). From the diagram

0—R— 0y ﬂ‘>PHX,]R—-—>()

| | !

(12.2) 0— C— 0,0, "3 PH, —0

d N —id

do,;
we deduce canonical morphisms H!(X,PH,)—»H*X,C) and H!(X,PH,)

—-H'(X,d0y) and, composing with ¢,, we obtain
¢ AN X)»HYX,OT),

(1.2.3)

& A (X) > HI(X,dO,).
Of course ¢, sends " '(X, R) into H*(X,IR). dOy is the subsheaf of Q% consisting of
locally exact holomorphic 1-forms. Sometimes we will replace ¢,(x) by its image in
HY(X,QY).
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So we have a diagram

Hy'(X) «— H'(X,Q) «— HX,dO)
1 o

(1.2.4) ZMx) 20 )T B H(X,PHy)
H}(X) ———H*X,©)

which is commutative (see 4.2 of Chap. ITI). This means that if k is a Kéhler metric
on X and w=iddk the corresponding Kéhler form, then w is a d-closed
represenattive of ¢,(k) in H*(X,RR) and also a d-closed representative of &,(k) in
HY(X, Q).

In [15] Grauert proved that if x is a Kédhler metric on a normal compact space
X such that ¢,(x) lies in the canonical image of H*(X,®Q) in H(X,R), then X isa
projective variety.

1.3. Kdhler Spaces, Kdhler Morphisms. X is said to be a Kdhler space if there exists
a Kihler metric on X.

A morphism n: X—Y is a Kdhler morphism if there exists a relative Kéhler
metric x, for .

We have the following elementary properties:

1.3.1. Proposition. (i) Subspaces of Kdhler spaces are Kdhler.

(i) Smooth Kdhler spaces are Kdhler manifolds in the usual sense.

(iii) X —{y} is a Kdhler morphism iff X is a Kdhler space.

(iv) Kdhler morphisms are preserved by composition and base-change [8].

(v) Projective morphisms (for example: finite morphisms and blow-ups) are
Kdhler [8, 12].

(vi) If m: X-Y is a Kdhler morphism, and Y a Kdhler space then any open
U cCX is Kdhler. More precisely: If ky is a Kdhler metric on Y and k, a relative
Kdihler metric for r, then for any U CC X there is a constant ¢, >0 such that for any
c>Cy, (k. +cn*ky),, is a Kdhler metric on U [8, 12].

On the other hand,

1.3.2. Proposition. (i) It is not always true that a reduced compact space is Kdhler if
its normalization is Kdhler.

(ii) It is not always true that a compact space X is Kdhler if X .4 is Kdhler. A
counterexample [8, 11] is given by an infinitesimal neighborhood of a K3 surface in
its space of moduli.

(iii) Itis not always true that a normal compact space is Kdhler if the complement
of a point is Kdhler [15, 20].

(iv) It is not always true that small deformations of compact Kdéhler spaces are
Kdihler [20].

(v) It is not always true that a normal compact space that is both Moiezon and
Kdbhler is projective [20].
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2. Theorem 1

2.1. Statement. Let X be a complex space. Suppose it admits an open covering
(U )y 4 and a system of continuous strongly p.s.h. functions ¢, e SP(U,) together
with pluriharmonic functions h,;€ PH(U,nU,IR) such that

(1) @a—@p=[hep] in EU,NULR),
(i) hyg—hy,+hg, =0 on U,nUpnU,.
Then there are elements y, e SP®(U,) such that
(21.2) Yo—Wp=h,y In€°(U,NUpR).

2.1.1)

In particular, X is a Kéhler space.

2.2. Remark. By Lemma 1.2(iv) of Chap. I, the cocycle condition (ii) is redundant
for X reduced. For smooth X, Theorem 1 is proven in [23] and the proof we give
there is valid for X reduced and locally irreducible. We will use the conventions
stated in 2.4 of Chap. L.

2.3. Proof. Since X is paracompact, it admits two locally finite open coverings
(V). (W,) (ke N) such that V,=0 and V,CCW,CU,, for each k. Set Tj5:=U,nU,
N(Vu...uV).

We will define inductively elements

okeSP> (U, V,u...u¥))
such that
(i) For some compact S,, V,CS,CW,,
(P{:lua\sk =5 IIU,\Sk

in SPO=(U\S,, V,U...uV)=SP>*(U\S,, V,u...0V_;)
(i) [¢§]—[ofl=[h,] in FU,NU,R),
(iii) (@5—@p)rx, =hoglrr, in E=(TjR).

We start by taking @0 := ¢, the initial data.

Suppose ¢k~ 1 is defined for all o.

Apply Richberg’s lemma to X =W,,

2.3.1)

U=V, V=Vu..UVy, o=¢5 "y, .
We obtain an element
peSP* (W, V,u...UW)
and a compact S, ¥, CS,CW, such that

k=1
V)Iwk\sk - (pak |Wk\sk .
Now we set

kot U.\S
232 k= {0 o e\
32 R T

where the last expression is defined in 2.4(v) of Chap. L
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By the induction hypothesis, (2.3.1) is valid for the rank k — 1, hence definition
(2.3.2) is consistent. But this implies (2.3.1) for the rank k as well. Indeed, (i) is
obvious. (ii) and (iii) can be easily checked on W, by the cocycle condition (2.1.1)(ii)
and outside S, by the induction hypothesis. So (2.3.1) is valid.

Now since S,CW,, (S,) is locally finite and, for fixed o, (@X).n is locally
stationary. We may set

ai= lim ;e SP*(U,)

and the conclusion of Theorem 1 is satisfied.

2.4. Corollary. The “old” and “modern” definition of a reduced Kdhler space
coincide.

Proof. By 1.2(iv) of Chap. I, if X is reduced, PH can be identified to a subsheaf of
%x. A Kihler metric in the “old” sense is a section of €y g/PHy i represented
locally by sections of [SP¥]. Since [SP¥]CSP%, Theorem 1 applies.

3. Application to Finite Morphisms

Theorem 1 implies that images of Kahler spaces under certain finite morphisms are
Kahler. This solves a problem raised by Lieberman at the end of [18].

3.1. Traces of Continuous and Holomorphic Functions

3.1.1. Definitions. If X is reduced, k=1 an integer and ¢ € ¢(X), then

e 3 otx)

’TIM:-

¢
defines a continuous function on Sym*(X). On the other hand, for arbitrary X we

have .
By(X)= kl)_II Sym*(Xq)-

Now suppose n: X — X' is a finite open surjective morphism with connected
base X’'. We examine the following two situations:

(1) X' is reduced and = is geometrically flat;

(2) X' is arbitrary and = is flat.

