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18 J. Varouchas

(vi) The canonical morphisms Q% — A%° are injective and will be considered as
inclusions.

(vi) The inclusions A%'CcA%*' give a direct sum decomposition

»= @ A%'and Ay is a bigraded algebra with respect to the wedge product.
k+I=m
The natural involution ¢ — @ applies A%’ on to A4%*.

(viii) There is a canonical morphism d=0+09: AT— AT* ! satisfying the usual
identities d*>=0?=0>=00+00=0. However, none of the resulting complexes
(Dolbeault, De Rham, etc. ...) is an exact sequence of sheaves in general.

(ix) Any morphism f:X—Y of complex spaces gives rise to a linear
f*: A™(Y)— A™(X) which is compatible with the wedge product, bigraduation and
the operators d,d,0. We have (fg)*=g*f*.

2. Strongly Plurisubharmonic Functions

We write p.s.h. for plurisubharmonic.

2.1. Definitions. We define on X the sheaves of real convex cones P% (resp. SPY) of
continuous p.s.h. (resp. strongly p.s.h.) functions, P¥ (resp. SP¥) of ¥* p.s.h.
(resp. strongly p.s.h.) functions as the subsheaves of €y y (resp. €5 g) consisting
of elements induced by corresponding functions on open sets of €" under local
embeddings. Also define [P§]:=0(P¥), [SP¥]:=0(SPy) where g:€¥ —»%y is the
canonical morphism.

2.2. Examples. (i) On the subspace X of €C? defined by z,z,=z2=0, set
0z,,2,):=2,Z, +tz,Z, for real t. Then [p,]eSPX) is independent of t,
@, €€*(X,R)for all ¢t but ¢, P*(X) only for t=0 and @, e SP®(X) only for t>0.

(ii) On the subspace X of € defined by z,z, =0, set (for real t) ¢(z;,2,):=2,Z;
+1(z,2,+2,2,)+2,Z,. Then [¢,] € SPY(X) is independent of t, p,e €°(X,IR) but
¢@,€ P*(X) only for || <1 and ¢, SP®(X) only for |f|< 1.

(iii) On €" set @(zy,...,z,):= Y |tj* where t,...t, are the roots of
i=1
X"—z, X" '+ ... +(—1)"z, Then ¢ € SPY(T").

2.3. The Cone SP®=(U,V). This is an auxiliary notion introduced to give a
meaning to smoothing lemmas of strongly p.s.h. functions. For U, V open in X,
SP% (U, V) s defined as the set of pairs ¢ =(¢°, ¢®)e SPY(U) x SP*(UNV) such
that [¢*]=¢°y.y. We set [¢]:=¢°. The following are obvious
@) SP%=(U,V)=SP%=>U,UnV).
(i) SP**(U,P)=SPU) canonically.
(iii) SP*=(U, X)=~SP*(U) canonically.
(iv) For fixed V, U+ SP%®(U, V) is a sheaf on X.
(v) For @o=(¢%¢®)eSP>>(U,V) and he PH(U,R), the element ¢ +h
=(@°+[h], 9 +hyy.y) is in SPO2(U, V).
The following is a slight improvement of a result of Richberg [21, Satz4.1]. For
X=C", a complete proof is in [23].

2.4. Richberg’s Lemma. Let U,V,W be open in X with UCCW. Let
@eSP%®(W, V). Then there is a compact S such that UCSCW and an ele-
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ment weSPO*(W,UuV) such that olyps=ylps in SPO(W\S,V)
—SPO*(W\S, UUV).

Sketch of Proof. Take a finite number of open sets U, CC ¥, CCW, (1<k<m) such
that U= (J U, and each W, is embedded in an open subset Dy of €™ such that
k=1

[#1lw, is induced by an element of SP%(D,). Using the method of [23] one can
construct inductively elements ¢, € SP® (W, U,;u...0U,UV) such that Pulw\p,
=@ 1lw\p,. Then set S=V,u...UV, and y=g,,.

2.5. The Fornaess-Narasimhan Theorem [10, Theorem 5.3.1]. Let ¢ € 4(X,R).
Suppose that for any holomorphic f:A— X, where A is the unit disc of C, pof is
subharmonic on A. Then ¢ € P%(X).

2.6. The Cone SPY(X). Let n:X—Y be a morphism of complex spaces. Let
pe€™(X,R). We say that ¢ is strongly p.s.h. relatively to n and write ¢ € SPX(X) if
for any xe X there are open subsets UCX, VCY and ypeSP®(V) such that
xeUcCxn™ (V) and (¢ +n*y)|y € SP2(U).

3. Barlet’s Space of Analytic Cycles

3.1. Symmetric Powers of Complex Spaces. If k=1 is an integer, let
Sym*(X): = X*/%, be the quotient of X* under the action of the symmetric group
k

permuting components. Denote by Y {x;} the image of (x,,...,x,) in Sym*(X)
under the canonical projection. =t

3.2. Analytic Families of Complex Cycles. B,(X). Let X be reduced and m=0 an
integer. A compact complex-analytic m-cycle (or briefly m-cycle) of X is a formal
finite sum
c= Z niY;' ’
iel
where n, =1 are integers and Y; are compact irreducible m-dimensional complex-
analytic subsets of X. |c|:= (] Y; is called the support of c.
iel

Let ¢ be as above and ¢: V- U x B an embedding of an open set V' C X into a
connected open set U x B of C¥=C™ x C¥ ™ We say that ¥ =(o,V, U x B) is a
well-adapted chart with respect to c if o extends to an embedding ¢,: V; - U, x B,
such that VccV,cX, UccU,c@™ BCCB,CC¥ ™ and o,(|c[)n(U x 6B)=0.

If we set Z;:=06(VCY,)CU x B, then the projection U x B> U restricted to
each Z; is a branched covering n;: Z;—» U of finite degree k; and defines as
such a morphism y;: U-Sym*(B). Set k:=Y nk; w:=Ynuy;: U—Sym*(B),
deg(c,?):=k.

Now let S be a reduced complex space and (c,),.s a family of m-cycles of X
parametrized by S. We say that (c,) is an analytic family of cycles if for any s, €S
and for any well-adapted chart ¥~ with respect to c, there is a neighborhood T of
5o in S such that



