C‘ U q NIEDERSACHSISCHE STAATS- UND
-~ L UNIVERSITATSBIBLIOTHEK GOTTINGEN

Werk

Titel: Mathematische Annalen

Verlag: Springer

Jahr: 1989

Kollektion: Mathematica

Werk Id: PPN235181684_0283

PURL: http://resolver.sub.uni-goettingen.de/purl?PID=PPN235181684_0283|LOG_0032

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational,
research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections
are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission
from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online
system to access or download a digitized document you accept the Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further
reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the
source.

Contact

Niedersachsische Staats- und Universitatsbibliothek Gottingen
Georg-August-Universitat Gottingen

Platz der Gottinger Sieben 1

37073 Géttingen

Germany

Email: gdz@sub.uni-goettingen.de



Math. Ann. 283, 65-86 (1989) Amm

© Springer-Verlag 1989

A Probabilistic Proof and Applications
of Wiener’s Test for the Heat Operator
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1. Introduction

In this paper we study a thinness criterion for the coparabolic operator 3 4 + 9/0t
in stead of the parabolic (heat) operator 1 4 —d/0t. The translation of the results
and proofs in one context into those in the other is straightforward. The criterion
which is a precise analogue of Wiener’s test for the Laplace operator will be stated
first in a probabilistic way and then in purely analytic terms.

Let (Q, #, P) be a probability space, E[ - ] the integration by P, and W(t) (t=0)
a standard N-dimensional Wiener process — the Brownian motion starting at zero
standardized by E[ Wj(t) W(t)] = ,;t — defined on (2, #, P). Let A4 be an analytic set
of R¥*1 and let h(¢; A), £ R¥*! denote the hitting probability of A by the space-
time Wiener process starting at & =(s, x):

h(s,x; A)=P[(s+t,x+ W(t)eA for some t>0]

where se R and x € RY. Here and hereafter, abusing the notation, we write simply
f(s,x) for f((s,x)) where f is a function of £e R¥*!. Let us write x=|x| (the
Euclidean length of x), and define

(6, x)= (2at)~N2e=*2t if >0
PEXI=0 if t<0.

The function g(¢): = p(t, x), £ =(t, x), is a Green (density) function of the space-time
Wiener process (t, W(t)) which is a density function of the measure u(A)

= [ P[(t, W(t)) e A]dt relative to the Lebesgue measure of R¥*!. By means of the
0

Green function are defined coparabolic balls centered at the origin 0:=(0,0),
which here we parametrize by a>0 as follows

B(a) = {(t’ x) eRN*! :p(t, X) > (zna)-N/z} ’

so that B(a) becomes large together with a. For 4 a subset of RY*! we say that A4 is
hit i.o. (infinitely often) as t1oo [t]0] if there exists an increasing [resp. a
decreasing] sequence {t,};, such that t,—oo [resp. t,—0] as n—oo and
(t., W(t,)) € A for every n.
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Theorem 1. Let A be an analytic set of [0, c0)x RN and set
A, =An[B2" )\B(2")].

i) P[A is hit i.o. as tTo0]=0 or 1 according as Y, h(O;A,) converges or
diverges; n=0

i) P[A is hit i.0. as t |0]=0 or 1 according as ¥ h(0;A_,) converges or
diverges. [ n=0

The Green kernel g(&, n): = g(n — &) is the fundamental solution for % A4+ g—t- and

this theorem accordingly can be stated in potential theoretic terms. We need the
fact that if A is bounded and analytic then there exists a finite Borel measure e, on
RN*! (coparabolic equilibrium measure) such that

his.x;d)= | plt=sly—x)e (dtdy). (1.1)

The (coparabolic) capacity of A4 is the total measure of e¢,, which we denote by
Cap(A4): Cap(A4)=e (RN ). It is then clear that for 4, in Theorem 1

(2n2"*1)™Y"2 Cap(4,) S h(0; 4,)<(2n2")~"* Cap(4,), (1.2)

so that the convergence conditions of the series in Theorem 1 are equivalent to
those of ¥ 2FNM/2C(A ).
n=0

Let 4 be an analytic set that has the origin O as its cluster point. A is said to be
(coparabolic) thin at O if there is a supercoparabolic function u defined on an open
neighbourhood of O such that each of its cluster values at O along A is greater than
4(0) Doob [2, p. 309]. Itis known that A is thin at O if and only if P[4 is hiti.o. as
£ 0]=0 [2, p. 656]. Thus the second half of Theorem 1 is paraphrased in purely
analytic terms as follows.

Theorem 2. An analytic set A of RN*! is thin at the origin if and only if
Yy 2¥2Cap(A_,)<oo. O
n=0

To make a similar rewording of the first half of Theorem 1 we consider the
(coparabolic) Martin boundary of the upper half space t 2 0. Among others there is
a minimal Martin boundary point, denoted by {,, corresponding to the limit of
t— oo and x/t—0, at which the Martin function is identically one [2, p. 374]. An
analytic set 4 of [0, c0) x RY is (coparabolic) minimal thin at {, if and only if P[4 is
hit i.0. as t f0]=0 [2, p. 731]. Therefore Theorem 1 yields

Theorem 2'. At the Martin boundary point {, an analytic set A of [0,00]x R" is
minimal thin if and only if ¥ 272 Cap(4,)<c. O
n=0

Theorem 2 has been established by Evans and Gariepy [4]. The method for
their proof is potential theoretic, whereas our approach is very probabilistic and
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has the advantage of being relatively simple not only in its formal presentation but
also in the guiding idea which is intuitive and easy to grasp.

If A lies inside the paraboloid x*=ct for some ¢>0 Theorem 1 is almost as
worthless (because dispensable) as its proof is uninvolved, whereas it works very
efficiently if 4, are outside such paraboloids with c=c, tending infinity as |n|
becomes large. The latter fact is conceptually because for large |n| the hittings of 4,
in the latter case are very rare events which are relatively strongly positively-
correlated with one another. In practice, however, the applicability of Theorem 1
is greatly due to the explicit and simple expression of the distribution v, of the
place at which (¢, W(t)) hits the coparabolic sphere S(a): = 0B(a) [the boundary of
Bla), a>0]. It is shown by Bauer [1] that the parabolic counterpart of v, agrees
with the measure that Fulks [ 7] introduced as a measure with which the parabolic
function is characterized as having local average property over parabolic spheres
[this result implies in particular that R¥* '\ B(a) is thin at the origin]. In the
present context it is convenient to parametrise points of S(a) by the ordinate ¢ and
the spherical component 0 of the abscissa x (i.e., § =x/x); from v, this parametriz-
ation induces the measure

9,(dtd0)=1x"p(t,x)t"1dtdd (0<t<a,0€O) (1.3)

with #({0} x @)=0 where x=]/—Ntlogt/a, @={0cR":|6|=1} and db is a
surface element of (N — 1)-unit-sphere @ if N=2 and a discrete measure which
charges each point of @ = {—1, 1} with unit mass if N=1. [To be precise 9, is the
probability measure on [0, a] x @ induced from v, by the mapping (¢, x)—(t, x/x).]
Then a little reflection would convince us that Theorem 1 could verify the
Kolmogorov’s test. In fact not only this is true, but also we can strengthen the
harder half of the test as follows.

