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J. Varouchas

In the next section we construct, for any Kahler space (X, @), an open covering

% such that on the resulting Cech space X and for any integer m> 0, there is a
cocycle in £2™(X, [IR]) whose tail is w™.

4. The Cech Cochains Associated to a Kdhler Metric

We first note that, if X is a Kahler space, it admits by definition an open covering
(U,) such that there are elements ¢, e SP*(U,) such that ¢, — ¢, is locally the real
part of a holomorphic function on U,nU. We show that “locally” can be omitted.

4.1. Covering Lemma. Let X be a paracompact topological space and (U ), 4 an
open covering of X such that, for every o, fe A, (Ulp) is an open covering of
U,nUp. Let J= UJ,,,

Then there exzsts a refinement

jeJap

Z=(X})rca
of (U,) together with two maps
a:Ad—A
JiAxA—=J
such that
4.1.1) O X2 Un

(i) X,nX,CUi&4,.
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Proof. Since X paracompact, (U,) admits a refinement (V,),. , indexed by the same
set A such that V,C U, and (V) is locally finite. Let 4 be the set of all multi-indices

(412) =00y sy o o J) (SEN)

such that the «, are pairwise distinct elements of 4 and j,eJ,, for 0=<r<s. Set
(4.1.3) X, =V, () UL, U V.
r=0 B+

X, is open since (V) is locally finite.
Define a(4):=a,. Then obviously X,CU,,.
Now suppose that
”=(ﬂ09 “-7ﬂt; kO’ "'5kt)

is a multi-index in 4 such that X ;X , % 0. Then §, must be equal to one (and only
one) of the «, for otherwise V;,n X, would be empty by construction of X ;. If
Bo=1,, set ]
Js )=, .
It is cl that .
is clear tha X,nX,C U

aol,y

- ir — J(A, 1)
- Uaoﬂo - Ua(l)a(u)

as required. Finally it is true that the X, (A€ 4) cover X; for if x € X is arbitrary,
take o€ 4 such that x € V. The set S of f € 4 such that x € ¥ is finite containing o
[since (V}) is locally finite]; let

S={ug,....0p with og=a.

For all -
re{0,....s}, xeV,nV,cU,nU,

hence xe Uk, for some j,eJ,,, . So we obtain a multi-index Ae A4 with xe X .

Since x€ X was arbitrary, the proof is complete.

4.1.1. Corollary. Let X be a Kdhler space with a fixed Kdhler metric k. Then X
admits an open covering & =(X ;) in which is represented by elements

©,€SP*(X )

such that
(pl—(pu=flu+j:1;u fluE(g(X}.nXu)‘

Proof. By definition, there is an open covering (U,) together with p,e SP®(U,)
such that y,—yz,e PH(U,nU,R). This means that U,nU; admits an open
covering (Ulp);e,,, such that

(Wa—vplug,= g{w + gﬁp ) giﬁ e O(Uiy).

Apply the Covering Lemma above to obtain an open covering (X ;) of X with
X,CU,; and X;nX,cUX%9 . Then if we set

01 =Waulx,
fo, =gk |
it = 8aDa(wlX 10X,

these elements satisfy the required conditions.
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4.2. Kdhler-Cech Pairs. It will be convenient to multiply the above elements ¢,
and f;, by i=|/—1 to obtain
(1) P (pu =f2u _];.u
4.2.1) (i) —ip,eSP(X,)
(iii) 35—§01=0)|x’1.
So the Kidhler metric of X is
K= {(Xp —ig;)}.

A pair (f, ) with fe C1(X, 2° and ¢ € C°(X, A% satisfying (4.2.1) will be called
a Kdhler-Cech pair and X =(X,%) will be called a Kdhler-Cech space. Since
(00);,= @, — @;, we have the identities

(1) dp=f—f
Q) of=df

(3) dof=0

A “4) dbg=—df

(5) ddp=df

(6) 90¢=¢(w)
(7) dw=0.

Identity (A2) shows that 6f € Z*(X,R). The diagram

—idgp e—-d———i(p

—ZIV w

(42.2) of & f - | 30 <
df 21— d¢

shows that —2Imjf= —id¢ represents the Kaéhler class ¢é,(x) of (X,x) in

H'(X,PHy g), 6f represents c,(k)€ H*(X,R) and df represents &,(x)e H'(X, Q}).

