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0. Introduction

This paper originated from a study of Browder’s version [3] of Banach’s closed
range theorem for (not necessarily continuous) linear operators between locally
convex spaces. It seems that the most reasonable way to proceed is to perform a
simultaneous development of the closed range theorem and the open mapping
theorem. Insofar as the open mapping theorem is concerned, our results largely
parallel those of Kothe [5, 7], but our proofs are less technical and (see
Theorem 11) we can dispense with the local convexity of the spaces concerned.
Furthermore (see Remark 19) our analysis throws light on the result obtained in
[7] that, in the locally convex case, every open map is weakly singular. Insofar as
the closed range theorem is concerned, our results represent improvements of the
results of Browder [3] and Baker [2]. See the discussion in Sect. 8.

Our presentation leans heavily on the properties of seminorms. We use the
characterization of barreled spaces in terms of lower semicontinuous seminorms
(see Sect. 1) and our other main tools are the concepts of Mackey seminorm (see
Sect. 1), the quotient of a seminorm by a linear map (see Sect. 2) and adequate map
(see Definition 7 and Remark 8). These tools obviate our having to deal with the
more abstract concept of a quotient topological vector space.

We introduce two definitions of the adjoint of a linear map. The “small
adjoint,” introduced in Sect. 3, enables us to give the most succinct statements for
the results in Sects. 3-5. The “large adjoint,” introduced in Sect. 6, corresponds to
the definition usually made.

In Sect. 7 we specialize to the case when local convexity is assumed for the
range space (and sometimes also for the domain space).

A number of the results in this paper assume that the range of the operator
under consideration is metrizable. We discuss weakenings of this condition in
Sect. 8.

In order to keep our treatment short and simple, we have not touched on of
the many other interesting concepts dealt with by some authors (e.g., Kothe [5, 7],
Baker [2], Mennicken and Sagraloff [8]) such as nearly open operators, weakly
open operators, etc.
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Other authors who have contributed to the literature include Dieudonné and
Schwartz [4], Mochizuki [9], Ptak [10], Schaefer [12], and Treves [13, 14].

1. Preliminaries

If E is a real topological vector space, we write E* for the algebraic dual of E and E’
for the topological dual of E. If P is a seminorm on E, we write

E}:={a:acE*,a<P on E}
and
Ep:={a:aeE,a<P on E}.

From the Banach-Alaoglu theorem, Ef is w(E*, E)-compact.

We say that E is barreled if every Isc (lower semicontinuous) seminorm on E is
continuous (see [6, 21.2(2)—(3), p. 257]). (We do not assume that E is necessarily
Hausdorff or locally convex.) The authors are grateful to the referee for pointing
out that if E is ultrabarreled (in the sense of [11]) then E is barreled and, from [11,
Sect. 7, p. 256] the converse is not true even if E is locally convex.

Lemma 1. Let E be barreled and Q be any seminorm on E. Then Ej is W(E', E)-
compact.

Proof. Define R:E—R by R:=sup{a:acE,}. R is a Isc seminorm on E and
R=0Q. Since E is barreled, R is continuous. The result follows since E, = E}.

We shall say that P isa Mackey seminorm on E if E§ CE'. [If E is Hausdorff and
locally convex, then P is Mackey <> P is continuous with respect to the Mackey
topology t(E, E'). However, our definition does not require that E be either
Hausdorff or locally convex.]

Lemma 2. Any Mackey seminorm is Isc.

Proof. This follows since, from the Hahn-Banach theorem, any seminorm is the
supremum of the linear functionals that it dominates.

Lemma 3. Let E be pseudometrizable. Then any Mackey seminorm on E is
continuous. ( This is the counterpart of the result that any metrizable locally convex
space has the Mackey topology.)

Progf. Suppose, on the contrary, that P is a discontinuous Mackey seminorm on
E. Then 3{x,},>CE such that x,—0 and, Yn=1, P(x,)=1. Let {U,},>, be a
decreasing neighborhood base at 0. Then 3 a subsequence {y,},>; of {X,},> such
that, Vn>1, y,€3~"U,. Thus, writing z,:=2.3"y,, z,—0 and P(z,)=2.3".

We define n,:=1 and choose by, n,,b,, ... inductively as follows: (using the
Hahn-Banach theorem) b, € Ef CE’ such that

<an’ bk> = P(an) g 23k
and (since z,—0) n,>n,_, such that

k-1 X
<an, z 3_ij> <
ji=1

N =




The Open Mapping and Closed Range Theorems 89

Write b:=2 ¥ 37/b;e EfCE'. Then, Vk21,
=1
1

(n bY2237 %z b+ Y 237z by =2
1

j=k+

Jj=k+1

> (2.3-"— 3 2.3—i>P(z,,k)-1;1,

which is a contradiction since z,, —0.

2. Semi-Open Linear Maps

We shall suppose for the rest of this paper that E and F are real Hausdorff
topological vector spaces and T: E—~F is linear (but not necessarily continuous).
We do not assume that E or F is locally convex until Sect. 7.

If P is a seminorm on E we define the seminorm P/T on T(E) by

P/T(3):=infP(T~y)(ye T(E).

