

Werk

Titel: Mathematische Annalen

Verlag: Springer

Jahr: 1989

Kollektion: Mathematica

Werk Id: PPN235181684_0283

PURL: http://resolver.sub.uni-goettingen.de/purl?PID=PPN235181684_0283 | LOG_0031

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online system to access or download a digitized document you accept the Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

Contact

Niedersächsische Staats- und Universitätsbibliothek Göttingen Georg-August-Universität Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Germany Email: gdz@sub.uni-goettingen.de

Schichten von Matrizen sind rationale Varietäten

Klaus Bongartz

Gesamthochschule Wuppertal, Fachbereich 7 Mathematik, Gaußstrasse 20, D-5600 Wuppertal 1, Bundesrepublik Deutschland

Einleitung

Operiert eine algebraische Gruppe auf einer Varietät, so bilden die Bahnen einer festen Dimension jeweils eine lokal-abgeschlossene Menge, deren irreduzible Komponenten man Schichten nennt [1, 2].

Von besonderem Interesse ist das Studium der Schichten halbeinfacher oder reduktiver Lie-Algebren unter der adjungierten Operation der entsprechenden Gruppen (siehe etwa [1] und die dort angegebene umfangreiche Literatur).

Hier betrachten wir nur den Fall der vollen linearen Gruppe GL_n , die via Konjugation auf der Menge gl_n aller Matrizen operiert. Dieser Fall ist so wichtig und besitzt eine so vollständige und elegante Lösung, daß wir über die von uns erzielten neuen Ergebnisse hinaus auch ältere, zum Teil schwer zugängliche Resultate mit in die Arbeit aufgenommen haben. Dabei sind vor allem einige zentrale Teile aus Petersons reichhaltiger Thesis zu nennen, deren Studium auch den Ausgangspunkt zu dieser Arbeit bildete. Um den Kreis der möglichen Leser nicht unnötig einzuschränken, benutzen wir keinerlei Lie-Theorie, sondern nur fundamentale Ergebnisse aus der algebraischen Geometrie und der linearen Algebra, insbesondere aus der Theorie der Elementarteiler. Dieser Standpunkt wird durch folgende, auf Peterson und Ringel (unveröffentlicht) zurückgehende Beschreibung der Schichten von gl_n ermöglicht:

Zu einer $Partition\ p=(p_1,p_2,\ldots,p_r)\ von\ n$, d.h. einer Folge natürlicher Zahlen $p_1\geqq p_2\geqq \ldots \geqq p_r\geqq 1$ mit $p_1+p_2+\ldots+p_r=n$, betrachtet man die Menge S(p) aller Matrizen, deren Elementarteiler e_1,e_2,\ldots,e_r der Bedingung Grad $e_i=p_i$ für $1\le i\le r$ genügen. Die Abbildung $p\mapsto S(p)$ ist eine Bijektion zwischen den Partitionen von n und den Schichten von gl_n .

Wir geben im zweiten Paragraphen einen Beweis für dieses Resultat, der sich an Petersons Vorgehen in [5] orientiert. Zuvor rekapitulieren wir im ersten Abschnitt die Elementarteilertheorie der Matrizen, soweit wir sie benötigen, und vertiefen danach im Kernstück der Arbeit einige Aspekte der Theorie. Dies ermöglicht uns dann im dritten Teil kurze Beweise für die Rationalität und Glattheit der Schichten, wobei letztere in Charakteristik 0 bereits auf völlig verschiedenem Weg von

Peterson in [5] sowie Kraft und Luna (unveröffentlicht) gezeigt worden war. Im letzten Paragraphen geben wir zu jeder Partition $p = (p_1, p_2, ..., p_r)$ einen affinen transversalen Querschnitt Q(p) in S(p) an. Das soll bedeuten, daß Q(p) ein affiner Teilraum von S(p) ist, der jede GL_n -Bahn auf S(p) genau einmal trifft, und zwar so, daß sich in keinem Punkt von Q(p) die Tangentialräume an Q(p) und die Bahn des Punktes echt schneiden. Im Gegensatz zu Petersons Konstruktion aus [5], die in der Einleitung von [1] leicht verständlich dargestellt ist, funktioniert unser Verfahren auch in positiver Charakteristik. Wir wollen es im folgenden kurz beschreiben:

Die Matrizen aus Q(p) bestehen aus r quadratischen Diagonalblöcken D_1, D_2, \ldots, D_r jeweils vom Format p_i . Dabei ist D_r die Begleitmatrix (siehe 1.4 für die Definition) eines beliebigen normierten Polynoms vom Grad p_r . Die restlichen D_i 's werden rekursiv nach folgender einfacher Vorschrift gebildet. Ist $q_i := p_i - p_{i+1} = 0$, so ist $D_i = D_{i+1}$. Im anderen Fall nimmt man die Begleitmatrix E eines beliebigen normierten Polynoms vom Grad q_i und setzt

$$D_i = \left[\begin{array}{c|c} E & \\ \hline & 1 & \\ \hline & D_{i+1} \end{array} \right] .$$

Für die Partition (4, 2, 2, 1) zum Beispiel besteht Q(p) gerade aus allen Matrizen der Form

mit beliebigen a, b, c, d aus dem Grundkörper.

