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2.3. Corollary. If a cocycle ®€Z4(X; F, ') has a head that is d-exact and if
HI X, #* 1)=0 fork=1,...,q—1, then ® is A-exact and, in particular, the tail of
& is D-exact.

2.4. Remark. Definition 3.4.3 of Chap. I can be restated as follows: A 0-closed form
1€ A*!(X)is said to represent an element of H'(X, Q) if there is a cocycle of degree [
ce ZY(X; Q4 4*)

of the Cech transform of the Dolbeault complex whose tail is 7, for some open
covering of X.

3. The 30-Complex %,
Let X be a complex space. For any pair (p, q) of natural integers, there is a complex
of sheaves on X of the form

» D D D D
0 —-C— L, —...— Lrra7l — grra__, |

| |
Ag}wl,q*lﬁ> AR

defined in [7].
We will deal exclusively with the case p=gq, so we write &}, for %}, ,.. The
complex .&,, defined as follows (the suffix X will be omitted).

3.1. Definitions.

TRAT DX if r<m
(3.1) L= AP @A™ i mSr<2m
AT @A™ if r=2m.

() _
Define j: T - QLPQ°=£ and
(i) For0=Zr<m—1,
D

g;l N g;l+1
d 0 0
(_1)r+l d (—.l)r
Qr@Ar—l@gr 0 0 4 Qr+1®Ar@Qr+1'
(i) Forr=m—1,
g'rnn—l D gm

m

Q" l@An 2@ Om! Gy d ym Am—1
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(iii) For m<r<2m—1,

r r+1
K7 _— L

23 0
0o 9@

Am-—l,r—m@'“®Ar—-m,m—l

@iv) For r=2m—1,

Am—l,r—m+l® @Ar—m+l,m—1

D
2m—1 2m
£, — &

Am-—l,m—l i Amm
(v) For r=2m,
D

Z, > e
I [
Ar*m,m(_D‘“@Am,r—mi) Ar—m+l.m®.._®Am,r—m+l.

Actually, the part C— £2—...— 2™ ! is the single complex associated to the
truncated double complex

1 d d

C Q° > Q1
1] -1 -]

;0 ! 0,0 4 8 m—1,0
QF —— 4° A ’
a| 3] 3]

N o] i
Qm—l (—1ym-! AO,m—l 9 > ... 0 ‘,Am—l,m—l

with the indicated sign conventions, and a similar observation may serve to define
0 ptqg—1
Co%p 0~ ... L.

3.2. Proposition (Bigolin [7]). For smooth X, (£, ,,D) is an exact sequence of
sheaves.

3.3. The Involution on ¥,,. A C-antilinear involution ¢ — ¢* is defined on %, as
follows:
(i) For (gny " L,F)in £L=0DA" '@ (r<m)
(gr’ ‘Pr_ 1’ Er)* : =(hr, _ u—Jr— 1’ g—r) .

(ii) For " lin ZrCcA™™ Y, (" H*:= —¢p" ! (m<r<2m).

(i) For " in &, CA", (@) *:=¢" (r=2m).

It is obvious that (D@)* = D(p*).

We denote by %, g the sub-complex of £, of fixed points under (- )*. We set

Re:=%(p+ ¢*). Note that a self-conjugate element of Z7, for r <2m has pure
imaginary ¥® components.
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3.4. The Morphism u: % —>%,,. A morphism u=y’, : %, — % is defined by
(@) Forr<m, L5, =@ DA '@Q =% and i, :=id. We define u=id on C
as well.
(i) For m=r<2m, ¥, is a direct summand of &}, , ; and g, is defined as the
canonical projection.
(iii) For r=2m,

uim

2m 2Zm
Lt L

Am,m-—l@Am—l.m 3(-0 9 Amm

(iv) For r=2m+1,

$2m+1 ! $ZM+1
m+1 m

#)

Am,m Am+1,m®Am,m+1.

(v) Forr>2m+1,%,,,, is a direct summand of .#}, and }, is defined as the
canonical inclusion.

3.4.1. Lemma. The above morphism pu commutes with D and the involution (- )*.

3.5. Relation with the (0@ d)-Complex. The (0@ d)-complex (¥,, d) is the direct sum
of the Dolbeault complex and its conjugate

- j d d d
00— %' — 49 —_ .. g1 — ...