In the first case, there is an integer k =k, > 1 called the (geometric) degree of n
such that the classifying morphism H : X' —B(X) factors through Sym*(X ,.,). We
have for generic x'e X’ (on the points of flatness of =)

H(x,)——'" xen;(x’) {x} ’

where the sum takes account of multiplicities.
Define a continuous trace morphism

Tr{)x :n, Ex—>Cx

by ¢+ @o H.
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In the second case, there is an integer r =r, > 1 called the (algebraic) degree of
such that n, Oy is a locally free Oy.-module of rank r. Define the holomorphic trace
morphism
Tri)y 11, 0x >0y
by f+ trace of the linear map {g+ fg}.

r, is preserved by base change and, if X’ is reduced, coincides with k,. For
general X', define 7, Y, Y by the cartesian diagram

X «— YV:i=Xx,Y
x l ln
X e— Y:i=X,q4.
Then we have r,=r,=k,. We define
Tr{)x =Tty

since ¥y =%y and €y =%y.. The two trace morphisms so defined are compatible,
i.e. the diagram
e
n*(gx - n*(gx

(h) (e)
Tl‘x/x» TI‘X/xl

Oy = @
is commutative, where g:f+— [ f7] is the canonical morphism. The holomorphic
trace morphism is obviously extended to 7, PHy—PH ..
We write 7,9 for Tr{)y.¢ or Tr{)y ¢ indifferently.

3.1.2. Lemma [5,23]. If ¢ is p.s.h., strongly p.s.h., holomorphic or pluriharmonic on
X, then ¢ (resp. m,@) has the corresponding properties on Sym*(X,.4) (resp. X').

3.1.3. Remark. (i) For the “p.s.h.” part of the above lemma, the Fornaess-
Narasimhan theorem is needed.

(i) It is not true in general that n, ¢ is % if ¢ is ¥* even if X and X’ are
smooth.

3.2. Theorem. Let X be a Kdhler space and n:X—X' a finite open surjective
morphism such that either

(i) X' is reduced and = is geometrically flat or

(ii) = is flat.

Then X' is Kdhler.

Proof. It results from 3.1.2 and Theorem 1 (exactly as Proposition 2.1 of [23]).

3.2.1. Corollary. If X is a reduced Kdhler space and G a finite group of
automorphisms of X, then X/G is Kdhler. In particular Sym*(X) is Kdhler.

Proof. Ttisclear that the canonical projection X — X/G is geometrically flat. For X
smooth and G having isolated fixed points, this is shown by Fujiki [13,
Proposition 1].

3.2.2. Corollary. If n: X > X' is finite surjective with X Kdhler and X' normal then
X' is Kdhler.
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4. Weakly Kdhler Metrics

Because of the impossibility to solve (for the moment) problem 3.6 (Chap. I) we are
forced to introduce the notion of weakly Kahler spaces.

4.1. Definitions. If X,Y are reduced spaces, a function f:X-Y is weakly
holomorphic if it is continuous and generically holomorphic. Let #7 be the sheaf of
weakly holomorphic complex-valued functions on X. Define the sheaf WPHy of
weakly pluriharmonic functions by WPH y: =W+ Wx. X is weakly normal iff
W ;= 0y. The weak normalization of X is a weakly normal space X [2] together
with a holomorphic homeomorphism n: X — X such that n, 03 =%#7%. If X is not
reduced, define the weak normalization X — X as that of X, followed by the
reduction X, ,—X.

A weakly Kdhler metric on X is a section of the quotient sheaf €y x/WPHy g
represented by a system of sections of SPY. X is weakly Kdhler if X, .4 admits a
weakly Kahler metric. We have (for X, Y, Z reduced spaces):

4.1.1. Lemma. (i) If f: X— Y and g: Y—Z are weakly holomorphic,thengo f: X -»Z
is weakly holomorphic.
@) If f:X—>Y is weakly holomorphic and he WPH(Y), then ho fe WPH(X).
(iii) X is weakly normalyiff every local irreducible component of X is normal.

The Fornaess-Narasimhan theorem implies:

4.1.2. Lemma. (i) If f:X-Y is weakly holomorphic and @e€P°(Y), then
oo f e PUX).

(i) WPH,CP% (weakly pluriharmonic functions are p.s.h.).

(iii) WPH4SP$CSPS [a consequence of (ii)].

4.1.3. Lemma. Let n: X—>X be the weak normalization of X. For ¢ e %(X), set
nep:=@on'eb(X). Then
(i) If peP%X), then n,pe P°(X).
(ii) If @eSPYX), then n, e SP(X).
(iii) If peO(X), then n,pe W (X).
(iv) If e PH(X), then n e WPH(X).

4.2. Relation with Kdhler Metrics
4.2.1. Lemma. If X is weakly Kdhler and weakly normal, then X is Kdhler.
Proof. Since WPH,=PH,, Theorem 1 applies.

4.2.2. Lemma. If n: X >Y is a Kéhler morphism and Y a weakly Kdhler space, then
any open U CC X is weakly Kdhler.

Proof. By an elementary argument similar to 1.3.1(vi).

4.2.3. Proposition. Let X be a complex space and n: X — X its weakly normalization.
Then

(i) If X is Kadhler, then X is weakly Kdhler. ~

(i) If X is weakly Kdhler, then every open UCCX is Kdhler.



Kihler Spaces and Proper Open Morphisms 29

Proof. (i) Is a consequence of Lemma 4.1.3 above.
(ii) Since n is finite, it is Kdhler morphism by 1.3.1(v). We apply 4.2.2 and 4.2.1
to conclude.

4.2.4. Corollary. If X is compact, then X is Kdhler iff X is weakly Kdhler.

II1. Theorem 2

1. Cech Spaces and Cech Open Sets

1.1. Definitions. A (topological or complex-analytic) Cech space will be by
definition a pair

X=(X,2),
where X is a (topological or complex) space and Z an open covering of X. We call
X the space underlying to X and always denote both by the same letter. We will deal
only with complex-analytic Cech spaces. If  =(X),. 4, the X, will be called the

elementary open sets of X.
Suppose X =(X (X );c4)and Y=(Y, (Y,),c ) are two Cech spaces. A morphism

F:X-Y

will be a pair F=(f, u) where f: X—Y is a morphism in the ordinary sense and
u:A—M a map such that

(1.1.1) X, Cf (V)

for all A€ A. We call f the morphism underlying to F. We will say that F is an open
inclusion if f is one.

A Cech open set U < X will be a Cech space chose underlying space is an open
subset of X together with an open inclusion

j:U-X.