In der gesamten Arbeit sei k ein algebraisch abgeschlossener Körper beliebiger Charakteristik. Daß wir uns mit GL_n und gl_n beschäftigen, hat gegenüber dem üblicherweise betrachteten Fall der Matrizen mit Determinante 1 und Spur 0 lediglich einige Vorteile in den Notationen. Natürlich gelten alle unsere Ergebnisse mit den eventuell notwendigen offensichtlichen Modifikationen auch für diesen Fall. Alle topologischen Aussagen beziehen sich stets auf die Zariski-Topologie.

Mein Dank gilt W. Borho, der mir im Anschluß an eine Vorlesung über Schichten die Lektüre von Petersons Arbeit empfahl. Die Rationalität der Schichten ist bei Peterson als offenes Problem formuliert.

1. Elementarteiler

1.1 Jede Matrix $A \in gl_n$ definiert via $X \cdot v = Av$ eine k[X]-Modulstruktur M_A auf dem Vektorraum k^n aller Spalten mit n Zeilen. Umgekehrt liefert eine k[X]-

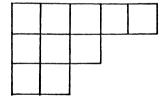
Modulstruktur auf k^n eine Matrix, indem man die Darstellungsmatrix der Multiplikation mit X bezüglich der kanonischen Basis v_1, v_2, \ldots, v_n von k^n betrachtet. Dabei entspricht die Isomorphie von Moduln der Konjugiertheit der entsprechenden Matrizen. Der aus der linearen Algebra wohlbekannte Elementarteilersatz für Matrizen besagt nun folgendes:

Satz. Sei $A \in gl_n$.

- a) Es gibt normierte nicht-konstante Polynome $e_1, e_2, ..., e_r$ in k[X] mit $e_i = r_i e_{i+1}$ für i < r und geeignete $r_i \in k[X]$, derart daß M_A zur direkten Summe der $k[X]/(e_i)$ isomorph ist.
- b) Falls M_A isomorph zu einer direkten Summe zyklischer Moduln der Form $k[X]/(f_i)$ mit normierten nicht-konstanten Polynomen f_1, f_2, \ldots, f_s ist, derart daß $f_i = s_i f_{i+1}$ für i < s gilt, so folgt r = s und $e_i = f_i$ für $1 \le i \le r$.

Die in dem Satz auftretenden eindeutig bestimmten Polynome $e_i = e_i(A)$ nennt man die *Elementarteiler* von A. Besonders einfach ist die Situation, wenn M_A zyklisch ist. Dann hat nämlich A nur einen Elementarteiler, der zudem mit dem Minimalpolynom und dem charakteristischen Polynom von A übereinstimmt.

1.2. Mit Hilfe der Elementarteiler ordnet man jeder Matrix $A \in gl_n$ eine Partition p(A) von n zu, nämlich die Folge der Grade der Elementarteiler. Wie gewöhnlich veranschaulichen wir eine Partition $p = (p_1, p_2, ..., p_r)$ durch ihr zugehöriges Young-Diagramm, indem wir ein Schema zeichnen mit p_1 Kästchen in der ersten Zeile, p_2 in der zweiten, usw. Das Young-Diagramm zur Partition (5, 3, 2) hat also folgende Gestalt.



Durch Vertauschen von Zeilen und Spalten im Young-Diagramm zu p erhält man das Young-Diagramm zur *dualen Partition* \hat{p} . So ist z. B. (3, 3, 2, 1, 1) die duale Partition zu (5, 3, 2).

Zu jeder Partition p betrachten wir die Menge S(p) aller Matrizen mit p(A) = p. Wie bereits bemerkt, erhalten wir auf diese Art und Weise gerade alle Schichten von gl_n . Hier überlegen wir uns zunächst nur, daß alle Matrizen aus S(p) Bahnen gleicher Dimension liefern. Dazu ordnen wir einer Partition $p = (p_1, p_2, ..., p_r)$ die Zahl $p^2 = p_2^1 + p_2^2 + ... + p_r^2$ zu.

Lemma. Sei p eine Partition. Dann gilt für alle $A \in S(p)$ die Gleichung $\dim \operatorname{End} M_A = \hat{p}^2$.

Beweis. Sei $M_A \Rightarrow \bigoplus_{i=1}^r k[X]/(e_i)$, also End M_A isomorph zu $\bigoplus_{i,j}$ Hom $(k[X]/(e_i)$, $k[X]/(e_j)$). Wegen der für alle normierten Polynome g,h gültigen Vektorraumisomorphismen Hom $(k[X]/(gh), k[X]/(g)) \Rightarrow k[X]/(g) \Rightarrow (h)/(gh) \approx \text{Hom } (k[X]/(g), k[X]/(gh))$ folgt aus den Teilbarkeitseigenschaften der Elementarteiler jedenfalls

dim End $M_A = \sum_{i,j} \min{(p_i, p_j)}$. Diese Zahl hängt also nicht von A ab, sondern nur von p(A). Um sie wirklich zu berechnen, betrachten wir p_1 verschiedene Körperelemente $\alpha_1, \alpha_2, \dots, \alpha_{p_1}$ und setzen $e_i = \prod_{j=1}^{p_i} (X - \alpha_j)$. Dem Modul $\bigoplus_{i=1}^{p} k[X]/(e_i)$ entspricht dann eine diagonalisierbare Matrix D aus S(p). Trägt man in die erste Spalte des Young-Diagramms zu p stets α_1 ein, dann in die zweite α_2 usw., so erkennt

 $M_D = \hat{p}^2$.