Theorem 3. Let = f(t,0) be a positive Borel function of t=0 and 0 =x/x and G
denote the graph of f:G=/{(t,x):f(t,x/x)=x}. If

[ t7tade] f(t,0)" p(t, £(£,0)d0=c0,
0[t<>t T]l (¢]
then P[G is hiti.o. ast ] 0 [resp. t 1 c0]]=1 or, what is the same, G is not thin at the

origin [resp. minimal thin at {,]. O

_ The transformation :(t,x)—>(1/t,x/t) which transforms W(t) into
W(t):=tW(1/t) does not change the probability law of W, i.e.,

W(t) also is a standard Wiener process under (2, %, P) (1.4

[a projective invariance of W(-)]. Applying Theorem 1 with y(A4) and W(t) in place
of 4 and W(t), we accordingly get that P[4 is hit i.0. as t |0 [tTo0]]=0 or 1

o[ — 0]
according as Y h(0; A,) converges or diverges where
n=0

A =p((A),)={(t,x)e A:2r2"* )N < p(1/t, x/t) < (2m2") "V}

Note that, A, being quite different from A,, the criterion thus obtained is in
appearance not the same as that in Theorem 1.
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To make our probabilistic approach self-contained we shall in Appendix give
direct probabilistic proofs of (1.1, 1.3). The proof of Theorem 1 will be given in
Sect. 2. In Sect. 4 several applications of Theorem 1 will be made to obtain easily
computable criteria for the thinness. In particular the Kolmogorov’s test and
Theorem 3 will be deduced. In Sect. 3 Theorem 1 will be refined in a way as a
preparation for the proof of Theorem 3.

2. Proof of Theorem 1

We shall prove only the first half of Theorem 1. The proof for the other half is
similar (though not completely parallel). In the rest of the paper n will denote a
non-negative integer unless the contrary is explicitly stated. We shall assume that
A lies above the ordinate level t=1, i.e., AC[1, 00) x R". The case Y h(0; A,)< oo is
trivially disposed of by the Borel-Cantelli lemma. Since P[|[W()|>t i.o. as
t1o0]=0 [consider W(t)=tW(1/t)], it therefore suffices to show that

if ¥ hO,A)=o00, then P[A, is hit for im. n]=1. 2.1
n=0

Here the expression under P means that there exist infinitely many n s..
(t, W(t))e A, for some t>1.
The geometry of coparabolic balls B(a) or spheres S(a): = dB(a) is fundamental

in our proof. Put
X, (=) —Ntlogt/a, O0=t=a.
Then (t,x) € B(a) if and only if x:= |x| < X (t). We see also

N 1+logt/a

d
=3 x

22)

Therefore B(a) is an egg-shaped body with the top at (a,0) and its bottom’ (the
center) at the origin O = (0, 0), and broadest in the abscissa direction at the ordmgte
level t=a/e. We make another observation of interest: for each ¢ >0 the mapping

@*: (L, x)— (et, V;x), which does not change the law of the Wiener process [the

scaling invariance, i.e., the process W(st)/]/g, t =0 has the same distribution as W(t),
t=>0], transforms B(a) into B(ea), i.c., p%(B(a))= B(ea); in particular

hles,)/ex; (AN =h(s,x;4,) and > (4, )CBR*\B2Y,  (23)

where A, is supposed to be a subset of B(2"*!)\ B(2"). The following inequality
immediate from (1.1) and being a trivial extension of (1.2) also plays a key role in
our proof: for each (s,x)e R¥*! and each analytic set A of B(a)(a>0)

h(s,x; A) < (2na)"? h(0, A) sup p(t—s,ly—xI). (2.4)
(t,y)ed

For later (i.e., beyond the proof of Theorem 1) as well as present needs here is
noted that if s<1/2, then

sNlog2  log2 .I/SW(I +(s)) 259

Ax:=X,(s5)—X,(9)= X,(s)+ X (s) 2 —logs/2
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with 0 < ¢(s) <const(—logs)~!: this in particular shows that 4x is much smaller
than X,(s) if s is small.
The next lemma is a result of a simple application of the inequality (2.4).

Lemmad4. Let ¢,5,6>0, 0<a<a' and A an analytic subset of Dn[B(a’)\ B(a)]
where D:={(t,y)eR"*':t>(1+0)s,y>t}. Then it follows that for all x
h(s,x; A) L e(1 +1/8)a’/a]** h(0; 4). O

Proof. The inequality (2.4) reduces the problem to proving that for a<b=<a’
1 N/2
sup plt—s,ly—x))< e"[I + —:I (2mb)~ N2, (2.6)
(t,y)e DnS(b) o

To evaluate the supremum above we express p as follows
—Nj/2
p(t—s,ly—x|)=(2nb)~"? <1 - ;) e for t>s,(t,y)eSbh), (27)

where H(t,y)=%(?/t—|y— xlz/(t —35)). Then (2.6) is ready from

x2

— N <L Xy _Xx
H(t,y)< {y ly—xI"} ==~ 5.
The main task for the proof of Theorem 1 is performed by proving

Lemma 5. There exists two constantsy <1 and C >0 such that if {A,} is a sequence
of analytic sets the k-th member of which is contained in B(2** )\ B(2*), then for
¢e B(1) [the closure of B(1)] and m=1,2, ...

h<§;kgl Ak) §y+Ck§1 WO;A). [ (2.8)

Proof. Step 1. As the first step we prove that

for each ¢>0 there exists constants y<1 and C
depending only on ¢ and N such that (2.8) holds (2.9)

for Ee K :={(t,y)e B(1):y*<ct}.

[It may be noted that S(1) and the paraboloid y*=ct intersect at an exactly one
level of ordinate t=e~™"°.] Let F={(t,y): y>t>3/2 or t<3/2}\ B(2). Then there
exists y <1 such that sup*h(£; F) <y, where the sup* denotes the supremum taken

over all £eK.nS(1). On the other hand by Lemma 4 sup*h (6; U A,,\F)

<C Z h(0; Ay). Thus (2.8) holds for £€ K.nS(1). As for € K\S(1) we have

s(f)e K .NS(1) with some £>1 and in view of the scaling relation (2.3) the same
argument as above proves (2.8) with a smaller y and the same C, proving (2.9).