Or course, j is not uniquely determined by U.
U =(U,(Ug,deea,) and U, =(U,, (U, plse 4,) are two Cech open sets of X,
define

(1.1.2) UinU,:=(U;nU,, (U, ,n Uz,ﬁ)(a,ﬂ)eA, SURE

Notice that there are two open inclusions
JiJ2:UinlU;» X

each factoring through U, and U,, respectively.
If X=(X,%)is a Cech space and & a sheaf of abelian groups on X, write
CYX,F), Z4X, ), H(X,F)

for the groups of Cech contains, cocycles and cohomology classes of degree g of the
covering & with coefficients in &#. Denote by

(1.1.3) e:HYX,F)-»C’X,F)



30 J. Varouchas

the canonical inclusion and by
3:CT (X, F)->CYX, F)

the Cech differential given by the usual formula

q
(1.1.4) (00)s...2,:= ;0(— 1)’@10.‘.}.,...zq|xzon...nx,1q-

If U< X is a Cech open set with an open inclusion j: U—- X, denote by
J*:CUX, F)->C(U, 7F)
the obvious morphism. We will write
(1.1.5) Ply:=j*o)

if there is no ambiguity about j.
Now suppose there are two open inclusions

Jui2:U—=X

WIth _U=(U’(Ua)ae,{)’ X=(X’ (XA)AeA)‘
There is a homotopy operator

T:C*" (X, #)-CY(U, #)

defined by
q
(11'6) (Tgo)ao...aq:: ;0(_1)’golo‘..Arur...uqu,on...nUuqa
where .
UarCXAr by J1
and

U,CX, byj,.
T is extended by 0 on C°(X,#) and H°(X, #). The following is obvious
(1.1.7) ST+ To=j—j*.

1.2. Cup-Products of Cech Cochains. Now suppose that &, 4, # are sheaves of
differential forms (4, holomorphic or antiholomorphic) such that

FNANGCH .
We define the cup-product
CYX, F) x C'(X,9)—~CT"(X, #)
by the identity

(121) (¢ ) W)ao...aq+,:=((pao...aq A waq...aq+r)lx;,0n,..n)(gq,,,_ .
As an immediate consequence we have
(1.22) o p)=(0p) p+(—1)p-dy,

(1.2.3) T(o - y)=(To) j3w+(—1)%to) Ty.
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1.3. m-Complete and m-Admissible Cech Open Sets. We extend the notion of
m-admissible open sets (3.5.3 of Chap. I) to Cech open sets.

1.3.1. Definitions. A Cech space X is said to be m-complete if for any coherent
analytic sheaf # on X and any q>m, we have HY(X, #)=0.

A sufficient condition for this is that the underlying space X be m-complete and
the elementary open sets of X be Stein.

If U< X is a Cech open set of X, we will say that U is m-admissible in X if

(i) U is m-complete.

(ii) There is a Cech open set V such that U<V <X and HV, R)=0 for all
k>2m.

Of course, if the above are satisfied, then the canonical morphism
HYX,R)— H*U,IR) vanishes for k> 2m, since it factors through H{¥, R)=0.

This may be expressed as follows:

1.3.2. Lemma. If U <X is m-admissible, k>2m and ae Z¥(X,R), then there is an
element be C*~(U,R) such that a|y=6b.

1.3.3. Proposition. Let X be a Cech space and U CX an open set (in the ordinary
sense ) that is m-admissible. Then U is underlying to some m-admissible Cech open set
U<X.

Proof. By definition U is m-complete and there is an open V such that UCV CX
and HYV, R)=0 for all k> 2m. If we take a sufficiently fine Leray open covering of
V with respect to the constant sheaf such that V< X and then a sufficiently fine
Stein open covering of U such that U <Y, it is clear that U < X is m-admissible.

2. Cech Transform of a Complex of Sheaves
2.1. Definitions. Let X be a Cech space and

2.1.1) 0-FL 22 2 m?2

a complex of sheaves of abelian groups on the underlying space X. We do not
suppose it to be an exact sequence of sheaves.

The Cech transform of the complex (2.1.1) over X will be the single complex
associated to the double complex

HYX,F) — HY(X, ¥°) — HYX, L) — ...
! i !

C'X,7) — C%X, £°) — C°X, &) — ...
l | l

C{(X,F) — CI(X, %°) — C'(X, L) — ...
) | !

More precisely, we define for g=0

(212) CYX; F, ):=CYX, %)@ { & CHX, z"-l)} SH(X, £9).

k=1



32 J. Varouchas

An element of C{X; %, £’) has the form
o=(f;¢%....0" s 1%,

where
feCiX, %),

o teCrHX, Y for k=1,...,q,
e HY(X, £9).

We will call f the head of @, ¢* ! the k-th component of @ and #? the tail of ®.
Define the differential

4:CUX; 7, L) C X F,.2)
by
(2.1.3) A:=56+(—10"'D
where
8P :=(0f;8¢°, ...,607 1 en?; 0),
D®:=(0; jf, Dp®, ..., Dep?"1; Dn9).
Sometimes we will change the sign convention
A=6+(—=1)*'D to A=6+(—1)D.
We then define
(2.1.4) 29X, 7, %):=Ker{CYX; 7, LG 7, 7}
and the Cech hypercohomology groups
(2.1.5) H(X; F,¥):=24X; F, L)ACT X, F, L.
We will use the following.

2.2. Lemma. Let r': HY(X; #, ¥ )—>HYX, %) be the canonical morphism.

(@) If H7YX, £ Y)=0 for k=1,...,q—1 then r? is injective.

(i) If H4X, £%=0 for k=0,...,q —1 then r? is surjective.
Proof. It is an immediate consequence of the following elementary property of
double complexes: If M is the single complex associated to a double complex
K" =(K"J); ;5 o, then the canonical morphism HM')—H%K"°) is injective if
HY K" )=0 for j=1,...q—1 and surjective if HI (K" /*1)=0 for
j=0,...,q—1. This is to be applied for
0 if i=j=0
HX, %Y if j>i=0
C (X, %) if i>j=0
C Y (X, %Y if i,j>0.

Kii=

Part (i) of the above lemma is equivalent to
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2.3. Corollary. If a cocycle ®€Z4(X; F, ') has a head that is d-exact and if
HI X, #* 1)=0 fork=1,...,q—1, then ® is A-exact and, in particular, the tail of
& is D-exact.