1.3. Für die nachfolgende einfache Tatsache konnten wir in der Literatur keinen geeigneten Nachweis finden, so daß wir der Vollständigkeit halber einen Beweis anführen.

Lemma. Sei $A \in S(p)$ mit $M_A = \bigoplus_{j=1}^r k[X]/(e_j)m_j$. Dann gilt für jede natürliche Zahl $i \ge 1$, daß ein von i Elementen erzeugter Untermodul N höchstens $\sum_{j=1}^i p_j$ als Dimension hat. Falls dabei Gleichheit auftritt, so ist N isomorph zu $\bigoplus_{j=1}^i k[X]/(e_j)$.

Beweis. Man führt leicht beide Aussagen auf den Fall zurück, wo A nur einen Eigenwert hat, den man sogar noch als 0 annehmen darf. A ist also nilpotent, und die Elementarteiler haben die einfache Gestalt $e_i = X^{p_j}$.

Für i=1 ist die Proposition wahr, weil X^{p_1} das Minimalpolynom von A ist. Im Induktionsschritt unterscheiden wir zwei Fälle.

1. Fall. X^{p_1-1} annuliert N.

Sei s die Anzahl der p_j mit $p_1 = p_j$. Dann liegt N schon in dem von Xm_1 , $Xm_2, \ldots, Xm_s, m_{s+1}, \ldots, m_r$ erzeugten Untermodul von M_A . Per Induktion über $\dim M_A$ gilt also $1 + \dim N \leq \sum_{i=1}^{t} p_i$. Insbesondere tritt in diesem Fall nicht Gleichheit auf.

2. Fall. X^{p_1-1} annulliert N nicht.

Dann seien Erzeugende $n_1, n_2, ..., n_i$ von N so gewählt, daß X^{p_1-1} $n_1 \neq 0$. Folglich liegt für ein j mit $p_j = p_1$ die Projektion von n_1 auf den direkten Summanden $k[X]/(e_j)m_j$ nicht in dem von Xm_j erzeugten Untermodul. Ohne Einschränkung sei j=1. Dann wird durch die Vorschriften $\alpha m_1 = n_1$ und $\alpha m_j = m_j$ für $2 \le j \le r$ ein Automorphismus α von M_A definiert. Man betrachte nun das folgende kommutative Diagramm mit exakten Zeilen:

$$0 \longrightarrow k[X] \cdot n_1 \xrightarrow{\varepsilon} N \longrightarrow \bar{N} \longrightarrow 0$$

$$\downarrow^{\beta} \qquad \downarrow^{\gamma} \qquad \downarrow^{\delta}$$

$$0 \longrightarrow k[X]/(e_1)m_1 \xrightarrow{\varphi} M_A \longrightarrow \bigoplus_{j=2}^{\varepsilon} k[X]/(e_j)m_j \longrightarrow 0$$

Dabei sind die horizontalen Abbildungen die kanonischen, während y die Komposition der Inklusion $N \subset M_A$ mit α^{-1} ist. Per Konstruktion faktorisiert $\gamma \varepsilon$ also in der angegebenen Weise. Ferner ist β bijektiv, also nach dem Schlangenlemma δ injektiv. Da \bar{N} von i-1 Elementen erzeugt wird, gilt per Induktion $\dim \bar{N} \leq \sum_{j=2}^i p_j$, also auch $\dim N \leq \sum_{j=1}^i p_j$. Gleichheit erzwingt $\dim \bar{N} = \sum_{j=2}^i p_j$, also per Induktion $\bar{N} \Rightarrow \bigoplus_{j=2}^i k[X]/(e_j)$. Da φ per Konstruktion ein Schnitt und β bijektiv ist, ist auch ε ein Schnitt, d.h. $N \Rightarrow \bigoplus_{j=1}^i k[X]/(e_j)$.

1.4. Zunächst sei der Leser daran erinnert, daß man zu einem normierten nicht konstanten Polynom $f = X^m + a_{m-1}X^{m-1} + \ldots + a_0$ die zugehörige Begleitmatrix $B(f) \in gl_m$ definiert als

Durch B(f) wird k^m zu einem zyklischen k[X]-Modul, so daß f der Elementarteiler von B(f) ist. Ähnlich definieren wir zu je zwei natürlichen Zahlen s, t und zu jedem Polynom $h = b_s X^s + b_{s-1} X^{s-1} + \ldots + b_0$ vom Grad $\leq s$ die (s+1)xt – Matrix C(s+1,t,h) als

$$\begin{bmatrix} 0 & . & . & . & . & . & . & 0 & b_0 \\ . & & & & . & b_1 \\ . & & & & . & . \\ . & & & & . & . \\ 0 & . & . & . & . & . & 0 & b_s \end{bmatrix}$$

Statt C(s+1,t,h) schreiben wir im folgenden kurz C(h), wenn das Format der Matrix aus dem Zusammenhang heraus klar ist.