Step 2. Owing to the strong Markov property of W(-) we have only to show (2.8)
for £eS(1). By (2.9) it therefore suffices to prove that there is a (large) constant ¢
such that if £=(s, x) satisfies

(s,x)eS(1) (ie,x*=—Nslogs) and x>>cs, (2.10)
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h € (9s+r2, 3r)

g (9s, 2x)

0 ) 3
Fig. 1

s(2)

9s

S

then (2.8) holds. Let (2.10) hold. Consider two fences in R¥*!, say n, and =,,
obtained by rotating around the t-axis two line segments lying on the (¢, x,)-plane
(x, is the first coordinate of RN-variable x) whose end points have coordinates
(s, X 5(s)) and (95, X ,(9s)) for 7, ; (95, X 5(9s)) and (9s + [ X ,(9s)/3]%, X 5(9s)) for =, i.e.,

my = {(t, y:2 —tf;(s) = XZ(QS)SZXZ(S), S§t§9s}

n, = {(t,y): y=3r,9s<t<9s+r*},

where r:=X,(9s)/3. From (2.9) it follows that —logs= i, and then we see for
large ¢ N

X,05)=/9 { lﬁ)ggijf} X235, 11

which inequality we assume to hold in below. Clearly =, lies inside S(2). We can
suppose that 1, also lies inside S(2). In fact, since X ,(¢) is increasing up to t =2/e, it
suffices to have 9s+ X,(95)%/9 <2/e, which is clearly possible by taking c large
enough. Now setting

J=P[r,un, is not hit at all | W(s)=x]
J,= sup h(9s+r zZ; U Ak)

|z] £3r

and applying the strong Markov property of W(-), we have h(s,x; U Ak>
k=1

<1—J,(1—J,). (Here and hereafter P[ -|2] denotes a conditional law given an
event A.) We may suppose (9s+r2,z) € K, for z< 3r so as to be able to apply (2.9)

with ¢=9 to obtain J,<y+C Y h(0, 4,). Therefore
k=1

h(s,x; U Ak) s1-J,+J7+J,C ¥ h(0,4)),
k=1 k=1

and if we can show that J, =J (s, x) = p with a positive constant p, then (2.8) holds
with y replaced by y'=1—-p(1—-y)<1.
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Step 3. Now it suffices to prove that J; is bounded below by a positive constant.
We set
T=s/(4x)*, L= x/Ax, k =(X 5(9s)— X 5(s)) - 4x/8s,

where Ax=X,(s)—X,(s). By applying first Markov property of the Wiener
process and then the scaling invariance and the rotation invariance of it, it follows

that
JZP[[WO)IEL+1+xk(t—T) for T=Zt=9T

and |W0OT)|<2L| |W(T)|=L]
x inf P[m, is not hit at all | |[W(9s)|=u].

O0=Zus2x
Since (2.11) implies x <r, the second factor on the right-hand side is greater than or
equal to the probability under the infimum with u=2r, which agrees with
po:=P[W()|<3 for 1=5:=2||W(1)=2]>0.

Let us evaluate the first factor, which we name J5. To this end single out the first
event from the two; and also note that, by (2.5, 2.11), k= (N log2)/8 if ¢ is large
enough. Then the conditional probability of it given |W(T)|=L is greater than

p:=PW(E)|<1+((Nlog2)8)t for t>0]>0,

as is clear by first replacing the upside-down frustum {(t,y):y<L+1+x(t—T),
T<t<9T} [which W(t) is to stay within] by another one {(t,y):|[y— W(T)| <1
+Kk(t—T), T<t<9T}[which is contained in it] and then applying the translation
invariance of the Brownian motion. As for the second event, noticing T/L? =s/x?
=1/c, we apply the scaling invariance of W again to see that if ¢ becomes large the
conditional probability of |W(9T)| <2L given |W(T)|=L approaches 1; hence it
can be made greater than 1—p,/2>0. Accordingly 1—J;<1—p,+p,/2, ie,
J3=pq/2, so that J; =p,py/2. The proof of Lemma $ is complete.

We lastly prepare the following relation

inf P[W()|<X,(f) forall O<t<s||W(s)|=X,]>0. (212)

0<s=
The probability under the infimum is not less than
PV < X,(t)—(X,(s)/s)t,0 <t <s5|W(s)=0].

By conditioning on W(s/2), replacing X ,(¢) by a linear function for s/2 <t <s, and
then scaling W(- ) with the constant [/E for 0=t <s/2 and with 4x=(X,(s)— X ,(s))
for s/2<t<s, this probability is bounded below by

RSN P[W(1/2)edy|W(1)=0] - P[IW()|< f(1), 0<t=1/2|W(1/2)=Y]
x P[|W(1)] S g(t), 0<t <s/24x*| W(s/24x) = |/sy/4x]

where f(t)=[X ,(st)— X ,(s)t]/}/s and
olt)= {1 +(4x/5) [X () —2AX () — Xo(s/2)]t if s=1/5
T X ,(1/5) - X,(1/5) if s>1/5.
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It is easily seen that f(f)=(1 —1 /]/f)X ,(t) for 0=5t<1/2, and that if s<1/5, g(t)
=1+ At with some positive constant 1 independent of s. It holds that P[|W(t)|
<cX,(t), 0<t<1/2]>0 for every ¢ >0 (see the first part of Appendix). Either by
applying the projective invariance (1.4) to obtain conditioning-free expressions for
two probabilities in the integral above or by observing the monotonicity of them in
y, we, from these bounds for f and g, conclude (2.12).

Proof of Theorem 1. With Lemma 5 and (2.12) having been prepared the proof of
Theorem 1 is rather standard. Let A and 4, be as in Theorem 1. We can assume
Y h(0;A,)=o00and lim h(O; A,,)=0, which will entail no loss od generality. Let
k=1 k=
A, denote the event {there exists ¢ >0 such that (¢, W(t)) € A, and (s, W(s)) ¢ B(2**2)
for all 0<s<t}. By the Blumentah!l’s 0—1 law we have only to show that P[,,
occurs for i.m. k] >0. By considering the time-reversed motion W(22**! —¢) and
applying its strong Markov property it is seen that P(2,)=gh(0; A,) where g
denotes the infimum in (2.12). Therefore for every 6 >0 and every sufficiently large
integer L there exists M > L such that

P, 1S 3. h(O; A,)<20/a. 213)

Ng B

(S

L
Then in view of (2.3) Lemma 5 shows that there exist constants 6 >0 and y’ < 1 such
M
that (2.13) implies h(s,x; U A2j> <y’ for all (s,x)e 4,, and L<n<M. Since
j=n+1
under A, the event A, ;, j>n, can occur only if A4,; is hit after the first hitting of

QIZn:l é '}’,,

M
A,,, by the strong Markov property this inequality yields P[ U AUy,
j=n+1

or, what is the same,

PI:Q[Z,,\ __Cj 912]] 2(1—y) P[A,].

The events, for n=L, ..., M, measured on the left-hand side are mutually disjoint
and the union of them coincides with the union of 2,,. Thus, by the first inequality
M
of (2.13), P[ U QIZ,,} =(1—9"6, which shows that lim P[ U QIZ,,] =P[U,,
n=L L— n2L

occur for i.m.n]>0 as required.

