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22 J. Varouchas

(i) Y admits in X a fundamental system of neighborhoods V such that
HYV,R)=0 for k>2m [23, Lemma 3.5].

3.5.2. Definition. An open UCX is said to be m-admissible if
(i) U is m-complete.
(ii) There is an open V such that UCVCX and HV,R)=0 for all k>2m.

3.5.3. Remark. If X is a Kdhler manifold with a Kdhler form w and UCX is
0-admissible, then one easily sees that w|, =idd¢ for some ¢ € SP*(U). This is the
most trivial particular case of our Theorem 2.

3.5.3. Proposition. .(i) If UCX is m-admissible and k>2m, then the canonical
morphism HX,R)—H*U,R) is zero.

(ii) Any compact m-dimensional complex-analytic subset of X admits a funda-
mental system of m-admissible neighborhoods.

Proof. (i) Is obvious by the definitions and (ii) is a restatement of 3.5.1.

3.5.4. Proposition. Let B,(X) be the open set of B,,(X) consisting of cycles whose
support admits in X a smoothly embeddable neighborhood. Let ¢ € H™(X, Q%). Then
F is holomorphic on B,(X)®.

Sketch of Proof. For ce B, (X)), |c| admits a smoothly embeddable neighborhood
V therefore by 3.5.1 a neighborhood U with an embedding ¢: U— U, in a smooth
m-complete U, .

If 4 is the coherent sheaf on U, defined by the exact sequence

0> AN -Qp, —0, 250,

then H"* (U, #")=0 and hence &[ is induced by some &, e H™(U,,Qy,). By
3.4.1(v), F,, is holomorphic on B,(U,) so F, is holomorphic near c.

3.5.5. Corollary. If n: X - X' is geometrically flat with m-dimensional fibers and U’
is the set of x' € X’ such that 1~ *(x) admits in X smoothly embeddable neighborhoods
then for any &e H™(X, Q%), n,Ely is holomorphic.

3.6. Note Added in Proof. After having submitted the manuscript, the author
together with D. Barlet solved problem D of the Introduction. Proposition 3.5.4
and Corollary 3.5.5 above are now true with B,(X) instead of B,(X)©. The notion
of a weakly Kéhler space loses its importance and Theorems 3 and 4 below
(Ch. IV) become

Theorem 3'. If n: X - X' is geometrically flat with X Kdhler and X' reduced, then
X' is Kdhler.

Theorem 4'. If X is Kdhler then B, (X) is Kdhler.

IL. Theorem 1 and its First Consequences

1. Kdhler Spaces and Kdhler Metrics
Let X be a complex space.
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1.1. The Sheaf #%. Define

Hx:=5/PHy, HAywr:=€Tg/PHxr,
HNX):=HUX, Hy), A'(XR):=HX, Ay r)

A section k € A 1(X) corresponds by definition to an open covering (U,) of X
together with elements ¢,e¢*(U,) such that ¢,—¢@ze PH{U,nUy). We write
k={(U, ¢,)}. We have

{(Uw (pa)} = {(V;, lp])} lff ((pa*wj)lU,ane PH(Uan V/) .

For such x, we set 80x:=we A (X) where
wIU‘,:aa}PI-

Of course, w is well-defined and dw=0. We say that x is represented by the ¢,.

1.2. Kdhler Metrics, Kdhler Classes. A Kdhler metric on X is by definition an
element k € #" (X, R) represented by a system of sections of SP§. The Kdhler form
of (X,x) is w:=iddx (i =l/?1). We will often write (X,w) instead of (X,«),
although @ does not determine x unless X is smooth.

Similarly, if 7 : X — Y is a morphism of complex spaces, a relative Kdhler metric
for m is an element k, of # (X, R) represented by sections of SPZ.

To any element x € 4 !(X) we associate three cohomology classes as follows:

From the exact sequence 0—PH,—%¥— Ay —0, we deduce a canonical
morphism

(1.2.1) ¢y AN (X)—»H'(X, PHy)
which obviously sends o#"'(X,R) into H'(X, PHx g). From the diagram

0—R— 0y ﬂ‘>PHX,]R—-—>()

| | !