Zu vorgegebener Partition p von n spielen später die drei im folgenden definierten Teilmengen $X(p) \supset Y(p) \supset Z(p)$ von gl_n eine entscheidende Rolle. Dabei gehört eine Matrix A zu X(p), falls es für alle i, j = 1, 2, ..., r normierte Polynome f_i vom Grad p_i gibt und beliebige Polynome h_{ij} vom Grad $p_i = 1, 2, ..., r$ so daß $p_i = 1, 2, ..$

Natürlich sind bei einer derartigen Matrix die f_i 's und h_{ij} 's eindeutig durch A bestimmt. Für die Partition p = (4, 3, 1) besteht also X(p) gerade aus allen Matrizen der Gestalt

$$\begin{bmatrix} 0 & 0 & 0 & a & 0 & 0 & i & q \\ 1 & 0 & 0 & b & 0 & 0 & j & r \\ 0 & 1 & 0 & c & 0 & 0 & k & s \\ 0 & 0 & 1 & d & 0 & 0 & l & t \\ 0 & 0 & 0 & e & 0 & 0 & m & u \\ 0 & 0 & 0 & f & 1 & 0 & n & v \\ 0 & 0 & 0 & g & 0 & 1 & o & w \\ 0 & 0 & 0 & h & 0 & 0 & p & x \end{bmatrix}$$

mit beliebigen Koeffizienten aus k.

Eine Matrix A aus X(p) gehört zu Y(p), falls folgende drei Bedingungen Y1, Y2 und Y3 erfüllt sind:

Y1: Für i>j gilt $h_{ij}=0$

Y2: Für i < r ist f_{i+1} ein Teiler von f_i .

Y3: Für alle i < j ist f_i ein Teiler von h_{ij} .

Schließlich gehört eine Matrix aus Y(p) zu Z(p), falls alle h_{ij} verschwinden. Wegen der Blockdiagonalform und der Eigenschaft Y2 ist klar, daß eine Matrix A aus Z(p) als Elementarteiler gerade die Polynome f_1, f_2, \ldots, f_r hat, also in S(p) liegt. Offenbar bilden die Matrizen aus Z(p) sogar ein Repräsentantensystem für die Bahnen von GL_n auf S(p).

Während X(p) ein affiner Teilraum von gl_n ist, sind Y(p) und Z(p) nicht durch lineare Gleichungen definiert. Immerhin gilt aber:

Lemma. Y(p) und Z(p) sind abgeschlossene Teilmengen von gl_n , die zu affinen Räumen isomorph sind.

Beweis. Statt den Leser durch einen von den Notationen her aufwendigen Beweis zu verwirren, geben wir nur den einfachen Grund für die Korrektheit des Lemmas an.

Man identifiziere die Menge U aller Polynome vom Grad $\leq s$ mit dem (s+1)-dimensionalen affinen Raum \mathbb{A}^{s+1} , die Menge V aller normierten Polynome vom Grad $t \leq s$ mit \mathbb{A}^t . Dann ist in $U \times V$ die Menge W aller Paare (f,g), bei denen g ein Teiler von f ist, abgeschlossen und isomorph zu \mathbb{A}^{s+1} . Schreibt man nämlich für beliebiges $(f,g) \in U \times V$ nach dem Euklidischen Algorithmus f=gh+k mit Grad k < t, so sind die Koeffizienten von h und k polynomial (mit universellen über \mathbb{Z} definierten Polynomen) in den Koeffizienten von f und g. Also ist W abgeschlossen. Identifiziert man auch noch die Menge aller Polynome vom Grad $\leq s-t$ mit \mathbb{A}^{s+1-t} , so liefert $(g,h)\mapsto (gh,g)$ einen bijektiven Morphismus $\mathbb{A}^t \times A^{s+1-t} \to W$, der nach obiger Bemerkung über die Koeffizienten von h sogar einen inversen Morphismus besitzt.

1.5. Wir behalten die in 1.4 eingeführten Bezeichnungen bei.

Proposition. Sei $p = (p_1, p_2, ..., p_r)$ eine Partition von n. Dann gilt Y(p) = X(p) $\cap S(p)$. Ferner hat eine Matrix A aus Y(p) gerade $f_1, f_2, ..., f_r$ als Elementarteiler.

Beweis. Zur Abkürzung setzen wir

$$w_1 = v_1, w_2 = v_{p_1+1}, \dots, w_r = v_{p_1+p_2+\dots+p_{r-1}} + 1$$
.

Der Nachweis der Inklusion $Y(p) \subset X(p) \cap S(p)$ und des Zusatzes ist einfach. Sei dazu $A \in Y(p)$ gegeben. Per Konstruktion hat dann der Modul M_A obige w_j 's als Erzeugende. Wir definieren neue Erzeugende \bar{w}_j 's durch $\bar{w}_1 = w_1$ und durch $\bar{w}_j = w_j - \sum_{i=1}^{j-1} r_{ij} w_i$ für $j \ge 2$. Dabei sind die r_{ij} durch die nach Y3 gültigen Gleichungen $h_{ij} = r_{ij} f_j$ gegeben. Eine kurze Rechnung, bei der auch die Eigenschaft Y1 benutzt wird, zeigt nun, daß $f_j \bar{w}_j = 0$ für $1 \le j \le r$ gilt. Deshalb ist M_A Faktormodul von $\bigoplus_{i=1}^{r} k[X]/(f_i)$. Aus Dimensionsgründen gilt sogar $M_A \simeq \bigoplus_{i=1}^{r} k[X]/(f_i)$, und wegen der Bedingungen aus Y2 sind die f_i 's dann die Elementarteiler von A. Somit liegt A in S(p).