A Remark to the Proof of Theorem 1. If A is contained in a parabolic body x? < ct,
the assertion of Theorem 1 may directly proved by a simple method. Indeed one
sees, by (2.7), that if k=2 and A4, ,, lies within such a paraboloid, then

sup sup p(t—s,|y—x|)<conste’*(a, )~ "7,

(s,x)eB@n +x) (t,y)€An+k

where a,=2" and accordingly can follow both Lamperti [9] and Ito and McKean
[8]. If one take a,, in stead of 2", such that a, , ,/a, tends to infinity rapidly enough,
this method can be applied to prove corresponding results (without the above
constraint on A), but they are of course not so useful as Theorem 1.
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3. A Refinement of Theorem 1

In this section will be given a refinement of Theorem 1 where each shell
B(2"* )\ B(2") is sliced with abscissa hyperplanes to form an infinite sequence of
annuli into which the set 4 whose thinness is in question is to be partitioned. Given
a>0,set X (t)=(—Ntlogt/a)'/? as before and let X, ! be the inverse function of X,
restricted to 0< t < a/e. Define a sequence {t,};% _, by t_, =1, t,=1/e for the first
two entries and then inductively by

X=Xt tis1=X; () for k=0 (3.1
and set
D,={({t,x)e BQ\B(1): t,+ 1 <t=t}, k=-1,0,1,....

These D,’s together then constitute a partition of B(2)\ B(1). Recalling the mapping
@°:(t, x) > (et, Vgx) together with the fact stated in (2.3) we finally define

D" =™ (Dy).

Thus we have a partition {D{}, , of (0,00)x RY which is much finer than
{B(2"* )\ B(2"}. The next proposition therefore is stronger than Theorem 1 (and
Theorem 2).

Proposition 6. An analytic set A of R¥* ! is minimal thin at {, [thin at the origin] if
and only if

Yy 27N % Cap(AnDP)< oo,
k=71
or equivalently, ¥ h(0;AnD{)<c. O
nk

Before proceeding to the proof of Proposition 6 we point out the following
relation

Axi=x,—%—1~3)/Nlog2 |/ty,—t,, as k-oo (3.2

(“~” means that the ratio of two quantities which hold it between approaches 1),
which we shall use both in proving and in applying Proposition 6. The verification
of (3.2) is ready from (2.5) if one observes

logt, >
———=— ~(log2)
logty+1/2 (log
Proof of Proposition 6. We consider only the criterion of thinness at infinity. We
have merely to show that if Y h(O; AnD{")= oo, then P[4 is hiti.0.ast1 o0]=1,
k,n

for the converse is ready from the Borel-Cantelli lemma. In view of Theorem 1 this
implication follows from

Lemma 7. Set A,=An[BQ2"*')\B(22")] and A,,=AnD{. If hO;A,)—-0 as
n— o0, then there exists a constant C which may depend on A but not on n such that

k;‘_lh(O;A,,,,,)gC-h(O;A,,) foralln. O

j— tk
logt,

tk—tk+1=tk<1 as k—oo. (3.3
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Proof. By arguing asin the proof of Theorem 1 the problem is reduced to showing

k_
1—h<s,x; U
j=

1

An,j) > q lf (S, X) € An, k+1 (34)
1

for all k =0 and for all sufficiently large n where q is a positive constant which may
depend on A but not on k nor on n. By the strong Markov property of W(-) the left-
hand side of (3.4) is greater than

k-1
PLIW (2™ <r|W(s)=x] {1 — suph<2"t,,, y; U A,,,j)}
. y=r j=-1

where r =X ,.-1(2"t,). That the first factor is bounded below by a positive constant
follows from (3.2) and the relation

X —r£2%2x,—r=2"%(X (t) — X 1 5(tx) ~ const 2" *(x; _ ; — x;)

as k— oo uniformly in »; for n large enough the same is true for the second factor as
an application of Lemma 5 (with m=1) verifies. Accordingly we get (3.4). This
completes the proof of Lemma 7 and hence that of Proposition 6.

4. Applications

1. As asimplest application of Theorem 1 we prove the Kolmogorov’s test which
was stated in Lévy’s book [10, p. 266] without proof and has been proved in
various ways by Petrovskii [12], Erd6s [3], Feller [5], and Motoo [11] (among
these only Petrovskii’s proof is purely analytic; the others’ proofs are probabilistic
but still quite different from one another). Let f(t) be a non-negative Borel function
of t=0 and set F={(t,x)e R¥*': t20, |x|= f(¢)}. Then the Kolmogorov’s test
reads as follows:

Assume f (t)/[ﬂT oo ast |0 [ast? oo/. Then the set F is thin at the origin [resp.
minimal thin at the Martin boundary point (] if and only if

100 <oo. @)
ft>1]

Proof. The proof is carried out only in the case where the thinness at {, is
concerned. The other case is reduced to it by using the projective invariance (1.4)
(the same comment may be applied throughout this section, though the direct
modification of proof also may be possible in some places). First we prove the
sufficiency of (4.1). For this part we do not apply Theorem 1, but make use of the
explicit expression (1.3) of the hitting distribution v,. The assumed monotonicity of
f (t)/l/f implies that the boundary dF crosses S(a) at exactly one ordinate level
t=t(a) (if a is sufficiently large). [This is seen either by comparing f(t) with the
function c[/f or by noting that for it to be true it is sufficient that the lower
derivative of f(¢)%/t on the right is greater than —1/t.] Let t, =22V and a, the
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value of a for which JF crosses S(a) at the level ¢t =t,; if there are many such a’s take
the infimum of them. Let B, denote the part of S(a;) below the level t=t, , ,. Let 1,
be the first hitting time to S(a) by (¢, W(t)). Then from (1.3, 2.2) it follows that for t/a
small and 0<s<t

p - N/2 N+1 -1
P[S<Tn§t] = gd@ {(ZTca) ! Xa(u) md)(a(u)
= (f d6/N ) (21a) N2 (X (0 — X (s)V) (1 + (1)), (4.2)
o

where o(1)-0 as t/a—0. From limf(t)/]/fzoo, it follows that t,/a,—0 and
XKoot 1)/ X a(t) >2"Y as k— oo where a(k)=a,. Now keeping these in mind
apply (4.2) and then, noticing X ,,(t) = f(¢) for t <t,, use (1.3) to see that for large k

WO; B) =Pty St 1 124P[t_ <tupy =1, 1 (1 +0(1))

<const | £ pit, f()t " dt.

Let F, be the part of F between two levels t=t¢, and t=¢,,,. Then h(O; F,)
<h(0; B,) since R¥*'\ B(q) is thin at 0. Accordingly (4.1) implies Y h(O;F,) < o0
and hence P[F is hit i.0. as t T o0] =0 or, equivalently, F is minimal thin at {,,.