(12.2) 0— C— 0,0, "3 PH, —0

d N —id

do,;
we deduce canonical morphisms H!(X,PH,)—»H*X,C) and H!(X,PH,)

—-H'(X,d0y) and, composing with ¢,, we obtain
¢ AN X)»HYX,OT),

(1.2.3)

& A (X) > HI(X,dO,).
Of course ¢, sends " '(X, R) into H*(X,IR). dOy is the subsheaf of Q% consisting of
locally exact holomorphic 1-forms. Sometimes we will replace ¢,(x) by its image in
HY(X,QY).
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So we have a diagram

Hy'(X) «— H'(X,Q) «— HX,dO)
1 o

(1.2.4) ZMx) 20 )T B H(X,PHy)
H}(X) ———H*X,©)

which is commutative (see 4.2 of Chap. ITI). This means that if k is a Kéhler metric
on X and w=iddk the corresponding Kéhler form, then w is a d-closed
represenattive of ¢,(k) in H*(X,RR) and also a d-closed representative of &,(k) in
HY(X, Q).

In [15] Grauert proved that if x is a Kédhler metric on a normal compact space
X such that ¢,(x) lies in the canonical image of H*(X,®Q) in H(X,R), then X isa
projective variety.

1.3. Kdhler Spaces, Kdhler Morphisms. X is said to be a Kdhler space if there exists
a Kihler metric on X.

A morphism n: X—Y is a Kdhler morphism if there exists a relative Kéhler
metric x, for .

We have the following elementary properties:

1.3.1. Proposition. (i) Subspaces of Kdhler spaces are Kdhler.

(i) Smooth Kdhler spaces are Kdhler manifolds in the usual sense.

(iii) X —{y} is a Kdhler morphism iff X is a Kdhler space.

(iv) Kdhler morphisms are preserved by composition and base-change [8].

(v) Projective morphisms (for example: finite morphisms and blow-ups) are
Kdhler [8, 12].

(vi) If m: X-Y is a Kdhler morphism, and Y a Kdhler space then any open
U cCX is Kdhler. More precisely: If ky is a Kdhler metric on Y and k, a relative
Kdihler metric for r, then for any U CC X there is a constant ¢, >0 such that for any
c>Cy, (k. +cn*ky),, is a Kdhler metric on U [8, 12].

On the other hand,

1.3.2. Proposition. (i) It is not always true that a reduced compact space is Kdhler if
its normalization is Kdhler.

(ii) It is not always true that a compact space X is Kdhler if X .4 is Kdhler. A
counterexample [8, 11] is given by an infinitesimal neighborhood of a K3 surface in
its space of moduli.

(iii) Itis not always true that a normal compact space is Kdhler if the complement
of a point is Kdhler [15, 20].

(iv) It is not always true that small deformations of compact Kdéhler spaces are
Kdihler [20].

(v) It is not always true that a normal compact space that is both Moiezon and
Kdbhler is projective [20].
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2. Theorem 1

2.1. Statement. Let X be a complex space. Suppose it admits an open covering
(U )y 4 and a system of continuous strongly p.s.h. functions ¢, e SP(U,) together
with pluriharmonic functions h,;€ PH(U,nU,IR) such that

(1) @a—@p=[hep] in EU,NULR),
(i) hyg—hy,+hg, =0 on U,nUpnU,.
Then there are elements y, e SP®(U,) such that
(21.2) Yo—Wp=h,y In€°(U,NUpR).

2.1.1)

In particular, X is a Kéhler space.

2.2. Remark. By Lemma 1.2(iv) of Chap. I, the cocycle condition (ii) is redundant
for X reduced. For smooth X, Theorem 1 is proven in [23] and the proof we give
there is valid for X reduced and locally irreducible. We will use the conventions
stated in 2.4 of Chap. L.

2.3. Proof. Since X is paracompact, it admits two locally finite open coverings
(V). (W,) (ke N) such that V,=0 and V,CCW,CU,, for each k. Set Tj5:=U,nU,
N(Vu...uV).

We will define inductively elements

okeSP> (U, V,u...u¥))
such that
(i) For some compact S,, V,CS,CW,,
(P{:lua\sk =5 IIU,\Sk

in SPO=(U\S,, V,U...uV)=SP>*(U\S,, V,u...0V_;)
(i) [¢§]—[ofl=[h,] in FU,NU,R),
(iii) (@5—@p)rx, =hoglrr, in E=(TjR).

We start by taking @0 := ¢, the initial data.

Suppose ¢k~ 1 is defined for all o.

Apply Richberg’s lemma to X =W,,

2.3.1)

U=V, V=Vu..UVy, o=¢5 "y, .
We obtain an element
peSP* (W, V,u...UW)
and a compact S, ¥, CS,CW, such that

k=1
V)Iwk\sk - (pak |Wk\sk .
Now we set

kot U.\S
232 k= {0 o e\
32 R T

where the last expression is defined in 2.4(v) of Chap. L