Umgekehrt sei $A \in X(p) \cap S(p)$ mit Elementarteilern e_1, e_2, \dots, e_r gegeben. Für jedes i bezeichne N_i den von w_1, w_2, \dots, w_i erzeugten Untermodul von M_A . Wir beweisen nacheinander, daß A die Bedingungen Y1, Y2 und Y3 erfüllt.

A erfüllt Y1: Nach 1.3 gilt nämlich dim $N_i \le \sum_{j=1}^i p_j$. Indem man spaltenweise von links nach rechts vorgeht, entnimmt man nun dem Aussehen der Matrizen in X(p), daß h_{ij} für alle i>j verschwindet. Also ist A eine obere Blockdreiecksmatrix, und man hat für jedes 1 < i < r eine exakte Sequenz der folgenden Form:

$$(*) 0 \longrightarrow N_{i-1} \longrightarrow N_i \longrightarrow R_i = k[X]/(f_i) \longrightarrow 0.$$

(*) $V \rightarrow N_{i-1} \rightarrow N_i \rightarrow N_i \rightarrow N_i$ A erfüllt Y2: Zunächst liest man an der Form von A die Gleichung dim $N_i = \sum_{j=1}^i p_j$ für alle i ab. Nach 1.3 ist also N_i isomorph zu $\bigoplus_{i \in K[X]/(e_j)}$. Wir zeigen nun per Induktion nach i, daß $e_i = f_i$ gilt, woraus sofort \hat{Y}^2 folgt.

Der Induktionsanfang ist wegen $N_1 \Rightarrow k[X]/(f_1)$ klar. Zum Induktionsschritt berechnen wir das charakteristische Polynom g der zu N_i gehörenden Matrix (siehe 1.1). Aus $N_i \Rightarrow \bigoplus_{j=1}^i k[X]/(e_j)$ folgt $g = e_1 e_2 \dots e_i$. Andererseits zeigt die exakte Sequenz (*) $g = e_1 e_2 \dots e_{i-1} f_i$, was $e_i = f_i$ impliziert.

A erfüllt Y3: Wir haben schon $N_i \simeq \bigoplus_{j=1}^{n} k[X]/(f_i)$ für alle i bewiesen. Dies erzwingt, daß die exakte Sequenz (*) für jedes i spaltet. Aus Dimensionsgründen ist nämlich die induzierte Sequenz

$$0 \rightarrow \operatorname{Hom}(R_i, N_{i-1}) \rightarrow \operatorname{Hom}(R_i, N_i) \rightarrow \operatorname{Hom}(R_i, R_i) \rightarrow 0$$

ebenfalls exakt. Somit besitzt die Projektion $\pi: N_i \to R_i$ einen Schnitt. In der Faser $\pi^{-1}(\overline{1}) = \{w_i + w | w \in N_{i-1}\}$ des kanonischen Erzeugenden $\overline{1}$ von R_i gibt es also ein Element $w_i + w_i$, das von f_i annulliert wird. Also gilt für alle $2 \le i \le r$ die Beziehung:

$$f_i w_i = \sum_{j=1}^{i-1} h_{ji} w_j \in f_i N_{i-1}$$
.

Es genügt also per Induktion nach $i \ge 2$ folgende Behauptung zu zeigen: Liegt $\sum_{j=1}^{i-1} g_j w_j$ für irgendwelche Polynome g_j in $f_i N_{i-1}$, so teilt f_i alle g_j mit $1 \le j \le i-1$.

Zum Beweis setzen wir $f_j = r_{j+1} f_{j+1}$ für $1 \le j < r$, was wegen Y2 möglich ist. Sei also zuerst i=2. Dann ist also $g_1 w_1 \in f_2 N_1$ vorausgesetzt. Multiplikation mit r_2 liefert $r_2 g_1 w_1 \in r_2 f_2 N_1 = f_1 N_1 = 0$. Also liegt $r_2 g_1$ im Annulator von N_1 , d.h. $f_1 = r_2 f_2$ teilt $r_2 g_1$, d.h. f_2 teilt g_1 .

Im Induktionsschritt ist $\sum_{j=1}^{i-1} g_j w_j \in f_i N_{i-1}$ vorausgesetzt. Multiplikation mit r_i liefert

$$\sum_{j=1}^{i-1} r_i g_j w_j \!\in\! r_i f_i N_{i-1} \!=\! f_{i-1} N_{i-1} \!\subseteq\! f_{i-1} N_{i-2} \ ,$$

wobei die Inklusion wegen der soeben hergleiteten Beziehung $f_{i-1}w_{i-1} \in f_{i-1}N_{i-2}$ gilt. Folglich annuliert r_ig_{i-1} den vom Bild von w_{i-1} erzeugten Faktormodul N_{i-1}/N_{i-2} , dessen Annulator von f_{i-1} erzeugt wird. Somit ist r_if_i ein Teiler von r_ig_{i-1} , d. h. f_i ein Teiler von g_{i-1} . Ferner ergibt sich nun $\sum\limits_{j=1}^{i-2} r_ig_jw_j\in f_{i-1}N_{i-2}$ erneut wegen $f_{i-1}w_{i-1}\in f_{i-1}N_{i-2}$. Per Induktion teilt also $f_{i-1}=r_if_i$ alle r_ig_j mit $1\leq j\leq i-2$, d.h. f_i teilt alle g_j mit $1\leq j\leq i-1$.