The proof of the converse part is similar, but this time ¢, is defined as the
ordinate at which level F intersects S(2¥). Let A, and A} be the parts of S(2¥) and
S(2¥* 1), respectively, between two levels t =t, and t =1, , ;. Note that A} is included
in F:=Fn(B(2** )\ B(2")), whereas 4, lies outside F. By (1.3) and by writing
a(k)=2* we as above see

te+1
hO; A ZVape+ 1A =Cx | Xa(k+1)(t)N(27w(k+1))_N/2t_ldt
179
2271 _N/zva(k)(Ak)
tke+1
22727V2Cy [ fONplt, f(e)t e
2%

for k large enough where Cy is a positive constant. Thus the divergence of the
definite integral in (4.1) implies Y i(O; F;)= co; hence by Theorem 1 P[F is hit i.0.
as t 1 o] =1. The proof is complete.

2. For the necessity of the condition (4.1) in the Kolmogorov’s test a slight

modification of its proof dispenses the monotonicity assumption on f (t)/lﬂ. In the
next theorem not only this assumption is removed, but also the conclusion is
strengthened. (F is replaced by the graph of f).

Theorem 8. Let f = f(t, 0) be a positive Borel function of t=0 and of 0 =x/x and G
denote the graph of f:G:={(t,x):f(t,x/x)=x}. Let w(x) be a bounded positive
{unction of x>0 which is non-increasing and slowly varying as x | 0 and satisfies

(I)lp(x)x' Ydx < ooy if N=2itis further assumed that y(x)(—logx) is bounded. Put
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P (x)=10,1(x) and Py(x)=x""2p(x) 1,9, 1)(x) for N 22 (1, denotes the indicator
function of a set A). For G to be not thin at the origin [minimal thin at {,] it is
sufficient that

dt
A T T G0N 0+ 160 Pt [, 0D} db=c0. O
r>1]
Remark. A positive function p(x) is slowly varying as x | 0 if p(kx)/w(x)—>1asx | 0
for every x> 0. For every >0 the function min {1, [logx| ™' "%} can serve as y in
Theorem 8. Of the integrand parenthesized in the inner integral above the first

term becomes dominant to the second as fT(t, 0)/% approaches zero. By
comparison ¥, obviously can be deleted from the integrand to obtain Theorem 3

of Introduction.
For the proof we prepare two lemmas. Given a positive continuous function
h(t) of te[a, B], let us consider a “projection” 7, which is defined by

m(t, X)=(t, h(t)x/x), (t,x)e[x, ] x R".

Lemma 9. Let h and =, be as above. Let G be a graph of a Borel function f as in
Theorem 8 and A a Borel subset of G. If a<t<f and x 2 h(t) for all (t,x)€ A, then
Cap(n,A) < e’ Cap(A) where

o (h(8)— h(s))
yi= —,
asSs<tsp t—s
Proof. We shall make use of the formula
Cap(A4)=sup{p(A): pu is supported by 4 and gu<1}, 4.3)

where, for u a finite Borel measure on RY*!, gu(&)= [g(&, n) pldn) = [p(t—s,
ly — x|) u(dt dy) (€ =(s, x)) (cf. Watson [13]; also Doob [2, p. 243]). For a measure u
supported by A4, let 4’ denote a measure on A’ =n,A induced by =, from p. In view
of (4.3) it suffices to show that if gu’ < 1, then gu < e"/?, because the mapping: u— '
is reversible. Let us write x* = h(¢)x/x etc. We shall actually prove that for e <s < f

gu(s,x)<egu'(s,x?) if x=h(s)
which is enough for our end by virtue of the maximum principle. Since
(s, x%)= [ p(t —s, [y’ —x°|) u(dt dy),
we have only to show that for a<s<t<f
V' —x?<ly—x[*+(h(t)—h(s))* if x=h(s) and y=h(). (4.4)

If x* - y' <min {|x°|%,|y’|*}, then is true this inequality even with the second term on
the right side discarded. If x*-y’>|y'|%, then

ly' — x> < min|x*—by|* + (h(t) — h(s))
b>0

which clearly yields (4.4). The remaining case, where we have x*- y* > |x*|2, can be
treated by interchanging the roles of x° and y’ in the above. Thus Lemma 9 has

been proved.
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Lemma 10. Let G and ¥ y(x) be as in Theorem 8. Then there is a constant C which
may depend on Py but not on G such that if A is a Borel subset of GN{(t,x):0=t<1,
x <1}, then

Cap(A)zC [ Wy(f(t,0)drds 4.5)
t,y)e

where y stands for f(t,0)0. [
Remark. When N =1 (4.5) is surpassed by

Cap(4)=)/2n ln0A|< sup dt/)/t—s ) (4.6)

0=s=1 noAn(s 1]

where o4 = {t:(t,y)€ A for some y} and |-| denotes the Lebesgue measure on R.
This inequality may afford a better sufficient condition for thinness than that of
Theorem 8.

Proof of Lemma 10. Let u be the measure on 4 whose value of A’ a Borel subset of
A is given by the integral on the right-hand side of (4.5) but with A’ in place of 4. It
suffices to prove that gu(t,x)<C ™! for 0<s<1, x<1. Let x<1 and 0<s<1.
Noting that if [y—x|>x/2 then [y —x| > y/3, we see

gus,x)= [ plt—s,|y—x|) Yn(f(t,0)) dtdb

ly —x| <x/2
t.y)ed

+ idt ‘];p(t—s, S(t,0)/3) Pr(f(t,0)d0. 4.7)

The case N =1 is readily disposed of and omitted. Let N>2. To get an upper
bound of the first integral in (4.7) apply the projection x, with h=x/2 and make a
comparison as in Lemma 9. Since x" ~!d0 equals a constant multiple of a surface
element on (N — 1)-dimensional sphere of radius x/2, we then see that it is bounded
above by

IP( )jdt}p(t wu" " 2du=C\ W(x)jdufe I2N=3 gy

which is dominated by a constant multiple of y(x) if N = 3 and that of y(x) log x| if
N=2. As for the second integral in (4.7) we have only to use the inequality

p(u, /3y~ 2p(0) S Cop()/w)/u

1 1
to bound it above by C; | w([/ﬁ)u‘ 'du=2C, | w(wu~ 'du. By arguing in each of
0 0

the two cases y<1/f¢ and ygﬂ the inequality above is ready from the
monotonicity of p and the fact that the slowly varying function is always of the

1
form y(x) = a(x) exp (j ewu” 1du) where a(x)—1 and ¢(x)—0 as x—0 (cf. Feller [6,
p. 2747). Consequently gu is bounded. Lemma 10 has been proved.

Proof of Theorem 8. Proposition 6 in the previous section will be of use in this
proof. Let G,,=GnD,, Then applying Lemma9 with h(t)=X,.(1),
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2"t .1 St<2%, we see that if k=0
V/2%(0; G, ) = (2n2") =¥ Cap(G, ) 2 (272"~ M2 e Cap(m,G, ),

where

_ 2
y:=sup {(—)—(i(—tlt—_él(—s)l— Ly 1 St—s=t, k=0,1,2,..}.