2.4. Remark. Definition 3.4.3 of Chap. I can be restated as follows: A 0-closed form
1€ A*!(X)is said to represent an element of H'(X, Q) if there is a cocycle of degree [
ce ZY(X; Q4 4*)

of the Cech transform of the Dolbeault complex whose tail is 7, for some open
covering of X.

3. The 30-Complex %,
Let X be a complex space. For any pair (p, q) of natural integers, there is a complex
of sheaves on X of the form

» D D D D
0 —-C— L, —...— Lrra7l — grra__, |

| |
Ag}wl,q*lﬁ> AR

defined in [7].
We will deal exclusively with the case p=gq, so we write &}, for %}, ,.. The
complex .&,, defined as follows (the suffix X will be omitted).

3.1. Definitions.

TRAT DX if r<m
(3.1) L= AP @A™ i mSr<2m
AT @A™ if r=2m.

() _
Define j: T - QLPQ°=£ and
(i) For0=Zr<m—1,
D

g;l N g;l+1
d 0 0
(_1)r+l d (—.l)r
Qr@Ar—l@gr 0 0 4 Qr+1®Ar@Qr+1'
(i) Forr=m—1,
g'rnn—l D gm

m

Q" l@An 2@ Om! Gy d ym Am—1
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(iii) For m<r<2m—1,

r r+1
K7 _— L

23 0
0o 9@

Am-—l,r—m@'“®Ar—-m,m—l

@iv) For r=2m—1,

Am—l,r—m+l® @Ar—m+l,m—1

D
2m—1 2m
£, — &

Am-—l,m—l i Amm
(v) For r=2m,
D

Z, > e
I [
Ar*m,m(_D‘“@Am,r—mi) Ar—m+l.m®.._®Am,r—m+l.

Actually, the part C— £2—...— 2™ ! is the single complex associated to the
truncated double complex

1 d d

C Q° > Q1
1] -1 -]

;0 ! 0,0 4 8 m—1,0
QF —— 4° A ’
a| 3] 3]

N o] i
Qm—l (—1ym-! AO,m—l 9 > ... 0 ‘,Am—l,m—l

with the indicated sign conventions, and a similar observation may serve to define
0 ptqg—1
Co%p 0~ ... L.

3.2. Proposition (Bigolin [7]). For smooth X, (£, ,,D) is an exact sequence of
sheaves.

3.3. The Involution on ¥,,. A C-antilinear involution ¢ — ¢* is defined on %, as
follows:
(i) For (gny " L,F)in £L=0DA" '@ (r<m)
(gr’ ‘Pr_ 1’ Er)* : =(hr, _ u—Jr— 1’ g—r) .

(ii) For " lin ZrCcA™™ Y, (" H*:= —¢p" ! (m<r<2m).

(i) For " in &, CA", (@) *:=¢" (r=2m).

It is obvious that (D@)* = D(p*).

We denote by %, g the sub-complex of £, of fixed points under (- )*. We set

Re:=%(p+ ¢*). Note that a self-conjugate element of Z7, for r <2m has pure
imaginary ¥® components.
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3.4. The Morphism u: % —>%,,. A morphism u=y’, : %, — % is defined by
(@) Forr<m, L5, =@ DA '@Q =% and i, :=id. We define u=id on C
as well.
(i) For m=r<2m, ¥, is a direct summand of &}, , ; and g, is defined as the
canonical projection.
(iii) For r=2m,

uim

2m 2Zm
Lt L

Am,m-—l@Am—l.m 3(-0 9 Amm

(iv) For r=2m+1,

$2m+1 ! $ZM+1
m+1 m

#)

Am,m Am+1,m®Am,m+1.

(v) Forr>2m+1,%,,,, is a direct summand of .#}, and }, is defined as the
canonical inclusion.

3.4.1. Lemma. The above morphism pu commutes with D and the involution (- )*.

3.5. Relation with the (0@ d)-Complex. The (0@ d)-complex (¥,, d) is the direct sum
of the Dolbeault complex and its conjugate

- j d d d
00— %' — 49 —_ .. g1 — ...

(1 o) (5 o) (Za 0) (3 o)
Q’”(—DQ’" 01 Am,O@AO,m 029 09 R Amyq@A‘Iv"'_u_)_”

We define on ¥,, the involution (@, ) (@, p)*: =, @). It is related to the

00-complex by a homotopy operator f: 7} 4*1 %% and a morphism of
complexes y: #mtigi
3.5.1. The Homotopy Operator B: Lm1* —%: It is defined by

(i) For g=—1,

4 -1
L1 —_— 9,

-1 0 0
001

Q’"(—BA'"‘I(-BQ'” Q’"(—BQ’”.
(ii) For 0Zgq<m,
gt ! ~ @

meaft 0.0 0 ”
=1 00..0 1

A™ID...pAT™
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(iii) For g=m,

Amm _& Am @ AT

(iv) For g>m, p: Lmiat1 41 is defined by 0.

3.5.2. The Morphism of Complexes y: ¥m* —%, . It is defined by
(i) For g=—1,

m— 1 4 -1
L _ 9,

00 —d
_

Qm—l@Am—Z@Qm—l Qm@Q‘m
(i) For 0=Zg<m,

m+q q
P E4

oo 0...00 H
= q(o 0...0 5)

AT . @AT! A™ I AT
(iii) For g=m,
e
( 00..0 1) “
ATP"D .. DA™ A0y, A™IP AT,

In particular, for g=m, y(a@™™)= (™™, —a™™).
The following can be easily checked.

3.5.3. Lemma. (i) df+pD=ypu.
(ii) dy=yD.

J. Varouchas

(iii) If n™™ and (™™ are (m, m)-forms, then f(n™™)+y({™™) =(@™™, a™™) where

Qm,m+ o.m,m — r’m,m.
iv) B and y anticommute with the involutions (-)*
Y

m+q—1
R

AN

+ B -1
Lmi g

m

S
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3.6. The Cech Transform of the 00-Complex. For any Cech space X, we denote by
&.(X), €.(X,[R]) and &,(X,R) the Cech transforms of the complexes

0-C>L2 L ...,
0-R->LIPr— ..,
0->R->Z g Lh g e s
respectively. So we set
@) EUX):=CUX; T, £Z,),
(3.6.1) (i) &4X,[R]):=CYX;R, %),
(i) SiX,R):=C(X;R, %, p).