(1 o) (5 o) (Za 0) (3 o)
Q’”(—DQ’" 01 Am,O@AO,m 029 09 R Amyq@A‘Iv"'_u_)_”

We define on ¥,, the involution (@, ) (@, p)*: =, @). It is related to the

00-complex by a homotopy operator f: 7} 4*1 %% and a morphism of
complexes y: #mtigi
3.5.1. The Homotopy Operator B: Lm1* —%: It is defined by

(i) For g=—1,

4 -1
L1 —_— 9,

-1 0 0
001

Q’"(—BA'"‘I(-BQ'” Q’"(—BQ’”.
(ii) For 0Zgq<m,
gt ! ~ @

meaft 0.0 0 ”
=1 00..0 1

A™ID...pAT™
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(iii) For g=m,

Amm _& Am @ AT

(iv) For g>m, p: Lmiat1 41 is defined by 0.

3.5.2. The Morphism of Complexes y: ¥m* —%, . It is defined by
(i) For g=—1,

m— 1 4 -1
L _ 9,

00 —d
_

Qm—l@Am—Z@Qm—l Qm@Q‘m
(i) For 0=Zg<m,

m+q q
P E4

oo 0...00 H
= q(o 0...0 5)

AT . @AT! A™ I AT
(iii) For g=m,
e
( 00..0 1) “
ATP"D .. DA™ A0y, A™IP AT,

In particular, for g=m, y(a@™™)= (™™, —a™™).
The following can be easily checked.

3.5.3. Lemma. (i) df+pD=ypu.
(ii) dy=yD.

J. Varouchas

(iii) If n™™ and (™™ are (m, m)-forms, then f(n™™)+y({™™) =(@™™, a™™) where

Qm,m+ o.m,m — r’m,m.
iv) B and y anticommute with the involutions (-)*
Y

m+q—1
R

AN

+ B -1
Lmi g

m

S
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3.6. The Cech Transform of the 00-Complex. For any Cech space X, we denote by
&.(X), €.(X,[R]) and &,(X,R) the Cech transforms of the complexes

0-C>L2 L ...,
0-R->LIPr— ..,
0->R->Z g Lh g e s
respectively. So we set
@) EUX):=CUX; T, £Z,),
(3.6.1) (i) &4X,[R]):=CYX;R, %),
(i) SiX,R):=C(X;R, %, p).

Of course, XX, R)C &4 X, [IR])C &4 X). Elements of £4(X) will be writtenin a
matrix form. For example an element of &>™(X) will be written as

a g° ..ogh!
EO (p0,0 (Pm—l,o
(3.6.2) o= :
Em*l gDO,m—l (Pm-l,m—l
where T
aeC*™X,Q)

gte Cam R i(Y, OY
ReC* ™ '1(x,0Y
(pk,lec2m~k—l—2(X,Ak,l)
n™mme HO(X, A™™)
a is the head and #™™ the tail of &.
Pe&2"X,[R]) iff a=aeC*™X,R)
Pe&2"X,R) iff a=a,

gk:hk’ (pk.l_'_q—)l,k:() and r’m,m=ﬁm,m.
If we apply 4:82"(X)—&2™{(X) we obtain

b uO um—l
=0 0,0 m—1,0
Ad= )
m—1 o,m—1 m—1,m—1
lpm,m im+1,m
lm,m+1
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where
(@
(i1)
(i)
(iv)
)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)
(xii)

(3.6.3)

u=0gk—dg*~! for 1<k<m
*=06—a
i'=8h —dh'*
900 = 5% 4 g0 —

P O0=0¢"0+(—1)g"—3p* 10 for 1<k<m
p*!1=0p% - 0% 1 +(—1)"'R for 1LI<m
PPl =gR —Jph T _ gkt for 1<ki<m

lpm,m=__E(nm,m)_aa'(pm— 1,m—-1

lm+ 1,m

for 1ZI<m

— a"m,m
a‘nm m

lm ,m+1
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In the next section we construct, for any Kahler space (X, @), an open covering

% such that on the resulting Cech space X and for any integer m> 0, there is a
cocycle in £2™(X, [IR]) whose tail is w™.

4. The Cech Cochains Associated to a Kdhler Metric

We first note that, if X is a Kahler space, it admits by definition an open covering
(U,) such that there are elements ¢, e SP*(U,) such that ¢, — ¢, is locally the real
part of a holomorphic function on U,nU. We show that “locally” can be omitted.

4.1. Covering Lemma. Let X be a paracompact topological space and (U ), 4 an
open covering of X such that, for every o, fe A, (Ulp) is an open covering of
U,nUp. Let J= UJ,,,

Then there exzsts a refinement

jeJap

Z=(X})rca
of (U,) together with two maps
a:Ad—A
JiAxA—=J
such that
4.1.1) O X2 Un

(i) X,nX,CUi&4,.