Lemma 4. Let be T(E)*. Then be T(E)§;r<>boTeE}.
Proof. (=) VYx€E, {x,boT)={Tx,b) <P/T(Tx)=inf P(T ' Tx) < P(x).

(=) VyeT(E) and xe Ty, y,b)={Tx,by ={x,bo T) < P(x).
Taking the infimum over x, {(y,b)> < P/T(y).

Definition 5. We shall say that T is semi-open if P/T is a continuous seminorm on
T(E) whenever P is a continuous seminorm on E.

Lemma 6. (6.1) = (6.2) = (6.3) = (6.4). If T(E) is barreled then (6.1)-(6.4) are
equivalent. If T(E) is metrizable then (6.1)—(6.3) are equivalent.

(6.1) T is semi-open.

(6.2) If be T(E)* and bo Te E' then be T(E).

(6.3) If P is a continuous seminorm on E then P/T is Mackey on T(E).
(6.4) If P is a continuous seminorm on E then P/T is Isc on T(E).

Proof. ((6.1) =>(6.2)). Let be T(E)* and bo Te E'. Since T is semi-open, setting
P:=|{-,boT)|, P/T=|{-,b)|is continuous on T(E), hence be T(E). Thus (6.2) is
true.

((6.2) = (6.3)). Let be T(E)};r. From Lemma4, bo Te EFCE". From (6.2),
be T(E). Hence P/T is Mackey.

It is immediate from Lemma 2 that (6.3) = (6.4).

If T(E) is barreled then it is immediate that (6.4) = (6.1). If T(E) is metrizable
then it is immediate from Lemma 3 that (6.3) = (6.1).

3. Connections with the Range of the Small Adjoint
We define 4:={6:6eT(E), 6 Te E'} CT(E) and T*: A—E' by
T6:=60T (de4).
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[It is understood in this that T(E) has the topology induced from the topology of
F.] We define G:= {(x, Tx):xe E} CEx F.

Definition 7. We shall say that T is adequate if
x€E,acE,{x, T(4)>={0} and <T '0),a>={0} = <{x,a)>=0.

Remark 8. T is clearly adequate if 4 separates the points of T(E) or T~ !(0) is dense
in E —in particular if F is locally convex and T is continuous. The condition (8.1)
below also ensures that T is adequate.

(8.1) (x,00€G°° = xe T~(0)°°,

where © stands for the operation of polarity (orthogonality). To see this, suppose
that (x,T(4)>={0} and <T'(0),a)={0}. If (c,b)eG°CE xF’ then boT
= —ceFE hence 6:=b|Fmed and c= —0o T=—T°5. Thus

<(X, O)a (C, b)> = <x7 C> =- <x9 T15> =0 s

that is to say, (x,0)e G°°. From (8.1), xe T~ 1(0)°° hence {x,a>=0.

If F is locally convex then the above argument can be reversed and gives that
(8.1) < T is adequate. If E and F are both locally convex then, from the above and
the bipolar theorem, T is adequate <> T is weakly singular (see Remark 19). The
authors are grateful to the referee for pointing out this last fact.

Lemma 9. We consider the condition:

9.1) TY(4) is w(E', E)-closed.

Then (6.2) = (9.1). If T is adequate then (6.2) <> (9.1).

Proof. ((6.2) =>(9.1)). Let ae E" and suppose that Janet d,€ 4 such that T°5,—a
in w(E’, E): we shall prove that ae T%(4). Let xe T~ '(0). Then

{x,ay=lim,{x, T*,)=1im,{Tx, d,y) =1im,<0,6,>=0.

Thus we have proved that if x e T~*(0) then {x, ) =0. It follows algebraically that
3be T(E)* such that bo T=a. From (6.2), be T(E)’ and, from standard extension
arguments, 36 € T(E) such that Olr¢gy=b,hence 6o T=a. Then de A and T6=aq,
from which a e T(4), as required.

91)=(6.2)) Let beT(E)* and boTeE'. Suppose that xeE and
{x, T(4)y={0}. Since T is adequate and (T~ '(0),bo T)={0}, <{x,boT»=0.
Thus we have proved that

xeE and {x, T(4))={0} = <{x,boT)>=0.

From (9.1) and the separation theorem, b Te T%(4), hence 36 € 4 such that T
=boT. Then b=0|r,€ T(E). Thus (6.2) is true, as required.

Theorem 10. Let T be adequate. If T(E) is barreled then (6.1)—(6.4) and (9.1) are
equivalent. If T(E) is metrizable then (6.1)—(6.3) and (9.1) are equivalent.

Proof. This is immediate from Lemmas 6 and 9.
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4. The Semi-Open Mapping Theorem

We recall that E is a Ptdk space if a subspace L of E' is w(E’, E)-closed whenever, V¥
continuous seminorms P on E, LNE} is w(E', E)-compact. (We do not assume that
E is necessarily locally convex. See Remarks 15 for further comments on Ptak
spaces.)

Theorem 11 (Semi-Open Mapping Theorem). If E is a Ptdk space, T is adequate
and T(E) is barreled then T is semi-open and T%(4) is w(E', E)-closed.