Of course, XX, R)C &4 X, [IR])C &4 X). Elements of £4(X) will be writtenin a
matrix form. For example an element of &>™(X) will be written as

a g° ..ogh!
EO (p0,0 (Pm—l,o
(3.6.2) o= :
Em*l gDO,m—l (Pm-l,m—l
where T
aeC*™X,Q)

gte Cam R i(Y, OY
ReC* ™ '1(x,0Y
(pk,lec2m~k—l—2(X,Ak,l)
n™mme HO(X, A™™)
a is the head and #™™ the tail of &.
Pe&2"X,[R]) iff a=aeC*™X,R)
Pe&2"X,R) iff a=a,

gk:hk’ (pk.l_'_q—)l,k:() and r’m,m=ﬁm,m.
If we apply 4:82"(X)—&2™{(X) we obtain

b uO um—l
=0 0,0 m—1,0
Ad= )
m—1 o,m—1 m—1,m—1
lpm,m im+1,m
lm,m+1
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where
(@
(i1)
(i)
(iv)
)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)
(xii)

(3.6.3)

u=0gk—dg*~! for 1<k<m
*=06—a
i'=8h —dh'*
900 = 5% 4 g0 —

P O0=0¢"0+(—1)g"—3p* 10 for 1<k<m
p*!1=0p% - 0% 1 +(—1)"'R for 1LI<m
PPl =gR —Jph T _ gkt for 1<ki<m

lpm,m=__E(nm,m)_aa'(pm— 1,m—-1

lm+ 1,m

for 1ZI<m

— a"m,m
a‘nm m

lm ,m+1
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In the next section we construct, for any Kahler space (X, @), an open covering

% such that on the resulting Cech space X and for any integer m> 0, there is a
cocycle in £2™(X, [IR]) whose tail is w™.

4. The Cech Cochains Associated to a Kdhler Metric

We first note that, if X is a Kahler space, it admits by definition an open covering
(U,) such that there are elements ¢, e SP*(U,) such that ¢, — ¢, is locally the real
part of a holomorphic function on U,nU. We show that “locally” can be omitted.

4.1. Covering Lemma. Let X be a paracompact topological space and (U ), 4 an
open covering of X such that, for every o, fe A, (Ulp) is an open covering of
U,nUp. Let J= UJ,,,

Then there exzsts a refinement

jeJap

Z=(X})rca
of (U,) together with two maps
a:Ad—A
JiAxA—=J
such that
4.1.1) O X2 Un

(i) X,nX,CUi&4,.
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Proof. Since X paracompact, (U,) admits a refinement (V,),. , indexed by the same
set A such that V,C U, and (V) is locally finite. Let 4 be the set of all multi-indices

(412) =00y sy o o J) (SEN)

such that the «, are pairwise distinct elements of 4 and j,eJ,, for 0=<r<s. Set
(4.1.3) X, =V, () UL, U V.
r=0 B+

X, is open since (V) is locally finite.
Define a(4):=a,. Then obviously X,CU,,.
Now suppose that
”=(ﬂ09 “-7ﬂt; kO’ "'5kt)

is a multi-index in 4 such that X ;X , % 0. Then §, must be equal to one (and only
one) of the «, for otherwise V;,n X, would be empty by construction of X ;. If
Bo=1,, set ]
Js )=, .
It is cl that .
is clear tha X,nX,C U

aol,y

- ir — J(A, 1)
- Uaoﬂo - Ua(l)a(u)

as required. Finally it is true that the X, (A€ 4) cover X; for if x € X is arbitrary,
take o€ 4 such that x € V. The set S of f € 4 such that x € ¥ is finite containing o
[since (V}) is locally finite]; let

S={ug,....0p with og=a.

For all -
re{0,....s}, xeV,nV,cU,nU,

hence xe Uk, for some j,eJ,,, . So we obtain a multi-index Ae A4 with xe X .

Since x€ X was arbitrary, the proof is complete.

4.1.1. Corollary. Let X be a Kdhler space with a fixed Kdhler metric k. Then X
admits an open covering & =(X ;) in which is represented by elements

©,€SP*(X )

such that
(pl—(pu=flu+j:1;u fluE(g(X}.nXu)‘

Proof. By definition, there is an open covering (U,) together with p,e SP®(U,)
such that y,—yz,e PH(U,nU,R). This means that U,nU; admits an open
covering (Ulp);e,,, such that

(Wa—vplug,= g{w + gﬁp ) giﬁ e O(Uiy).

Apply the Covering Lemma above to obtain an open covering (X ;) of X with
X,CU,; and X;nX,cUX%9 . Then if we set

01 =Waulx,
fo, =gk |
it = 8aDa(wlX 10X,

these elements satisfy the required conditions.
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4.2. Kdhler-Cech Pairs. It will be convenient to multiply the above elements ¢,
and f;, by i=|/—1 to obtain
(1) P (pu =f2u _];.u
4.2.1) (i) —ip,eSP(X,)
(iii) 35—§01=0)|x’1.
So the Kidhler metric of X is
K= {(Xp —ig;)}.

A pair (f, ) with fe C1(X, 2° and ¢ € C°(X, A% satisfying (4.2.1) will be called
a Kdhler-Cech pair and X =(X,%) will be called a Kdhler-Cech space. Since
(00);,= @, — @;, we have the identities

(1) dp=f—f
Q) of=df

(3) dof=0

A “4) dbg=—df

(5) ddp=df

(6) 90¢=¢(w)
(7) dw=0.

Identity (A2) shows that 6f € Z*(X,R). The diagram

—idgp e—-d———i(p

—ZIV w

(42.2) of & f - | 30 <
df 21— d¢

shows that —2Imjf= —id¢ represents the Kaéhler class ¢é,(x) of (X,x) in

H'(X,PHy g), 6f represents c,(k)€ H*(X,R) and df represents &,(x)e H'(X, Q}).

Moreover (4.2.2) confirms that w is a d-closed representative of ¢, (k) and a J-closed

representative of ¢,(x), i.e. that diagram (1.2.4) of Chap. Il is indeed commutative.
In terms of the d0-complex %; g given by

1
0-»111@» o 2, Dog2 P, g3
1,R 1,R 1,R 1,R

423 | o N
(D) —— (4% ) g — Ax ——-»(A1 IPA* YR
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[where (-)g denotes self-conjugate elements and (-);z anti-self-conjugate
elements] we constructed an element

of | f
(4.2.4) o,(f,0):=|f|o| eUX.R)

B

(with the notations of 3.6) and relations (A) mean precisely that 4®,(f, ¢)=0.