From (3.2, 3.3,2.2) it follows that y < 0. Since xp(t, x) is decreasing with respect to
x in the region x?> Nt (t >0) which contains D, , if k>0, and since the right-most
member of the inequalities above equals e”?h(0,n,G, )=e¢"*v,u(m,G, ), an
application of (1.3) deduces that if k=0

HO3 Gu) 22 M2 [ (60"l 0,0)  drdo),

t,y)eGn,k
wherey= f (¢, 0)0. Finally Lemma 10 together with the scaling relation (2.3) proves
hO;G, —)2C [ WN[(t,0))/t)¢  didd.

(£, Y)€Gn, -1

The assertion of Theorem 8 follows from Proposition 6 and the last two
inequalities.

3. Thecriterion given by Theorem 8 may be fairly accurate if f (¢, 0)/% islarge, but
not if small. To see the latter consider the tube T, .={(t,y):0<z¢<s, |y|=x}.
Replacing ¥(x)in (4.5) by x¥ =2 or [logx| ~ ! according as N =3 or N =2, we make
a computation similar to that in the proof of Lemma 10 to see that as x | 0

Cap(T,, )=<x""? or |logx|™! according as N=3 or =2, (4.8)

where “<” means that the ratio of two quantities which hold this symbol between
is bounded away from zero and infinity. (For getting the upper bound it may be
noted that gu, <gu, implies u;(R¥*1)<u,(RV*').) By (4.8) together with the
scaling relation

Cap(¢p°A)=¢N'? Cap(A).
Theorem 1 yields the Dvoretsky-Erdos test [Spitzer’s test] which may read as
follows: if f(t,0)=f(¢) a function of t only and h(t):= f (t)/[/f decreases to zero as

t 1 0o, then G is not thin at {, if and only if | h(t)¥ "2t~ 'dt= oo in the case N =3

+ 00
[resp. { |logh(t)~ 't~ 'dt=o0 in the case N =2], which condition is somewhat

weaker than the divergence condition given in Theorem 8.
Complementary to (4.8) we have Cap(TA,,x)Xl/ZxN “!for x2>At>0, N>1.

It follows from (2.5) and (3.2) that x, ]/, —t, 4 1 /t; ~const.; then from (1.2) that for
t=4t>0

J(t, At, x):= P[|W(s)|=x for some se(t,t+ At)]

=<|/4tx"~p(t, x) as long as V~ 1/—t<C 4.9)
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where C is any constant, which the constants involved in “<” may depend on (if
N=1,then VATt/x =< Cmay be deleted, so that x =0is allowed). The relation in (4.9),
which may be rewritten (x [/Z/t).] (t, 4t, x)=x"p(t, x) At/t, shows that the ratio of
the probability P[W(s) e S(a) for some s € [t, t+ At) but not for any se(0, t)] to the
probability J(¢, 4t, X (t)) stays off zero or does not according as X (t) [/A_t/t does or
does not. This observation suggests that the divergence condition in Theorem 8
fails to be critical if the heights of GND, , are much smaller than those of D, . As
an example let f(f)=]/2ctloglogt if 2"<t<2"(1+n"?), n=1,2,... and f(t)= 0
otherwise. Then P[|W(t)=f(t) for some te[2", 2""Y)]=<J(2", 2"n"?, f(2")
=n""2"/logn" "', (as n—>o0), (1) where for the first relation we employed
Lemma 9. This shows that P[[W(t)|=f(t) i.0. as t1oo]=1 if and only if
0<y/2£1—c, whereas a sufficient condition provided by Theorem 8 is
0<y=s1-—c

4. Let g(r), r = 0 be a non-negative non-decreasing function. If N =3, it is supposed

that g(0+)=0 and lijr(} rllogq(r)l/q(r)=0. Let 8, be a fixed unit vector of R". Put

f(t,0)=]/2tlog(llogt| v 1)(1+4(10—6,))), >0,

and F={(t,x):t>0,x= f(t,x/x)}. Then for F to be thin at the origin it is necessary
and sufficient that

q(0)>0 if N=1 or 2

()32 .
oj; “logu dq(u) < if N=3, (4.10)
Oj+ ug(u)~2dq(u) < oo if N=4, 4.11)
§ uNTlqw) V2 2dguy< oo if NZ25. (4.12)
0+

(The point u=0 is not contained in the range of the integration for these integrals.)
The same criteria are applied to the minimalthinness at {,,.

Before starting the proof it is remarked that for the minimalthinness at { is
necessary the convergence of the series

T 2N | Xz,.(t)]{x:(t,x)anS(2")}|%, 4.13)
1 0o+

(I - |is the (N — 1)-dimensional surface area) which follows from Theorem 1 simply
by taking into account only the frontal part of F,:=Fn(B(22"*')\B(2") in
computation of h(O,F,). It turns out that this necessary condition is also a
sufficient one if either N=4 and g(r)=r" or N 25, but far from that if N<3.
We treat only the thinness at infinity. The case N =1 or 2 are easy and omitted.
The case N=3 or 4 is somewhat delicate. We begin with the case N=>5. Let
a(n)=2" Let T, and k,(t), e <t < T,, be determined by |/2T, loglog T, = X ,,(T;) and
by  X,.(0)=]/2tloglogt(1+k,r), respectively. Let L,=loglogT, and
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=T,(log T,,)'”N. Then by a simple computation

n

T,
_k,,(t)_ for T,<t=T,, (4.14)

5L

for n large enough. Fixing n let a=a(n), T=T,,,, T'="T,, L=L,, k%) =k,(t) and
T°=T,. Then

h(O;F,,)—— jXN @, Xa) jh(t X,0;F,)d0+3,, (4.15)

where X,= X ,(t) and 6,<7,(0, T'] x ©). It follows that 24, < co, which may be
seen directly or by noting that for f(t)=|/3tloglogt the integral in the
Kolmogorov test converges and f(T)/X,n(T,)—>1 as n—oo. Put

={0:10—0,|>q '(k,(t))} for t<T° and A,,=0 for t>T°, where q~'(u)
—sup {r=0:q(r)<u} with the convention sup@=0. We devide the inner integral
appearingin (4.15)into the integral on 4, , and that on ®\ 4, ,, which we denote by
I,(t) and I1,(t), respectively. The contribution from I1,(t) to the double integral in
(4.15), which corresponds to the n-th summand of (4.13), is relatively easy to
estimate. Since h(t, X,0; F,)=1 for 6¢ A4, ,, it is bounded above and below by
constant multiples of

_N/zT0 Nr.-1/1.0 N—1dt
a ; X0 g™ (KO (4.16)

Applying (4.14) X (£)<]/ —NtlogT'/a=]/3tL(t>T')and X (t) =/ 2tL (¢t <L) and
changing the variable according to u= N(log T°/t)/3L we bound (4.16) from above
and below by constant multiples of

1 LN/2+ I(TO/a)N/Z 1!/'3 [q— l(u)]N— 1 e—3Lu/2du .

Since T,,,— T, =T, the convergence of the sum of the last quantity over n is
equivalent to that of the integral of it by d(log T®)=dT°/T°; and since
(T°/a)'*d(log T°) ~d(log log T°), the latter integral equals 1/N times

© 1/3 1/3
[IN2HYAL [ [q Y w)]N " e /> du=const | [g "I *u=N?*"2du.
1 0 0

This proves especially the necessity of (4.12).

