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1.3. m-Complete and m-Admissible Cech Open Sets. We extend the notion of
m-admissible open sets (3.5.3 of Chap. I) to Cech open sets.

1.3.1. Definitions. A Cech space X is said to be m-complete if for any coherent
analytic sheaf # on X and any q>m, we have HY(X, #)=0.

A sufficient condition for this is that the underlying space X be m-complete and
the elementary open sets of X be Stein.

If U< X is a Cech open set of X, we will say that U is m-admissible in X if

(i) U is m-complete.

(ii) There is a Cech open set V such that U<V <X and HV, R)=0 for all
k>2m.

Of course, if the above are satisfied, then the canonical morphism
HYX,R)— H*U,IR) vanishes for k> 2m, since it factors through H{¥, R)=0.

This may be expressed as follows:

1.3.2. Lemma. If U <X is m-admissible, k>2m and ae Z¥(X,R), then there is an
element be C*~(U,R) such that a|y=6b.

1.3.3. Proposition. Let X be a Cech space and U CX an open set (in the ordinary
sense ) that is m-admissible. Then U is underlying to some m-admissible Cech open set
U<X.

Proof. By definition U is m-complete and there is an open V such that UCV CX
and HYV, R)=0 for all k> 2m. If we take a sufficiently fine Leray open covering of
V with respect to the constant sheaf such that V< X and then a sufficiently fine
Stein open covering of U such that U <Y, it is clear that U < X is m-admissible.

2. Cech Transform of a Complex of Sheaves
2.1. Definitions. Let X be a Cech space and

2.1.1) 0-FL 22 2 m?2

a complex of sheaves of abelian groups on the underlying space X. We do not
suppose it to be an exact sequence of sheaves.

The Cech transform of the complex (2.1.1) over X will be the single complex
associated to the double complex

HYX,F) — HY(X, ¥°) — HYX, L) — ...
! i !

C'X,7) — C%X, £°) — C°X, &) — ...
l | l

C{(X,F) — CI(X, %°) — C'(X, L) — ...
) | !

More precisely, we define for g=0

(212) CYX; F, ):=CYX, %)@ { & CHX, z"-l)} SH(X, £9).

k=1
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An element of C{X; %, £’) has the form
o=(f;¢%....0" s 1%,

where
feCiX, %),

o teCrHX, Y for k=1,...,q,
e HY(X, £9).

We will call f the head of @, ¢* ! the k-th component of @ and #? the tail of ®.
Define the differential

4:CUX; 7, L) C X F,.2)
by
(2.1.3) A:=56+(—10"'D
where
8P :=(0f;8¢°, ...,607 1 en?; 0),
D®:=(0; jf, Dp®, ..., Dep?"1; Dn9).
Sometimes we will change the sign convention
A=6+(—=1)*'D to A=6+(—1)D.
We then define
(2.1.4) 29X, 7, %):=Ker{CYX; 7, LG 7, 7}
and the Cech hypercohomology groups
(2.1.5) H(X; F,¥):=24X; F, L)ACT X, F, L.
We will use the following.

2.2. Lemma. Let r': HY(X; #, ¥ )—>HYX, %) be the canonical morphism.

(@) If H7YX, £ Y)=0 for k=1,...,q—1 then r? is injective.

(i) If H4X, £%=0 for k=0,...,q —1 then r? is surjective.
Proof. It is an immediate consequence of the following elementary property of
double complexes: If M is the single complex associated to a double complex
K" =(K"J); ;5 o, then the canonical morphism HM')—H%K"°) is injective if
HY K" )=0 for j=1,...q—1 and surjective if HI (K" /*1)=0 for
j=0,...,q—1. This is to be applied for
0 if i=j=0
HX, %Y if j>i=0
C (X, %) if i>j=0
C Y (X, %Y if i,j>0.

Kii=

Part (i) of the above lemma is equivalent to
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2.3. Corollary. If a cocycle ®€Z4(X; F, ') has a head that is d-exact and if
HI X, #* 1)=0 fork=1,...,q—1, then ® is A-exact and, in particular, the tail of
& is D-exact.

2.4. Remark. Definition 3.4.3 of Chap. I can be restated as follows: A 0-closed form
1€ A*!(X)is said to represent an element of H'(X, Q) if there is a cocycle of degree [
ce ZY(X; Q4 4*)

of the Cech transform of the Dolbeault complex whose tail is 7, for some open
covering of X.

3. The 30-Complex %,
Let X be a complex space. For any pair (p, q) of natural integers, there is a complex
of sheaves on X of the form

» D D D D
0 —-C— L, —...— Lrra7l — grra__, |

| |
Ag}wl,q*lﬁ> AR

defined in [7].
We will deal exclusively with the case p=gq, so we write &}, for %}, ,.. The
complex .&,, defined as follows (the suffix X will be omitted).

3.1. Definitions.

TRAT DX if r<m
(3.1) L= AP @A™ i mSr<2m
AT @A™ if r=2m.

() _
Define j: T - QLPQ°=£ and
(i) For0=Zr<m—1,
D

g;l N g;l+1
d 0 0
(_1)r+l d (—.l)r
Qr@Ar—l@gr 0 0 4 Qr+1®Ar@Qr+1'
(i) Forr=m—1,
g'rnn—l D gm

m

Q" l@An 2@ Om! Gy d ym Am—1