Der Beweis der Proposition ist damit beendet.

2. Die Schichten von gl_n

2.1. Zu einer Partition p und einer natürlichen Zahl $t \ge 1$ definieren wir s(t,p) als die Anzahl der Kästchen in den ersten t Spalten des Young-Diagramms zu p. Weiter sei Z_t die Menge der Paare (A,v) aus $gl_n \times k^n$, derart daß die Dimension des von v erzeugten Untermoduls von M_A höchsnet t ist. Dies bedeutet gerade, daß der Rang der von den Spalten $v, Av, \ldots, A^{n-1}v$ gebildeten Matrix $\le t$ ist, so daß Z_t abgeschlossen in $gl_n \times k^n$ ist. Wir betrachten nun die kanonische Projektion $\pi_t : Z_t \to gl_n$ sowie den Nullschnitt $\sigma_t : gl_n \to Z_t$ mit $\pi_t(A, v) = A$ und $\sigma_t A = (A, 0)$.

Lemma. Für $A \in S(p)$ gilt dim $\pi_t^{-1}(A) = s(t, p)$.

Beweis. Sei $A \in S(p)$ mit $M_A = \bigoplus_{i=1}^r k[X]/(f_i)$ vorgelegt. Für $m = (m_1, m_2, \dots, m_r)$ mit $m_i \in k[X]/(f_i)$ ist der normierte Erzeuger h_i des Annulators von m_i jeweils ein Teiler von f_i . Ferner wird der Annulator von m gerade vom kleinsten gemeinsamen Vielfachen der h_i 's erzeugt. Also gilt

$$\pi_i^{-1}(A) = \bigcup \bigoplus_{i=1}^r \operatorname{Kern} h_i$$
,

wobei Kern h_i als Untermodul von $k[X]/(f_i)$ aufzufassen ist, und die Vereinigung sich über all diejenigen Tupel $h = (h_1, h_2, \ldots, h_r)$ von normierten Teilern h_i von f_i erstreckt, deren kleinstes gemeinsames Vielfaches Grad $\leq t$ hat.

Offenbar gilt dim Kern $h_i \leq \min(t, p_i)$, also auch dim $\bigoplus_{i=1}^r \operatorname{Kern} h_i \leq s(t, p)$ $= \sum_{i=1}^r \min(t, p_i)$ für jedes Tupel h mit obigen Eigenschaften. Da es nur endlich viele derartige Tupel gibt, folgt die Ungleichung dim $\pi_t^{-1}(A) \leq s(t, p)$. Umgekehrt genügt es wegen der Irreduzibilität von $\bigoplus_{i=1}^r \operatorname{Kern} h_i$ ein Tupel h anzugeben mit dim $\bigoplus_{i=1}^r \operatorname{Kern} h_i = s(t, p)$. Dazu wählt man einfach ein Polynom g so, daß g alle f_i mit grad $f_i \geq t$ teilt und von allen f_i mit grad $f_i \leq t$ geteilt wird. Wegen der Teilbarkeitsbeziehungen zwischen den f_i 's existiert ein derartiges g, und man nimmt dann jeweils für h_i den größten gemeinsamen Teiler von f_i und g.

2.2. Auf der Menge der Partition ist durch " $p \le q \Leftrightarrow s(t,p) \le s(t,q)$ für alle $t \in \mathbb{N}$ " eine Ordnungsrelation definiert. Bezüglich dieser Ordnungsrelation sind zwei Partitionen p < q genau dann benachbart (das heißt $p \le p' \le q$ impliziert p' = q), wenn das zu q gehörende Young-Diagramm E aus dem zu p gehörenden D dadurch entsteht, daß ein unterstes Kästchen einer Spalte von D an die nächstmögliche links davon stehende Spalte unten angefügt wird (siehe z. B. [5]). Daher hat $p \le q$ auch $\hat{p}^2 \le \hat{q}^2$ zur Folge.

Im folgenden bezeichne gl_n^d für eine natürliche Zahl d die Menge aller Matrizen A, deren Bahn die Dimension n^2-d hat, d.h. deren Isotropiegruppe H in GL_n die Dimension d hat. Da H gerade die Gruppe der Einheiten in End M_A ist, gilt nach 1.2 also $gl_n^d = \{A | \widehat{p(A)}^2 = d\}$.

Lemma [5]. Sei p eine Partition mit $d = n^2 - \hat{p}^2$. Dann liegt der Abschluß $\overline{S(p)}$ von S(p) in $\bigcup_{q \ge p} S(q)$. Insbesondere ist $S(p) = \overline{S(p)} \cap gl_n^d$.

Beweis. Da $\sigma_t(A)$ für jedes t jede irreduzible Komponente des Kegels $\pi_t^{-1}(A)$ trifft, folgt aus dem Halbstetigkeitssatz von Chevalley ([3]), daß für alle t und l die Mengen $X(t,l) = \{A \in gl_n | \dim \pi_t^{-1}(A) \ge l\}$ abgeschlossen sind. Nach 2.1 ist nun S(p) in der abgeschlossenen Menge $C = \bigcap_q X(t,s(t,p))$ enthalten. Andererseits gilt nach dem Elementarteilersatz $gl_n = \bigcup_q S(q)$, so daß aus 2.1 auch folgt $C \subseteq \bigcup_{q \ge p} S(q)$. Wie eben bemerkt, trifft S(q) für $p \le q$ nicht gl_n^d , so daß das Lemma vollständig bewiesen ist.