4.3. Generalization to Higher Powers. We now construct the announced element
?,(f,9)eZ*"(X; R, Z,)
whose head is (6f)™ and tail ™, and whose existence is the key step in the proof of
Theorem 2. Actually, if we set
@) A"X):=2"X;C.%,), H(X):= @ A"X)

m20

@3.1)) AX,[R]):=2""(X;R, %,), F(X,[R]:= @ A™(X,[R])

m=0

(i) A"X,R):=2""(X;R, %, r), AXR):=@ AX,R)
m20
then there is an associative product law on A (X) with respect to which it is a
graded C-algebra admitting #'(X, [R]) as aRR-subalgebra, but not (X, R). Then
D,.(f, @) is simply the m-th power of @,(f, ¢) in A (X,IR).
@,(f, @) is defined by

a, | g gt
By | on® U
@4.3.2) Pufs0):=|: : : e A™X,[R]),
E:—l (pg,m—l q03—1,»1—1
M ™

where a,,e C*"(X,R), gk e C*"*~ (X, Qb,
I C* X, Q) prleCPMTETITHX AMY,  gmme HAX, A™™)

are given by the relations (B) below. Recall that 6f=6f by (A2). We use the cup-
product of Cech cochains as defined in 1.2.

1) an,=06"

2 gn=(=14@N* -1

(B k="' f-@f)

@ Ph'=(= DN SO @) for kel<m—1

(5) ghi=(=1)" A S @2 g Akt
for k<m—1=Zk+I

(B)
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6 on M=(=)"dNH" T pad
M ngm=or.
Domains of validity of formulae (B)

— kK
1 2

1

Fig. 1

Before proving that 4®,(f, ¢)=0 we mention

4.4. Relation Between ®,(f, ¢), D.(f, @), and ®,,,,(f, ®). A formal consequence of
identities (A) and (B) is the following:

(1) am+n=am‘an
() gmin=8m-a, for 0=k<m

3) =(—1)"dgr~'-gk=™ for mZk<m+n
4 hii.,=a,-hl for 0Zi<n
5) =ht"-di*~' for n=<l<m+n
© 6) Onin=(—1'gh-h, for 0<k<m, O0=i<n
(7 =(—1)rdgr~1-@t~™! for m<k<m+n, O0Zl<n
) =(=1)yp&t"-dh*~* for n<l<m+n—k—1
©) =(— 1) 1§@ntnTi=Lion. Fokti-m=n+1,n-1
for Izn, m+n—1Zk+i<m+2n—1
(10) =gk mimr aAgmn for k+IzZm+2n—1

A1) ppiymr=nmm A"

Domains of validity of formulae (C)

e — k
NN >
L

4 6 7

Fig. 2
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Actually, the identities (C) define the announced product law
HA™X)x AX)» A X).

It is true (the proof be omitted) that the law in question is associative (it will be
denoted by the symbol x) and, if ® and ¥ are A-closed, @ x ¥ is also 4-closed.
However it is not compatible with the involution defined in 3.3 and this is the
reason for which we work in #™(X,[IR]) instead of & ™(X,IR).

Identities (C) will be used to prove

4.5. The Relation A®,(f, p)=0. In order to prove that the element ,(f, ¢)
defined in (4.3.3) is 4-closed, we must prove according to (3.6.3) the relations
(1) éa,=0
(2) dgm=ay
(3) ogk=dgk ! for 1<k<m
4 ohy=a,
(5) ohl=dhl™t for 1<Zi<m
(D) 6) OS¢ °=—gn+hy,
(7) 0¢k°=(—1)"1gk+agk ! for 1<k<m
8) doY'=00% ' +(—1'hL for 1=I<m
9) d¢kt=0p%'"" 140k 1! for 1<Zki<m
(10) almym)=2dpp= "t
(11) dyp™=0.
Proof of (D1). It is obvious.
Proof of (D2). dgn=0(f-(0f)"")=(0f)"=ap.
Proof of (D3).
Ogh=0((—VX@f ) f-@f )" *~H=(dfy- ("""
=d(= D)@t S Of ) ) =dgn
Proof of (D4).
Shy=3((0f)" "1 - [)=@f)" by (A2)
=a,,.
Proof of (D5).
Shy=0(@f)" " - - @)= )" " (df) by (A2)
=d(©@fy""-f- @)~ )=dh, .
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Proof of (D6)
S =0(f - (0f)" 2 H=©f " 1 - J—f-(6f)" ' =hy—g.
Proof of (D7). Case 1. k<m—1
5fpm° 5(( 1dgi™! - o) by (C7)
g ! 5<p y=dgi ' (—gm_k+ha_) by (D6)

=—dg “Em- k+6(g" Yeha)

=(=1)"1gk +0¢pk 1% by (C3) and (C6).
Case 2. k=m—1

don L O=6(— 1" Hdf )" @) =Wdf )" do=(df )" (—f+]) by (A1)

=@yt fra(=0""Hf )" S )
=(—1)"g" 14+ 8™ 2° by (B2) and (BS).

Proof of (D8). Case 1. I<m—1
o 1O0=0((—1y" AN @) =(df)" - dp=@df)" " (—=f+]) by (A1)
=—@dt fra(=0)""Hadf )" f )
=(—1)"gn " '+0¢n"*>° by (B2) and (B5).

Proof of (D8). Case 1. I<m—1
m'=0(—1) ol -dh'™") by (C8)
=(=10¢n° - dhi ' =(—1)(—gn_1+hn-) dh/™" by (D6)
=0(—1)"'gm B H(= 'Ry dh/ !
=0p%' "' +(—1)'h} by (C6) and (C5).

Case 2. I=m—1
3¢S ™™ =0(0¢ - (dfy""2-Jp)=(—1)""'5¢-(@df)"" by (A5)
=(=1"(f—F) @™~ by (A1)
=a(— )" 2 T @y )+ (=1 (df)m
=a-(p'(')l,m—2+(_1)m‘1ﬁ$“1 by (B4) and (BS5).

Proof of (D9). Casel. k+l<m—1.
We can write m=r+s with r>k and s>1[. Then

' =0pr,=0(—1)g;-h) by (C6)

=(—1)/0gs - hi{+(—1)+'" gk ok

=(—1)'dg;™ " h{+(—1)**"""g;-dh{™" by (D3) and (D5)
=0(—1)'g; " -h)+a(—1)""gr-h{T)

=0dpk '+ 0pk' "1 by (C6).
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Case 2. k+l=m—1

S =8((—DXdf)*- o - (df ¥ ' - Jp) by (BS)
=(—1)df)*-d¢-(@df) by (AS)
=(=1)"71@N - f- @) +(= 1@k 7-@df) by (A1)
=(—1*"""'gpyy -dh/ T +(—1)'dgi™" “hiy, by (B2) and (B3)
=0(—1)" gk BT HO(—1)'g R
=0pk!" 1+ 3ok 1! by (C6).

