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5.5. Remark. (1) We did not use the positivity of w in the proof of Theorem 2. The
result we can actually prove by our method is the following: If U, and U, are the
open sets of Theorem 2, then conditions (i) and (ii) remain unchanged. If moreover
Ko ---» K, are arbitrary elements of 2#"(X) and wq:=65xq for 0<g<m, then

(iii) There are elements y, € A™™U,) such that (wy A ... A @)y, = 00p,.

(iv) There are elements gfy,alze A™™(Uly) such that dgly=0doi;=0 and
(Wa—Wpluz, = 0ap+ 0p- )

(v) @i and G}, represent cohomology classes of H™(UJ,, Q™).

(2) The proof we gave was a reasoning on &,,(X, [IR]). We could have chosen
&.(X,R) as well, replacing @,,., ,(f, ¢) by

Re(®P,, ,4(f, (P)):%(d)nm 1(fs @)+ @1 (f, 0)%)

and using Lemma 3.5.3(iv).

I1V. The Main Results

1. Stability Theorems

We are now in position to prove that some proper images of Kihler spaces are
Kébhler.

1.1. Theorem 3. Let n: X > X' be a geometrically flat morphism of complex spaces
with m-dimensional fibers (7 is proper surjective and X' reduced by definition).
Suppose X is Kdhler. Then X' is weakly Kdhler.

If moreover there is a discrete D' C X' such that for any x'€ X'\D', either

(1) X' is weakly normal at X' or

(i1) ©~(x') admits in X a smoothly embeddable neighborhood
then X' is Kdhler.

Proof. With the notations of Theorem 2, set
V,={x'eX'|n ' (x)CU,}
Vyi=a (V)
Vii={x'eX'|n~ " (x")C UL}
Viy=a"'(V;))
Wa = TE*(Xa'V,)
8{;3 = T[*(T{LMV{,H) .
Since 7 is surjective, the sets ¥, cover X' and, for fixed , B, the ¥} cover V;nV;.
By Proposition 3.4.1 of Chap. I, y,e SP(V;), glse #'(V,}) and, since (1, — py)ly,
=glg+ 8. Wa—wp€ WPH(V,nV;,R). So X' is weakly Kéhler. Now if conditions
() and (ii) are fulfilled, then gI; is holomorphic on V,J\D" and y,—1; pluri-
harmonic on V;nV;\D". If we take a refinement (W;) of (V) such that each

point of D’ belongs at most to one W, then it is clear that Theorem 1 applies
and X' is Kéhler.