Im allgemeinen ist S(p) eine echte Teilmenge der nach dem Lemma abgeschlossenen Menge $\bigcup_{q \ge p} S(q)$. Das einfachste Beispiel tritt für n=4 und die Partition (2,2) auf.

2.3. **Proposition** [5]. Die Abbildung $p \mapsto S(p)$ liefert eine Bijektion zwischen den Partitionen von n und den Schichten von gl_n .

Beweis. Als Bild der nach 1.4 irreduziblen Varietät $GL_n \times Z(p)$ ist S(p) irreduzible. Für jedes d ist nach dem Elementarteilersatz und 1.2 gl_n^d die disjunkte Vereinigung der S(p) mit $\hat{p}^2 = d$, die nach 2.2 abgeschlossen sind in gl_n^d . Daher sind die S(p)'s sogar die Zusammenhangskomponenten von gl_n^d . Der Rest ist nun klar.

Bemerkung. Aus dieser expliziten Beschreibung ergeben sich einige interessante unmittelbare Folgerungen für die Schichten von gl_n , die bereits vor Peterson von anderen Mathematikern mit völlig anderen Methoden erhalten worden waren. Es gilt:

- Die Schichten von gl_n sind disjunkt (Dixmier).
- Jede Schicht enthält diagonalisierbare Matrizen (Ozeki-Wakimoto und Tauvel).
- Jede Schicht enthält bis auf Konjugation genau eine nilpotente Matrix (Johnston-Richardson).

Literaturhinweise auf die entsprechenden Arbeiten findet der Leser etwa in [4].

3. Rationalität der Schichten

3.1. Sei im folgenden $p = (p_1, \ldots, p_r)$ eine Partition von n. Wir betrachten dann zu einer Matrix $A \in gl_n$ die Matrix T = T(p, A), deren Spalten gerade gebildet werden von $w_1, Aw_1, \ldots, A^{p_1-1}w_1, w_2, Aw_2, \ldots, A^{p_2-1}w_2, \ldots, w_r, Aw_r, \ldots, A^{p_r-1}w_r$. Dabei setzen wir zur Abkürzung $w_1 = v_1, w_2 = v_{p_1+1}, \ldots, w_r = v_{p_1+p_2+\ldots+p_{r-1}+1}$. Offenbar ist die Menge U(p) aller Matrizen A, für die T(p, A) invertierbar ist, eine offene Teilmenge von gl_n . Für $A \in Z(p)$ (siehe 1.4) ist sogar T(p, A) die Einheitsmatrix, so daß U(p) eine offene Umgebung von Z(p) ist. Um diese Umgebung explizit zu beschreiben, benötigen wir neben der in 1.4 eingeführten Menge X(p) noch die Untergruppe G(p) aller Matrizen A aus GL_n , die der Bedingung $Aw_i = w_i$ für $i = 1, 2, \ldots, r$ genügen.

Lemma. Die Operation von GL_n auf gl_n via Konjugation induziert einen Isomorphismus Φ zwischen $G(p) \times X(p)$ und U(p).

Beweis. Sei zunächst $(C, D) \in G(p) \times X(p)$. Man überprüft direkt anhand der Definitionen, daß gilt $T(p, CDC^{-1}) = C$. Daher liegt $\Phi(C, D) = CDC^{-1}$ überhaupt in U(p).

Setzt man nun $\psi(A) = (T(p, A), T(p, A)^{-1}AT(p, A))$ für A aus U(p), so liegt $\psi(A)$ nach der bekannten Transformationsformel für Matrizen bei Basiswechsel in $G(p) \times X(p)$. Offenbar sind Φ und ψ zueinander inverse Morphismen.

3.2. Wir behalten die in 3.1 und 1.4 eingeführten Bezeichnungen bei. Aus 3.1 und 1.5 ergibt sich nun unmittelbar das Schlüsselresultat dieser Arbeit.

Satz. Die Konjugation induziert einen Isomorphismus zwischen $G(p) \times Y(p)$ und $U(p) \cap S(p)$.

Aus dem Satz erhält man direkt zwei wichtige Folgerungen.

Korollar 1. Die Schichten von gl_n sind rationale Varietäten.

Beweis. Offenbar ist G(p) eine offene Menge im affinen Raum A^m mit m = n(n-r). Die Behauptung folgt also aus dem Satz und aus 1.4.

Korollar 2. Die Schichten von gl_n sind glatte Varietäten.

Beweis. Nach dem Satz und 1.4 sind alle Punkte von $U(p) \cap S(p)$ glatt. Da $U(p) \cap S(p)$ offene Umgebung des Repräsentantensystems Z(p) ist, ist S(p) glatt.

4. Querschnitte

4.1. Zunächst ziehen wir noch eine einfache Folgerung aus Satz 3.2. Dabei sei $p = (p_1, p_2, ..., p_r)$ eine Partition von n.