Case 3. k<m—1<k+I

O = (="K dfy I S (@f " TF T AT by (BS) and (AS)
=(=)" N df " S (df )T - 00g AT by (A6)
=d(—=1)"'df )" S - ()" * 72 Op AT

+O(=)"THAf T T SR Do AT by (A4), (AS), (A6)
=0pk' 14+ 0% 1! by (BS).

Case 4. k=m—1

S~ V=(dfy""' "1 dp A by (B6)
=d(— 1" dN)" e AT+ A(—= )T AT 60 Fp AT
=0@r 11714 9pm" 2! by (BS) and (B6).

Finally, (D10) and (D11) are obvious since ¢ '™ ' =™ ! and g™ ™ =™
Therefore the proof of the relation 4®,(f, ¢)=0 is complete.

4.5.1. Remark. There are several alternative ways of proving A®,(f, ¢)=0. For
example, identities (C) written only for n=1 give a relation between &,( f, ¢) and
®,...(f, ¢), and the relation A4, (f, ) can be proven by induction on m.
Otherwise, one can prove directly that 4®,,= A®, =0 implies A(P,, x @,) =0 using
(A), (B), and (C) but the calculations would be longer than the above (30
verifications are needed).

5. Theorem 2

5.1. Statement of Theorem 2. Let (X, ) be a Kéhler space and m >0 an integer.
Then there exist open sets U, C X (a € A)and U}, CU,nU,(je J,4) depending on X
and m alone such that
(i) Any compact m-dimensional complex-analytic subset of X is contained in

some U,,.

(ii) Any compact m-dimensional complex-analytic subset of U,nU, is
contained in some Uj,.

(iii) There exist elements y,€ A™™U,,R) such that

o™ty =iddy, .
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(iv) There exist elements -c{,,, eA"“’"(Uj;ﬁ) such that
Otly=0 and (x,— Xp)lv., =Tip+ Tl

(v) The 1/, are d-closed representatives of elements &, € H™(UJ,, Q™).

5.2. Proof of (i) and (ii). We take an open covering & of X such that X =(X, Z)is
a Kihler-Cech space with a Kihler-Cech pair (f, ¢) as in 4.2.

The U, are taken as the m-admissible open sets of X and the Uj; as the
m-admissible open sets of U,nU,. Parts (i) and (ii) of Theorem 2 are restatements
of Lemma 3.54 of I. By Proposition 1.3.3, each U, is underlying to some
m-admissible U, < X and each U/, to some m-admissible U’ﬂ< <U,NnU;.

5.3. Proof of (iii). We use the element
D i(f, D)EA™ X, [RY=Z""" (X, R, L))
which is A-closed in the Cech transform of the complex
0—R— 29, —..— 22t T g2
Take the restriction [in the sense of (1.1.5)]
(5.3.1) Pt 1,0 = Pps 1(f Dy, €A™ (U, [R]).
Since U, is m-complete, we have
H*™ Yy £k )=0 for 0LkZ2m.

Indeed, for k<m this is due to the m-completeness of U, and the fact that
Fr L =D A 1D O¥; for k>m, it is due to the fact that Z,’,‘,H is a fine sheaf.

Corollary 2.3 applies and &, , is 4-exact if its head is J-exact, since the
canonical morphism

H" Uy R, Ly )>H" (U, R)

isinjective. But the head of @, . ; ,is (0f)"" |y, whose classin H*™* (U, IR)is 0 by
Lemma 1.3.2, since U, < X is m-admissible. Therefore

(53.2) Dyi1,6=40 11,4

for some 0,,,,,€6271 (U, [R]). In particular, if y,e A™™U,) is the tail of
O+ 1,4 WE have

(5.3.3) o™y, =ady,.
It is then sufficient to set
i _
(534) fai= 5 B

to satisfy condition (iii) of Theorem 2.
5.4. Proof of (iv) and (v). Take a fixed U="Ul,<U,nU,.
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There are open inclusions of Cech open sets

22N

We may then apply the operator T of (1.1.6) relatively to j,, js: U— X and set
(5:4.1) Opi1: =Ty (f, 9)€ &1 (U, [R]).

This element satisfies the conditions
() 404, 1=jFPp i i(f; O)=j3 P (> 9)
(i) The tail of @,,,, is 0.

Indeed, (i) is a consequence of (1.1.7) and (ii) of the fact that T induces 0 on
0-cochains and global sections. Now set

(543)  Opeyi=iHOns 1)~ iFOpi1, )+ s € 52U R]).
This element satisfies, by (5.3.2) and (5.4.2)
(i) 40,.,,=0
(i) The tail of @, 118 Y:=(Y,—Py)ly-

(5.2.1)

(5.4.4)

We notice that Lemma 2.2(i) does not apply to the canonical morphism
H ' U; R, &y )~ H>™ (U, R)

for among the groups H*" XU, %%, ,) there is H"(U, #", )=H™(U,Q"®Q™
which is not 0 in general. So we apply the operator u defined in 3.4 to obtain
U0, €& (U, [R]).

Since u commutes with D (and 8), u®,,, , is A-closed. This time the canonical
morphism .

H™ (U; R, %,)~>H*"(U,R)
is injective since the groups H*™ XU, #¥) are all 0 for 0 <k <2m—1. Indeed, for
k< m this is due to the m-completeness of U and, for k=m, to the fact that Z% is a
fine sheaf. So, by Corollary 2.3, u®,,, , is 4-exact if its head is d-exact in C'(U,R).
But the head of 1@, , is equal to the head of @,,, ; which is of the form c,, .,y
with
Cm+1 EZZMH(yaﬂ(_]ﬂ,]R)-

Since U<U,nU; is m-admissible, c,,,,|y is J-exact (Lemma 1.4.2) and

therefore

(5.4.5) ﬂ@m+ 1= Azm

for some Z, e &Z"(U,R).
Now we use the operators f and y defined in 3.5. Denote by Z,(U) the Cech
transform of the (0@ d)-complex over U, i.e.

(5.4.6) 24U):=CYU; "DQ2". %,,)



48 J. Varouchas

with differential
(5.4.7) A:=6+(— )"+ 1 94U)-» 24 \(U).
Notice that this sign convention differs from (2.1.3).
Diagram (3.5.3) becomes
&)
\
&1 (U) ~H—— T(U)

(5.4.8) \ _

A=5+D E2m (V) d=86-d

m

AN

ENTU) —— "2 (U).

By Lemma 3.5.3 and the sign convention (5.4.7) on 4 we have on £277(U)
(549 pA—AB=P(6+D)—(6—dB=(B6—3p)+(BD+dp)
=pD+df=yu.
On the other hand, we have on &2™(U)
(5.4.10) yA=Ay.

