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ment weSPO*(W,UuV) such that olyps=ylps in SPO(W\S,V)
—SPO*(W\S, UUV).

Sketch of Proof. Take a finite number of open sets U, CC ¥, CCW, (1<k<m) such
that U= (J U, and each W, is embedded in an open subset Dy of €™ such that
k=1

[#1lw, is induced by an element of SP%(D,). Using the method of [23] one can
construct inductively elements ¢, € SP® (W, U,;u...0U,UV) such that Pulw\p,
=@ 1lw\p,. Then set S=V,u...UV, and y=g,,.

2.5. The Fornaess-Narasimhan Theorem [10, Theorem 5.3.1]. Let ¢ € 4(X,R).
Suppose that for any holomorphic f:A— X, where A is the unit disc of C, pof is
subharmonic on A. Then ¢ € P%(X).

2.6. The Cone SPY(X). Let n:X—Y be a morphism of complex spaces. Let
pe€™(X,R). We say that ¢ is strongly p.s.h. relatively to n and write ¢ € SPX(X) if
for any xe X there are open subsets UCX, VCY and ypeSP®(V) such that
xeUcCxn™ (V) and (¢ +n*y)|y € SP2(U).

3. Barlet’s Space of Analytic Cycles

3.1. Symmetric Powers of Complex Spaces. If k=1 is an integer, let
Sym*(X): = X*/%, be the quotient of X* under the action of the symmetric group
k

permuting components. Denote by Y {x;} the image of (x,,...,x,) in Sym*(X)
under the canonical projection. =t

3.2. Analytic Families of Complex Cycles. B,(X). Let X be reduced and m=0 an
integer. A compact complex-analytic m-cycle (or briefly m-cycle) of X is a formal
finite sum
c= Z niY;' ’
iel
where n, =1 are integers and Y; are compact irreducible m-dimensional complex-
analytic subsets of X. |c|:= (] Y; is called the support of c.
iel

Let ¢ be as above and ¢: V- U x B an embedding of an open set V' C X into a
connected open set U x B of C¥=C™ x C¥ ™ We say that ¥ =(o,V, U x B) is a
well-adapted chart with respect to c if o extends to an embedding ¢,: V; - U, x B,
such that VccV,cX, UccU,c@™ BCCB,CC¥ ™ and o,(|c[)n(U x 6B)=0.

If we set Z;:=06(VCY,)CU x B, then the projection U x B> U restricted to
each Z; is a branched covering n;: Z;—» U of finite degree k; and defines as
such a morphism y;: U-Sym*(B). Set k:=Y nk; w:=Ynuy;: U—Sym*(B),
deg(c,?):=k.

Now let S be a reduced complex space and (c,),.s a family of m-cycles of X
parametrized by S. We say that (c,) is an analytic family of cycles if for any s, €S
and for any well-adapted chart ¥~ with respect to c, there is a neighborhood T of
5o in S such that
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(i) ¥ is well-adapted with respect to c, for all se T.
(i) deg(c, ¥")=k is independent of se T.

(iii) The resulting map y: U x T—Sym*(B) is holomorphic.

The Barlet space B,(X) of m-cycles of X is a reduced complex space,
constructed in [3], whose points are the m-cycles of X forming a tautological
analytic family and such that for any analytic family (c,),. s of m-cycles of X, there is
a unique morphism of complex spaces H:S—B,,(X) such that

H(s)=c, forall seS.
For X not necessarily reduced, we set
Bm(X ) = Bm(X red) .

3.3. Proper Open Morphism. Geometric Flatness. Let D,(X) be the Douady space
[9] of compact subspaces of pure dimension m of X. In [3, Chap. 5], Barlet
constructed a canonical morphism

c: (Dm(X))red —)Bm(X) -

If Y is a point of D,(X) (a subspace of X) then c(Y)=Y n;Y; where Y; are the
irreducible components of Y., and n;=>1 integers called multiplicities. If Y is
generically reduced, all n; are equal to 1.

Now suppose that 7: X — X’ is a morphism of complex spaces such that, for
some fixed m=0

(i) = is proper open and surjective,
(3.3) (i) all fibers of = are of pure dimension m,
(ii)) X' is reduced.

[If X, X' are pure dimensional, then (i) implies (ii).]
We will say that 7 is geometrically flat if there is a morphism of complex spaces

H:X'-B,(X)

such that H(x') = c(n ™ !(x)) generically on X’. We call H the classifying morphism of
7. The domain of validity of the equality H(x') = c(z ~*(x')) is the dense Zariski open
set U’ of points of flatness of = (Frisch [11]).

3.3.1. Proposition. Suppose n: X — X’ satisfies (3.3). Then:
(@) If mis flat, then it is geometrically flat.
(i) If X' is normal, then & is geometrically flat.
(iii) If = is geometrically flat, then H defines an isomorphism of X' onto a
subspace of B, (X).

Proof. (i) If = is flat, then there is a morphism X'—D, (X), factoring through
(D,(X)),.q since X’ is reduced, taking the value n~(x') at x". Composing with
¢:(D,(X));ea—B.(X), we obtain the required H.

(ii) This is part of Theorem 1 of [3].