Moreover (4.2.2) confirms that w is a d-closed representative of ¢, (k) and a J-closed

representative of ¢,(x), i.e. that diagram (1.2.4) of Chap. Il is indeed commutative.
In terms of the d0-complex %; g given by

1
0-»111@» o 2, Dog2 P, g3
1,R 1,R 1,R 1,R

423 | o N
(D) —— (4% ) g — Ax ——-»(A1 IPA* YR
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[where (-)g denotes self-conjugate elements and (-);z anti-self-conjugate
elements] we constructed an element

of | f
(4.2.4) o,(f,0):=|f|o| eUX.R)

B

(with the notations of 3.6) and relations (A) mean precisely that 4®,(f, ¢)=0.

4.3. Generalization to Higher Powers. We now construct the announced element
?,(f,9)eZ*"(X; R, Z,)
whose head is (6f)™ and tail ™, and whose existence is the key step in the proof of
Theorem 2. Actually, if we set
@) A"X):=2"X;C.%,), H(X):= @ A"X)

m20

@3.1)) AX,[R]):=2""(X;R, %,), F(X,[R]:= @ A™(X,[R])

m=0

(i) A"X,R):=2""(X;R, %, r), AXR):=@ AX,R)
m20
then there is an associative product law on A (X) with respect to which it is a
graded C-algebra admitting #'(X, [R]) as aRR-subalgebra, but not (X, R). Then
D,.(f, @) is simply the m-th power of @,(f, ¢) in A (X,IR).
@,(f, @) is defined by

a, | g gt
By | on® U
@4.3.2) Pufs0):=|: : : e A™X,[R]),
E:—l (pg,m—l q03—1,»1—1
M ™

where a,,e C*"(X,R), gk e C*"*~ (X, Qb,
I C* X, Q) prleCPMTETITHX AMY,  gmme HAX, A™™)

are given by the relations (B) below. Recall that 6f=6f by (A2). We use the cup-
product of Cech cochains as defined in 1.2.

1) an,=06"

2 gn=(=14@N* -1

(B k="' f-@f)

@ Ph'=(= DN SO @) for kel<m—1

(5) ghi=(=1)" A S @2 g Akt
for k<m—1=Zk+I

(B)
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6 on M=(=)"dNH" T pad
M ngm=or.
Domains of validity of formulae (B)

— kK
1 2

1

Fig. 1

Before proving that 4®,(f, ¢)=0 we mention

4.4. Relation Between ®,(f, ¢), D.(f, @), and ®,,,,(f, ®). A formal consequence of
identities (A) and (B) is the following:

(1) am+n=am‘an
() gmin=8m-a, for 0=k<m

3) =(—1)"dgr~'-gk=™ for mZk<m+n
4 hii.,=a,-hl for 0Zi<n
5) =ht"-di*~' for n=<l<m+n
© 6) Onin=(—1'gh-h, for 0<k<m, O0=i<n
(7 =(—1)rdgr~1-@t~™! for m<k<m+n, O0Zl<n
) =(=1)yp&t"-dh*~* for n<l<m+n—k—1
©) =(— 1) 1§@ntnTi=Lion. Fokti-m=n+1,n-1
for Izn, m+n—1Zk+i<m+2n—1
(10) =gk mimr aAgmn for k+IzZm+2n—1

A1) ppiymr=nmm A"

Domains of validity of formulae (C)

e — k
NN >
L

4 6 7

Fig. 2
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Actually, the identities (C) define the announced product law
HA™X)x AX)» A X).

It is true (the proof be omitted) that the law in question is associative (it will be
denoted by the symbol x) and, if ® and ¥ are A-closed, @ x ¥ is also 4-closed.
However it is not compatible with the involution defined in 3.3 and this is the
reason for which we work in #™(X,[IR]) instead of & ™(X,IR).

Identities (C) will be used to prove

4.5. The Relation A®,(f, p)=0. In order to prove that the element ,(f, ¢)
defined in (4.3.3) is 4-closed, we must prove according to (3.6.3) the relations
(1) éa,=0
(2) dgm=ay
(3) ogk=dgk ! for 1<k<m
4 ohy=a,
(5) ohl=dhl™t for 1<Zi<m
(D) 6) OS¢ °=—gn+hy,
(7) 0¢k°=(—1)"1gk+agk ! for 1<k<m
8) doY'=00% ' +(—1'hL for 1=I<m
9) d¢kt=0p%'"" 140k 1! for 1<Zki<m
(10) almym)=2dpp= "t
(11) dyp™=0.
Proof of (D1). It is obvious.
Proof of (D2). dgn=0(f-(0f)"")=(0f)"=ap.
Proof of (D3).
Ogh=0((—VX@f ) f-@f )" *~H=(dfy- ("""
=d(= D)@t S Of ) ) =dgn
Proof of (D4).
Shy=3((0f)" "1 - [)=@f)" by (A2)
=a,,.
Proof of (D5).
Shy=0(@f)" " - - @)= )" " (df) by (A2)
=d(©@fy""-f- @)~ )=dh, .
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Proof of (D6)
S =0(f - (0f)" 2 H=©f " 1 - J—f-(6f)" ' =hy—g.
Proof of (D7). Case 1. k<m—1
5fpm° 5(( 1dgi™! - o) by (C7)
g ! 5<p y=dgi ' (—gm_k+ha_) by (D6)