To get an upper bound of I,(t) we further put R= X ,,(T,, 1 1),  =1,() = X (),
k(t)=k,, () and b=a(n+1). Let W*(-) and Y*(-) be respectively the 1-dimen-
sional Brownian motion and the (N — 1)-dimensional Bessel process both starting
at x which are mutually independent and defined on the same probability space as
so far used. Then, by writing A=4, ,,

Lo=]P [ Wi(s)>r+ I; 5, Y'Os) S Xyt +5)g ™ k(1)

for some 0<s< T—t]d@,
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where [(r0) is the distance of the point rf from the line uf,, ueR. Since
(R—r)/(T—1t)=(dr/dt),=r= L/3R if n is large enough, the integral on the right-
hand side is at most

] de.

Since the law of the last leaving time of W(t) from the line ct, t =0 is given by
c[ﬁe"‘z/ 2t~1dt and since X,(t+r2s)r<2)/T/t, if we write c=Lr/3R and
y=2]/f/_tq'1(k(t)) and denote by ] the first hitting time to y by Y"(-), the last
integral is dominated by

jP[Wl s)> s Y’(")(s)< X,,(t+r 25)q ™ H(k(

1 ©cl/s
const [ rN72dr{ —Z———e"“zl2 P[7,<s]ds.
O] o s

Consequently, applying the scaling relation: P[1} <s] = P[t, < c?s], we obtain

c © 1
L()<constc™™*' | N72dr [ —e T P[1},<2s]ds. 4.17)
e

cq =1 (kO(1))

By dominating P[7;,<s] by the hitting time distribution of the 1-dimensional
Brownian motion when r = 2cy, the right-hand side of (4.17) is at most a constant
multiple of

“N+1 N-2 —CY  _—eyj2u g, 1 1
c j r 2 dr j " WAy | —e™ ¥ ds
2y W3 u ]/;

2cy
+C—N+1 ,f rN_Z(cy/r)N_3dr,
g~ 1(kO(t))

which, after a bit of calculation, we can bound by const(c ¥*!4y¥~1)

=const()/ T/ {L"¥* ' +[q7 '(k(z)]¥~'}. Then, as before,

Thn+1 1
> rfp(t,r,,)l,,(t)i—téconst{j[q"(u)]”'lu'”’z‘zdu+CN},
n T, 0

where Cy:= [ L™¥2*1d[ is finite if N>5. This shows the sufficiency of (4.12).
1

For N =3 or 4 the convergence in (4.10) or (4.11) implies that of the sum of the
quantities in (4.16) over n, so that it suffices to evaluate the sum corresponding to
I,(t). We make use of the formula

© 1 K,()2Ar)/r™" N-3
7 = }'tP r d =T, = —
¢4 (j)e [re<eldt A KV(]/ﬁs)/s"v ! 2

(K, is a modified Bessel function in the standard notation), together with K, ,(z)
=)/n/}/8z+0(z*?) (z10) and K(z)= —logz+const +o(z) (z | 0). By the Tcheby-
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chev inequality P[7}<s]<ep](1). Applying this for 0<s<1 and the scaling
relation mentioned before, we have

e *Plt;<2s]ds<3ppta(1).

Ot 8

1
Vs
If N=4, by (4.17) and by K ,(z)=0(e"*/}/z) as z—n,
L()Sc NV Y(cy)¥ 3 const Ojo N oe " Ar N*3)dr=constc2y.
0

Repeating the same argument as made through several lines from (4.16) down to the
end of the paragraph which contains it we would obtain a corresponding upper
bound which proves the sufficiency of (4.11). The lower bound can be computed in
a similar way (disregard the part of F, above the level t=T,). If N=3, I,(?)
<constc ™ %/|logch| whenever cb < 1. This time we put T, = T,/L%, which still entails
that in (4.15) Y 0,<oo. Then, by proceeding as before, the convergence of
T
Y | XVp(t, X,) ()t~ ! dt follows from that of

n T

logL)/L

+ o0 4(
[ LMdL | e ™2|logLg™'(u)~ 'du.
0

If the condition ¢~ *(u)=o(u/|logu|) is employed, after changing the order and
variable of integration one sees that the latter convergence in turn follows from
(4.10). Thus the sufficiency of (4.10) has been proved. The necessity is similar and
easier as in the other cases.

5. Appendix

This appendix consists of four parts. In the third part we shall give a probabilistic
proof of the result by Bauer [1] stated in Introduction. Our proof is based on the
fact that RV**\ B(a) is thin at the origin and on a result of Fulks [7], which will be
proved in the first and the second part, respectively. The last part is devoted to
showing the existence of the equilibrium measure e, in (1.1).

1. For c>0put f(t)=|/—ctlogt (0<t<1)and F={(t,x): x= f(t),0<t<1}. We
here prove that F is thin at O for every ¢, which in particular implies the thinness of
RN*1\ B(a) at 0. This claim of course follows from Kolmogorov’s test, but in our
deduction of it we made use of it granted that v, defined via (1.3) is the hitting
distribution to S(a), which fact we are going to prove. Since the probability of the
event W, ;= {|W(e **1)| 2 f(e™%)} is not less than 1/2 times the probability of the
event {the part of F between t=e~* and t=e"**! is ever hit} for k>1, the
asserted thinness follows from

YP[U]= ;P[W(e)ge"/zf(e"‘)] <constY |/kV 2”2 < oo,
k :
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2. For reader’s convenience the Fulks derivation of an explicit form of v, is briefly
given in a way relevant to the present context. Let % and #* be respectively the
parabolic and coparabolic operators: ¥ =44—(0/0t), ¥*=44+(0/dt). Let
D,={(t,y)e B(a):t>¢}, ¢>0. Given a function v which is defined and satisfies
L*v=0 in a neighbourhood of B(a), we apply the divergence theorem to integrate
the expression uL*v —v.Lu=1V - (uVv—vVu)+ d(uv)/dt over D, with u=g [recall
g(t,x)=p(t, x)]. Since Lg=0 for t>0 and g=(]/2na “¥on S(a), this after
rearrangement yields

1 1 1
vdx=—=f{vWg-njdo+—— (| =Vv-n +vn>da
x<Xae) 8 2sje g )/ 2na®™ SI (2 e

where S,=S(a)ndD,, n; and n, are respectively the abscissa and the ordinate
components of the outward unit normal vector to S,, and do is a surface element of
S.. Taking u=1in place of g, which results in the same equality as above but with 1
replacing g, one sees that the second term on the right-hand side of this relation
vanishes as ¢} 0. The left-hand side equals E[v(W(e));|W(e)| <X ,(e)], which
converges to v(0) since P[|W(e)|= X (e)]]=P[IW(1)|2]/ —N loge/a]—O0.
Consequently

W0)=—% [ vWg-n,do. (A1)

S(a)

But, by introducing a variable §=x/x, we have —Vg-n, =(xg/t)|n,| and |n,|do
=x""1d0dt at (t,x) e S(a), so that the relation (A.1) can be written

w0)= | u(t,X,(0)0)0,(dtdo), (A2)
(0,a1x 0

or, what is the same, v(0)=v,(v):= | vdv,, where

S(a)

§(dt d6)= %(ma)—m Xa(t)N%t-d(), (A3)

and v, is a measure on S(a) induced from ¥, by the mapping (¢, 0)—(t, X (t)6) € S(a).