(iii) This is shown in [24, Appendix, p. 259].
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3.3.2. Examples. (i) Let X be the union of two planes defined by z,z, =2z,z,=2z,2,
=2,2,=0in C*, Y’ the union of two lines defined by x,x, =0in C?, n: X > X' =C?
and ¢: Y'— X’ defined by n(z,,2,,23,24) =(z, + 25,23 + z,) and @(x,x;)=(x4,0)

X — Y=Xx,Y

" |

X’(—Q‘Yl

Then = is geometrically flat be 3.3.1(ii) but =, is not since Y consists of one triple
line over one branch of Y’ and two single lines over the other. z is not flat.

(ii) Let X be the union of two single lines and one double line defined by z,z,
=2z3—2z2=0in €* and X’ the union of two lines z,z, =0 (as ¥’ above).

If n(zy, 25, 23) =(24, 2,), then w: X - X' is flat, X" is reduced but if r: X 4— X is
the reduction of X then nr: X,.4— X' is not geometrically flat.

3.4. Integration of Differential Forms. If o€ A™™(X) and c=Y n;Y;eB,(X), define
Fold:=fo=2m] o

If n: X - X' is geometrically flat with m-dimensional fibers and ¢ is a above,
define

np:=F,oH,.
We have the following:

3.4.1. Proposition [4, 5, 23]. With the above notations.
(i) F, (resp. m, ) is continuous on B,(X) (resp. X').
(i) If dp=0, then F, and n, @ are locally constant.
(iii) If ¢ =¢ and id0p 20 then F, and ¢ are p.s.h.
(iv) If o=@ and id0p> 0 then F, and n,¢ are strongly p.s.h.
(v) If dp=0then F, and n,¢ are weakly holomorphic; if moreover X is smooth,
they are holomorphic.

3.4.2. Remark. Case (iii) above needs the Fornaess-Narasimhan theorem if we
look at the proof of Proposition 1 of [5].

3.4.3. Definition. A J-closed te A™™X) is said to represent an element
¢e H™(X, Q%) (or to be a d-closed representative of &) if the class of t in HF"™(X) is
the image of € under the canonical morphism H™(X, Q%)— HZ-™(X). In that case we
define F(c): = F(c) for c e B,,(X) and also write (c - {) for F {c) (since it depends on &
alone).

3.5. m-Complete and m-Admissible Neighborhoods. By the Andreotti-Grauert
theorem [1], if X is a m-complete complex space, then for any coherent analytic
sheaf # on X and any q>m we have H{(X, #)=0. We will use

3.5.1. Proposition. Let Y be a compact m-dimensional complex-analytic subset of X.
Then

(i) Y admits in X a fundamental system of m-complete neighborhoods
(Barlet [6]).
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(i) Y admits in X a fundamental system of neighborhoods V such that
HYV,R)=0 for k>2m [23, Lemma 3.5].

3.5.2. Definition. An open UCX is said to be m-admissible if
(i) U is m-complete.
(ii) There is an open V such that UCVCX and HV,R)=0 for all k>2m.

3.5.3. Remark. If X is a Kdhler manifold with a Kdhler form w and UCX is
0-admissible, then one easily sees that w|, =idd¢ for some ¢ € SP*(U). This is the
most trivial particular case of our Theorem 2.

3.5.3. Proposition. .(i) If UCX is m-admissible and k>2m, then the canonical
morphism HX,R)—H*U,R) is zero.

(ii) Any compact m-dimensional complex-analytic subset of X admits a funda-
mental system of m-admissible neighborhoods.

Proof. (i) Is obvious by the definitions and (ii) is a restatement of 3.5.1.

3.5.4. Proposition. Let B,(X) be the open set of B,,(X) consisting of cycles whose
support admits in X a smoothly embeddable neighborhood. Let ¢ € H™(X, Q%). Then
F is holomorphic on B,(X)®.

Sketch of Proof. For ce B, (X)), |c| admits a smoothly embeddable neighborhood
V therefore by 3.5.1 a neighborhood U with an embedding ¢: U— U, in a smooth
m-complete U, .

If 4 is the coherent sheaf on U, defined by the exact sequence

0> AN -Qp, —0, 250,

then H"* (U, #")=0 and hence &[ is induced by some &, e H™(U,,Qy,). By
3.4.1(v), F,, is holomorphic on B,(U,) so F, is holomorphic near c.

3.5.5. Corollary. If n: X - X' is geometrically flat with m-dimensional fibers and U’
is the set of x' € X’ such that 1~ *(x) admits in X smoothly embeddable neighborhoods
then for any &e H™(X, Q%), n,Ely is holomorphic.

3.6. Note Added in Proof. After having submitted the manuscript, the author
together with D. Barlet solved problem D of the Introduction. Proposition 3.5.4
and Corollary 3.5.5 above are now true with B,(X) instead of B,(X)©. The notion
of a weakly Kéhler space loses its importance and Theorems 3 and 4 below
(Ch. IV) become

Theorem 3'. If n: X - X' is geometrically flat with X Kdhler and X' reduced, then
X' is Kdhler.

Theorem 4'. If X is Kdhler then B, (X) is Kdhler.

IL. Theorem 1 and its First Consequences

1. Kdhler Spaces and Kdhler Metrics
Let X be a complex space.



