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(g*

X will always denote a complex space, not necessarily reduced unless explicitly
stated. X,.4— X denotes the reduction of X. 0 = Q% is the structure sheaf of X and
Q7% the sheaf of holomorphic m-forms on X. € is the sheaf of continuous functions
on the topological space underlying to X. If & = %5 is any sheaf on X, #(U) will
denote I'(U, %). If #y is a sheaf of C-vector spaces with a natural C-antilinear
involution, #x g will denote the subsheaf of elements left fixed by the involution
and #(U,R):=I'(U, %y g). We always assume X countable at infinity.

1. € Forms and Functions on Complex Spaces

There are two inequivalent definitions of €% in the literature. The first, which we
call the “old” one [5, 10, 21] defines €5 as the subsheaf of € consisting of local
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restrictions of € functions under smooth embeddings. So ¥ = €x._, in this sense.
The second which we will call thee “modern” one [8, 12] is the one we give below.

1.1. Definitions. We define on X the sheaves €5 of real-analytic functions, PHy of
pluriharmonic functions, € = A} of €~ functions, A} (resp. A%') of € m-forms
[resp. (k, l)-forms] as follows: For smooth X, they are well defined. Now suppose
X—D is an embedding of X in a domain D of C" and £,C0, is the
corresponding coherent ideal sheaf. Set

2=+ I)Es,  IF i =(Ix+INEp
and
%:=%€p/I%x, CxX:=€p/I%, %:=Ap/IY Ap+dIF AR
A%':=the image of 4%' under the canonical morphism A%'—A4%*!.

It is clear that these sheaves are independent of the choice of the embedding X —D
so they extend to arbitrary X. There are canonical morphisms

Oy~ 62—E2—Fy .

1.2. Elementary Properties and Conventions. (i) The canonical morphisms @0y — %%
and €3— €5 are injective. (The first is elementary and the second is a consequence
of the fact that € is a faithfully flat €3-module by Malgrange [19, Chap. VI,
Corollary 1.12].) They will be considered as inclusions

Ox CE3CER

and so we may define PHy:=0x+ 0, C%%.
(i) In €2 we have Oy 0Oy = C and there is a commutative diagram with exact

TOWS
—2Im

0 R—— 0y — ™ PHyg— 0
L
0 C "(Oxe')(ﬁx——‘——) PHX ———)0,

where A(f)=(f,f) and the unspecified morphisms are the canonical inclusions.

(iii) The canonical morphism ¢: €5 —% is not injective in general even for X
reduced; for fg=0in Oy does not imply fg=01in ¢%. However, for X reduced and
locally irreducible, ¢ is injective. (It is elementary that the restriction of ¢ to €5 is
injective; we deduce that ¢ is injective by Malgrange [19, Chap. VI, Theorem
3.10])

We write [¢]:=0(¢), [€5]:=0(%¢%). So [¢%] is the €= sheaf of the “old”
theory. For normal X the two theories coincide, by the above remark.

(iv) The kernel of the canonical morphism PHy—%y is Ny + ./ where Ay is
the sheaf of nilpotent sections of 0. In particular, for reduced X, PH, may be
considered as a subsheaf of €.

(v) If f: X > Y is a morphism of complex spaces, ¢ € ¢(Y) and p e €*(Y), write
@ o fe¥(X)and f*ype€*(X) for the corresponding induced elements. Write o f
instead of [y] ¢ f, so that [ f*p]=vyof in €(X).
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(vi) The canonical morphisms Q% — A%° are injective and will be considered as
inclusions.

(vi) The inclusions A%'CcA%*' give a direct sum decomposition

»= @ A%'and Ay is a bigraded algebra with respect to the wedge product.
k+I=m
The natural involution ¢ — @ applies A%’ on to A4%*.

(viii) There is a canonical morphism d=0+09: AT— AT* ! satisfying the usual
identities d*>=0?=0>=00+00=0. However, none of the resulting complexes
(Dolbeault, De Rham, etc. ...) is an exact sequence of sheaves in general.

(ix) Any morphism f:X—Y of complex spaces gives rise to a linear
f*: A™(Y)— A™(X) which is compatible with the wedge product, bigraduation and
the operators d,d,0. We have (fg)*=g*f*.

2. Strongly Plurisubharmonic Functions

We write p.s.h. for plurisubharmonic.

2.1. Definitions. We define on X the sheaves of real convex cones P% (resp. SPY) of
continuous p.s.h. (resp. strongly p.s.h.) functions, P¥ (resp. SP¥) of ¥* p.s.h.
(resp. strongly p.s.h.) functions as the subsheaves of €y y (resp. €5 g) consisting
of elements induced by corresponding functions on open sets of €" under local
embeddings. Also define [P§]:=0(P¥), [SP¥]:=0(SPy) where g:€¥ —»%y is the
canonical morphism.

2.2. Examples. (i) On the subspace X of €C? defined by z,z,=z2=0, set
0z,,2,):=2,Z, +tz,Z, for real t. Then [p,]eSPX) is independent of t,
@, €€*(X,R)for all ¢t but ¢, P*(X) only for t=0 and @, e SP®(X) only for t>0.

(ii) On the subspace X of € defined by z,z, =0, set (for real t) ¢(z;,2,):=2,Z;
+1(z,2,+2,2,)+2,Z,. Then [¢,] € SPY(X) is independent of t, p,e €°(X,IR) but
¢@,€ P*(X) only for || <1 and ¢, SP®(X) only for |f|< 1.

(iii) On €" set @(zy,...,z,):= Y |tj* where t,...t, are the roots of
i=1
X"—z, X" '+ ... +(—1)"z, Then ¢ € SPY(T").

2.3. The Cone SP®=(U,V). This is an auxiliary notion introduced to give a
meaning to smoothing lemmas of strongly p.s.h. functions. For U, V open in X,
SP% (U, V) s defined as the set of pairs ¢ =(¢°, ¢®)e SPY(U) x SP*(UNV) such
that [¢*]=¢°y.y. We set [¢]:=¢°. The following are obvious
@) SP%=(U,V)=SP%=>U,UnV).
(i) SP**(U,P)=SPU) canonically.
(iii) SP*=(U, X)=~SP*(U) canonically.
(iv) For fixed V, U+ SP%®(U, V) is a sheaf on X.
(v) For @o=(¢%¢®)eSP>>(U,V) and he PH(U,R), the element ¢ +h
=(@°+[h], 9 +hyy.y) is in SPO2(U, V).
The following is a slight improvement of a result of Richberg [21, Satz4.1]. For
X=C", a complete proof is in [23].

2.4. Richberg’s Lemma. Let U,V,W be open in X with UCCW. Let
@eSP%®(W, V). Then there is a compact S such that UCSCW and an ele-