=—dg “Em- k+6(g" Yeha)

=(=1)"1gk +0¢pk 1% by (C3) and (C6).
Case 2. k=m—1

don L O=6(— 1" Hdf )" @) =Wdf )" do=(df )" (—f+]) by (A1)

=@yt fra(=0""Hf )" S )
=(—1)"g" 14+ 8™ 2° by (B2) and (BS).

Proof of (D8). Case 1. I<m—1
o 1O0=0((—1y" AN @) =(df)" - dp=@df)" " (—=f+]) by (A1)
=—@dt fra(=0)""Hadf )" f )
=(—1)"gn " '+0¢n"*>° by (B2) and (B5).

Proof of (D8). Case 1. I<m—1
m'=0(—1) ol -dh'™") by (C8)
=(=10¢n° - dhi ' =(—1)(—gn_1+hn-) dh/™" by (D6)
=0(—1)"'gm B H(= 'Ry dh/ !
=0p%' "' +(—1)'h} by (C6) and (C5).

Case 2. I=m—1
3¢S ™™ =0(0¢ - (dfy""2-Jp)=(—1)""'5¢-(@df)"" by (A5)
=(=1"(f—F) @™~ by (A1)
=a(— )" 2 T @y )+ (=1 (df)m
=a-(p'(')l,m—2+(_1)m‘1ﬁ$“1 by (B4) and (BS5).

Proof of (D9). Casel. k+l<m—1.
We can write m=r+s with r>k and s>1[. Then

' =0pr,=0(—1)g;-h) by (C6)

=(—1)/0gs - hi{+(—1)+'" gk ok

=(—1)'dg;™ " h{+(—1)**"""g;-dh{™" by (D3) and (D5)
=0(—1)'g; " -h)+a(—1)""gr-h{T)

=0dpk '+ 0pk' "1 by (C6).



Kihler Spaces and Proper Open Morphisms 45

Case 2. k+l=m—1

S =8((—DXdf)*- o - (df ¥ ' - Jp) by (BS)
=(—1)df)*-d¢-(@df) by (AS)
=(=1)"71@N - f- @) +(= 1@k 7-@df) by (A1)
=(—1*"""'gpyy -dh/ T +(—1)'dgi™" “hiy, by (B2) and (B3)
=0(—1)" gk BT HO(—1)'g R
=0pk!" 1+ 3ok 1! by (C6).

Case 3. k<m—1<k+I

O = (="K dfy I S (@f " TF T AT by (BS) and (AS)
=(=)" N df " S (df )T - 00g AT by (A6)
=d(—=1)"'df )" S - ()" * 72 Op AT

+O(=)"THAf T T SR Do AT by (A4), (AS), (A6)
=0pk' 14+ 0% 1! by (BS).

Case 4. k=m—1

S~ V=(dfy""' "1 dp A by (B6)
=d(— 1" dN)" e AT+ A(—= )T AT 60 Fp AT
=0@r 11714 9pm" 2! by (BS) and (B6).

Finally, (D10) and (D11) are obvious since ¢ '™ ' =™ ! and g™ ™ =™
Therefore the proof of the relation 4®,(f, ¢)=0 is complete.

4.5.1. Remark. There are several alternative ways of proving A®,(f, ¢)=0. For
example, identities (C) written only for n=1 give a relation between &,( f, ¢) and
®,...(f, ¢), and the relation A4, (f, ) can be proven by induction on m.
Otherwise, one can prove directly that 4®,,= A®, =0 implies A(P,, x @,) =0 using
(A), (B), and (C) but the calculations would be longer than the above (30
verifications are needed).

5. Theorem 2

5.1. Statement of Theorem 2. Let (X, ) be a Kéhler space and m >0 an integer.
Then there exist open sets U, C X (a € A)and U}, CU,nU,(je J,4) depending on X
and m alone such that
(i) Any compact m-dimensional complex-analytic subset of X is contained in

some U,,.

(ii) Any compact m-dimensional complex-analytic subset of U,nU, is
contained in some Uj,.

(iii) There exist elements y,€ A™™U,,R) such that

o™ty =iddy, .