3. Here we shall prove that v, defined above via (A.3) agrees with the hitting
distribution to S(a) for (t, W(t)). For {=(s,x) let P, denote the probability law of
(t+s, W(t) +x) the space-time Wiener process starting at ¢ induced on the space of
continuous functions C([0, c0), R **) equipped with the cylindrical Borel field and
B. [or sometimes f(t)] a generic element of this space. The expectation by P, is
denoted by E,. Let T be the first hitting time to S(a) by g,: T=inf{¢t>0:f,€ S(a)}.
Given f a continuous function on S(a), we put

ué)= E{[f(ﬁr)] >

where by convention f(f1)=0if T= co. Our aim is to show that w(0)=v,(f). Let us
claim that for a sequence &, in B(a) which converges to the origin it holds that

limsup limsup P, [T<d]=0 implies u(0)= limu(,). (A4)
410 n—w

n— o
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Indeed if £ € B(a), the Markov property shows
ELf(Br)]=ELEz,[f(Br)); T>0]1+E[Lf(Br); T<d],

from which it follows that

|ELLSf (Br)]— ELu(B)II =211 f | o PLT <]

Applying this inequality with {=0 and £=¢, and rewriting E.[u(f;)] as
Eo[u(B;+ &)1, we see that the premiss of (A.4) implies

lim sup|u(¢,) —u(0)| = liI’Ijl_PS(l)lp lim sup|Eo[u(B; + )] — Eolu(Ba)ll

where the thinness of S(a) at O also is applied. Since S(a) is not thin at every point of
it except the origin and (a, 0), u(£) is continuous off these two points. Therefore we
get the conclusion of (A.4).

As being well established in the theory of Markov processes £ *u=0 off S(a).
Let &,=(¢,0) for £>0. Since

(6/0a) {X (a—1)}2/N = —log(1 —t/a)—t/a>0, O<t<a,

if b<a—e¢ the shifted ball B(b)+ £, is in the interior of B(a), so that by the Fulks
result (A.2) u(&)=v,(u(-+¢&)). Let T' be the first hitting time to S(a/2). Then
P o[T<8]1SXPo[T <] for e<a/2. Since RY* '\ B(a/2) is thin at the origin, the
right-hand side of this inequality vanishes as § »0; hence by (A.4) u(&,) converges
to u(0). On the other hand since u(¢) is continuous at every point except the top and
bottom points of S(a) and coincides with f on S(a) except for these two and since v,

has no point mass, by the dominated convergence theorem hm v,,(u( +&E))=vy(u)

and owing to the explicit form of v, provided by (A.3) llm v,,(u) a(u) Consequent-
ly u(0O)=v,(f) as required.

4. In this part we shall continue to use notations of previous three parts but does
not make use of results obtained in them in any essential way. Let us consider the
“dual” space-time process (—t + s, W(t) +x), t =0, starting at ¢ =(s, x), and mark *
on the corresponding objects. Thus P is the law of the dual process, $*(a)= —S(a)
and g*(&,n)=g(n, &) (=g(&—n)), etc. (B, is not marked because it is merely a sample
path; and not also the first hitting times defined by means of it.) Given a bounded
analytic set A of RV*!, we take £, R¥*! and a>0 such that A (the closure of A)
CB*:=B*(a)+¢&,. Let T, and Ty be the first passage times of f, to A and to
S* .= 0B*, respectively, and put

u*(-)=Qna)*? P[B(Ts) € -],
and

eq(-)=[PrLA(T )€ -Tu*(dn). (A.5)

Then e, is the equilibrium measure of A, i.e. it satisfies (1.1).
Let t>s, £=(s,x) and n=(t,y). First we prove that for a.a. y

E[g(B(Ty,m]=PLu, Wi(u)eA forsome O<u<t—s]g(ln) (A6)
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where W ¥(u):= W(u)+ {(t—u)x+u(y— W(t)}/t, 0£u=<t, a Brownian bridge
starting at x and ending at y. For the proof of (A.6) we can assume ¢ =0. Let 7, be
the first hitting time to A4 by (¢, W(t)). Then, by recalling that g(&, )= p(t —s, |y — x|)
is a transition density of W(-), for a bounded continuous function ¢(y) we see

J EolgBr,, (6. V)] ¢y dy=ELELo(W(t —t) + X)]u=r\ x=wie} T4 <]
=E[o(W(1);7,<!]
= [ Plea<tIW@)=y] p(t.y) o(y)dy

(where the strong Markov property is applied for the second equality), proving
(A.6). The process W ¥(t —u), 0=u =t is also a Brownian bridge but starting at y
and ending at x. Keeping this in mind compare the right-hand side of (A.6) with
that of its dual version, then you can see that for a.a. (¢,7)

E [g(B(Ty),n)]=EF[g*(B(T,), 5] (A7)

Since the both sides of this equality are continuous in (&,#) off 4 x 4, it holds
outside A x A. Let us prove that (A.7) is true for all £ and . To this end we can
assume that AC{(t,x)eRY " :s<t'<t}. Let ¢ A, neAand 4,={(t,x)e A:t' <t
—1/n}. Then T, | T, as. P, and P[T, =T,|T, <oo]=1. The latter relation
implies E[g(B(T,, ), &)] < E[g(B(T,),n)]; and application of Fatou’s lemma then
shows that the expectation on the left-hand side of this inequality converges to that
on the right-hand side as n—co. As for the convergence of Ef[g(B(T,), £)] we can
simply apply the bounded convergence theorem. Consequently we have (A.7).
Repeating the same argument we see that (A.7) is true for & neA; hence, by
symmetry, for all £ and #.

We now integrate both sides of (A.7) by u*(dn). For the moment let £, = 0. Then
p*()/2na)*v} and if £¢B¥a) it holds that v¥g*(¢)=g*(&), since then
L*{g*(-,£)} =01n a neighbourhood of B*(a). This shows that u*g*=gu*=1 on
S*\{¢,} and hence on B*. Now the integral of the left-hand side equals
E [gu*(B(T,))]=P[ T, < o] =h(¢, A), while by the very definition of e , that of the
right-hand side is ge,. Thus our claim is proved.
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