If we apply (54.9) to ©,,,, and (5.4.10) to Z,,, we get
~4BO,, ., =(BA— AP0y, = V11O s 1 =VAZ,, = IyZ,,
which means that the element
(5.4.11) Ap:=PO, +v2Z,,€D(U)
satisfies
44,,=0.
The tail of 4,, has the form
(™™, ™ ") e A™"(U)® A™ (V)
with dg™™=0d¢™™=0 (since 44,,=0) and
(54.12) M+ =y

by Lemma 3.5.3(iii). .
The fact that A4,, is a A-cocycle means precisely that ¢™™ and ¢™™ represent
elements of H™(U, Q™). So if we set

(5413) ngﬂ:= _;_(5m,m__gm,m)

it is clear that conditions (iv) and (v) of Theorem 2 are satisfied.
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5.5. Remark. (1) We did not use the positivity of w in the proof of Theorem 2. The
result we can actually prove by our method is the following: If U, and U, are the
open sets of Theorem 2, then conditions (i) and (ii) remain unchanged. If moreover
Ko ---» K, are arbitrary elements of 2#"(X) and wq:=65xq for 0<g<m, then

(iii) There are elements y, € A™™U,) such that (wy A ... A @)y, = 00p,.

(iv) There are elements gfy,alze A™™(Uly) such that dgly=0doi;=0 and
(Wa—Wpluz, = 0ap+ 0p- )

(v) @i and G}, represent cohomology classes of H™(UJ,, Q™).

(2) The proof we gave was a reasoning on &,,(X, [IR]). We could have chosen
&.(X,R) as well, replacing @,,., ,(f, ¢) by

Re(®P,, ,4(f, (P)):%(d)nm 1(fs @)+ @1 (f, 0)%)

and using Lemma 3.5.3(iv).

I1V. The Main Results

1. Stability Theorems

We are now in position to prove that some proper images of Kihler spaces are
Kébhler.

1.1. Theorem 3. Let n: X > X' be a geometrically flat morphism of complex spaces
with m-dimensional fibers (7 is proper surjective and X' reduced by definition).
Suppose X is Kdhler. Then X' is weakly Kdhler.

If moreover there is a discrete D' C X' such that for any x'€ X'\D', either

(1) X' is weakly normal at X' or

(i1) ©~(x') admits in X a smoothly embeddable neighborhood
then X' is Kdhler.

Proof. With the notations of Theorem 2, set
V,={x'eX'|n ' (x)CU,}
Vyi=a (V)
Vii={x'eX'|n~ " (x")C UL}
Viy=a"'(V;))
Wa = TE*(Xa'V,)
8{;3 = T[*(T{LMV{,H) .
Since 7 is surjective, the sets ¥, cover X' and, for fixed , B, the ¥} cover V;nV;.
By Proposition 3.4.1 of Chap. I, y,e SP(V;), glse #'(V,}) and, since (1, — py)ly,
=glg+ 8. Wa—wp€ WPH(V,nV;,R). So X' is weakly Kéhler. Now if conditions
() and (ii) are fulfilled, then gI; is holomorphic on V,J\D" and y,—1; pluri-
harmonic on V;nV;\D". If we take a refinement (W;) of (V) such that each

point of D’ belongs at most to one W, then it is clear that Theorem 1 applies
and X' is Kéhler.
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1.2. Corollary. Let n: X — X' be a proper open surjective morphism. Suppose X is
Kdhler and X' normal. Then X' is Kdhler.

Many other consequences may be formulated. For example

1.3. Corollary. Let n: X — X' be a flat projective morphism. Suppose X is Kdhler
and X' reduced. Then X' is Kdhler.

Proof. The fibers of a projective morphism have smoothly embeddable neighbor-
hoods by construction of IP(#) for a coherent sheaf &.

1.4. Remark. Conditions (i) and (ii) of Theorem 3 are actually unnecessary. See
note 3.6 of Chap. L

2. The Space of Cycles of a Kdhler Space
We use the notations of Chap. I, 3.

2.1. Theorem4. Let X be a Kdihler space and m=0 an integer. Then the Barlet space
B,.(X) of m-cycles of X is weakly Kdhler. Moreover, the open subset B, (X)© of
B,(X) is Kdhler.

Proof. By an argument similar to the above, set
W,:={ceB,(X)|lccU,}
Wiy ={ceB,(X) Il Ulg}
b,:=F Glz:=F

a._ Xa’ tg#’

Then @, SP°(W,), G}, is weakly holomorphic on Wj; and holomorphic on
BOBAX), (D,— Dyl = Gip+ Gly and the result follows.

2.2. Corollary. Let X be a Kdhler space. Then the weak normalization of B,(X) is
Kdhler.

Proof. By a well-known result [5, 12, 18] every connected component of B,(X) is
compact and, by Theorem 4 above, weakly Kidhler. The result follows from
Proposition 4.2.4 of Chap. II.

3. Fujiki’s Class €

3.1. Definition (Fujiki [12]). A reduced compact complex space X is said to belong
to class € if it is a holomorphic image of a compact Kéhler space.

By Hironaka’s resolution of singularities it is sufficient to take holomorphic
images of compact Kéhler manifolds.

Let us define for the moment the class €* of reduced compact spaces
bimeromorphically equivalent to compact Kahler manifolds, ie. admitting
compact Kihler modifications.

It is then true that € is stable under holomorphic images and subspaces; but it
seems difficult to prove, for example, that a reduced subspace of a space in €* is in
%*. Of course, €*C¥.
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On the other hand, several important results are valid for compact manifolds in
&*. For example:

(i If X is a manifold in ¥* and H°(X, 2%)=0 then X is MoiSezon [14].

(i) If X is a manifold in *, n=dim X and n: X - a surjective morphism of X
on a complex space S, then R (Q%)=0for all ¢ > dim X —dim S (Takegoshi [22]).
It seems difficult to prove such results with the hypothesis X € 4. But we have

3.2. Theorem 5. € =%*.

Proof. Let X be a compact complex space in %. By definition there is a compact
Kihler space X; and a surjective morphism g: X, —»X. By Hironaka’s flattening
theorem [16], there is a commutative diagram

x, <y,

N
X «—7,

where g,0, are projective modifications and = is flat. Since o, is a Kihler
morphism and X,; a compact Kéhler space, Y; is Kidhler. Moreover Y can be
chosen to be normal, since flatness is preserved by base-change. If we apply
Corollary 1.2to n: Y; - Y, then we deduce that Y is Kdhler and X € €* as required.
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