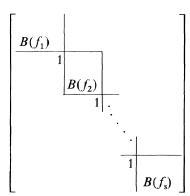
Lemma. Die Koeffizienten der Elementarteiler sind reguläre Funktionen auf S(p). Versieht man Z(p) mit der trivialen GL_n -Operation, so liefern sie die Komponenten einer GL_n -äquivarianten Retraktion von S(p) auf Z(p). Insbesondere ist die Menge der Bahnen $S(p)/GL_n$ bezüglich der Quotiententopologie homöomorph zu einem affinen Raum.

Beweis. Auf $U(p) \cap S(p) \cong G(p) \times Y(p)$ sind die Koeffizienten der Elementarteiler nach 1.5 gerade gewisse Komponentenfunktionen auf Y(p), also reguläre Funktionen. Da $U(p) \cap S(p)$ eine offene Umgebung des Repräsentantensystems Z(p) ist, und da die Koeffizienten der Elementarteiler GL_n -invariante Funktionen sind, sind sie überall regulär. Die übrigen Aussagen sind nun nach 1.4 und 1.5 klar.

Die erste Aussage des Lemmas findet sich bereits bei Peterson, die letzte bei Kraft und Peterson.

4.2. Aus unseren bisherigen Untersuchungen folgt leicht, daß Z(p) ein transversaler Querschnitt im Sinne der zu Beginn vereinbarten Definition ist. Die Transversalität ergibt sich nämlich aus der Existenz der GL_n -äquivarianten Retraktion. Nun ist Z(p) zwar isomorph zu einem affinen Raum, hat aber gegenüber Petersons Querschnitt noch den Nachteil, kein affiner Teilraum von gl_n zu sein. Wir werden daher Z(p) durch einen affinen Teilraum Q(p) ersetzen, der zudem noch ein transversaler Querschnitt ist. Dabei gehen wir ein wenig formaler vor als in der Einleitung.

Sind $f_1, f_2, ..., f_s$ normierte Polynome vom Grad ≥ 1 , so definieren wir $D(f_1, f_2, ..., f_s)$ als die Matrix



mit Nullen außerhalb der besetzten Stellen. Dabei ist wieder B(f) die Begleitmatrix des Polynoms f (siehe 1.4).

Lemma. In obiger Situation hat die Matrix $D = D(f_1, f_2, ..., f_s)$ nur einen Elementarteiler, und zwar $f_1 f_2 ... f_s$.

Beweis. Per Konstruktion wird der zu D gehörige k[X]-Modul vom ersten kanonischen Basisvektor erzeugt. Deshalb hat D nur einen Elementarteiler,

nämlich das charakteristische Polynom g. Wegen der unteren Blockdreiecksform von D ist g das Produkt der charakteristischen Polynome der Diagonalblöcke, d. h. g ist das Produkt der f_i 's.

4.3. Sei jetzt $p = (p_1, p_2, ..., p_r)$ eine Partition von n. Für i = 1, 2, ..., r sei V(i) der affine Raum der normierten Polynome vom Grad $p_i - p_{i+1}$, wobei $p_{r+1} = 0$ gesetzt sei. Dann definieren wir eine injektive Abbildung ψ von $\overset{r}{\searrow} V(i)$ nach gl_n durch

$$\psi(g_1,g_2,\ldots,g_r) = \begin{bmatrix} D_1 \\ D_2 \\ & \ddots \\ & & D_r \end{bmatrix}$$

mit $D_i = D(g_{j_1}, g_{j_2}, \dots, g_{j_r})$, wobei (j_1, j_2, \dots, j_s) die Teilfolge von $(i, i+1, \dots, r)$ derjenigen Indizes j ist, für die $g_j \neq 1$ ist. Das Bild von ψ bezeichnen wir mit Q(p).

Proposition. Q(p) ist ein affiner Teilraum von gl_n , der jede Bahn von GL_n auf S(p) genau einmal trifft. Versieht man Q(p) mit der trivialen GL_n -Operation, so gibt es eine GL_n -äquivariante Retraktion von S(p) auf Q(p).

Beweis. Per Konstruktion ist Q(p) ein affiner Teilraum. Ist $A = \psi(g_1, g_2, \dots, g_r)$ aus Q(p), so sind nach 4.2 und 1.5 die Produkte $\prod_{j=1}^r g_j$ für $1 \le i \le r$ die Elementarteiler von A. Offenbar erhält man so jedes mögliche Tupel (f_1, f_2, \dots, f_r) von Elementarteilern genau einmal. Schließlich lassen sich aus den Koeffizienten der Elementarteiler die Koeffizienten der g_i 's, d.h. die Koeffizienten der Matrizen aus Q(p), polynomial berechnen, was im Beweis des Lemmas 1.4 ausführlich begründet ist. Dies liefert die gewünschte Retraktion.

Literatur

- 1. Borho, W.: Über Schichten halbeinfacher Lie-Algebren. Invent. Math. 65, 283-317 (1981)
- 2. Borho, W., Kraft, H.: Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. Comment. Math. Helv. 54, 61-104 (1979)
- 3. Dieudonné, J., Grothendieck, A.: Eléments de géométrie algébrique III, IV. Publ. Math. IHES
- 4. Kraft, H.: Parametrisierung von Konjugationsklassen in sl_n. Math. Ann. 234, 209–220 (1978)
- Peterson, D.: Geometry of the adjoint representation of a complex semisimple Lie algebra. Harvard Thesis 1978

Eingegangen am 10. Dezember 1987