Proof. Let P be a continuous seminorm on E. From standard extension
arguments and Lemma 4,

T(A)NEf={boT:be T(E),bo TSP} ={bo T:be T(E)p1};

from Lemma 1 and the w(T(E), T(E))—w(E*, E) continuity of the map b—bo T,
this set is w(E*, E)-compact. Since E is a Ptak space, T"(4) is W(E', E)-closed. The
result now follows from Theorem 10.

5. Connections with the Range of T
If ze T(E) we define 4,:={6:5¢€4,{z,6>=0}.

Lemma 12. If T is semi-open and z € T(E) then, for all continuous seminorms P on E,
TY(4,)NE} is w(E', E)-compact.

Proof. Let P be a continuous seminorm on E. Since T is semi-open P/T is
(uniformly) continuous on T(E). From standard extension arguments, 3 a con-
tinuous seminorm R on T(E) such that R|yg=P/T. We now prove that

(12.1) T(4,)NEf={50T:5e T(E)% <z,0)=0}.

Let aeT(4,)nE}¥. Then 36€Ad such that (z,6)=0 and T'd6=a. From
Lemma 4(<=), 6|y € T(E)f . Since both  and R are continuous on T(E),
de TE)%. This establishes (C) in (12.1). Conversely, let e T(E)% and <z, =0.
Since 6|7 € T(E)¥/r, from Lemma 4 (=), 6o Te Ef CE', from which d € 4, hence
0 € A4,. This establishes (D) in (12.1). The result now follows from (12.1), the Banach-
Alaoglu theorem and the w(T(E)*, T(E))— w(E*, E) continuity of the map o T.

Lemma 13. If 4 separates the points of T(E) and, ¥z € T(E), T(4,) is w(E', E)-closed
then T(E) is closed in F.

Proof. Let ze T(E)\T(E). Clearly z+0. Since 4 separates the points of T(E),
30€ 4 such that {z,0o)=1. If now de 4, then {z,6)+<z,0,) hence [since
ze T(E) and both d, and § are continuous on T(E)] 6|T(E)4=50|T(E,, from which
T*0% T"6,. Thus T°6, ¢ T*(4,). By hypothesis and the separation theorem, Ix € E
such that {x, T°6,>=1 and

(13.1) oed,={x, T6)=0.

Let 6 e A. Since {z,6)6,—d € 4,, from (13.1) and the fact that {x, T*5,) =1,

0=<x, T({2,0580—0)> ={z— Tx, 8> .
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Thus we have proved that
VoeAd,{z—Tx,6)=0.

Since 4 separates the points of T(E), z=Txe T(E). This contradiction of the
assumption that z ¢ T(E) establishes that T(E)\ T(E)=0, hence T(E) is closed, as
required.

Theorem 14 (First Half of the Closed Range Theorem). Let E be a Ptdk space and
A separate the points of T(E). Then

T is semi-open = T(E) is closed in F .
If, further, T(E) is barreled or metrizable then
T(4) is W(E', E)-closed = T is semi-open .
Proof. This is immediate from Theorem 10 and Lemmas 12 and 13.

Remarks 15. The argument of this section is related to Grothendieck’s complete-
ness theorem, but the argument of Theorem 14 does really establish that T(E) is
closed. We do not know whether, under the conditions of Theorem 14, the
conclusion can be strengthened to “T(E) is complete.” We observe that it is only
the topology of T(E) (as a subspace of F) that is at issue in Theorem 14. We do not
otherwise have to be concerned with the topology of F. Theorem 14 complements
[7, 37.5(4), p. 104], which requires that E be locally convex.

The authors are grateful to the referee for the following observation. Let
E=1Y2, F=1', and T: E-F be the canonical inclusion. Then T(E) is metrizable
and (being dense) is not closed in F. Further, 4=F'=1* and TY(4)=E’ which is
w(E', E)-closed in E'. Thus, from Theorem 14, E is not a Ptak space. This example
shows that a complete metrizable topological vector space is not necessarily a Ptak
space. Combining this with [1, 10(7), p. 54] we see that a B-complete space (in the
sense of [1]) is not necessarily a Ptak space. On the other hand, if E'= {0} then E is
a Ptak space; consequently, it is easy to give an example of a Ptak space that is not
complete. Combining this with [1, 10(9), p. 56] we see that a Ptak space (in the
sense of [1]) is not necessarily B-complete.

6. The Range of the Large Adjoint

Remark 16. The map T* with domain 4 can be thought of as an adjoint map for T.
This definition is obviously the appropriate one for the analysis of Sects. 3-5. It is,
however, more usual to define the domain of the adjoint by

D:={d:deF,d-TeE}CF'
and the adjoint T*: D—E’ by
Td:=d-T (deD).

It is this distinction that prompted us to use the phrases “small adjoint” and “large
adjoint” in the section headings for Sects. 3 and this section. If the following
condition is satisfied:

(16.1) If 5 T(E) and 6 Te E’ then 3de F’ such that d|rz=4
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then T'(D)= T*(4). In this case, (9.1) is equivalent to:
(16.2) TD) is w(E', E)-closed.

For the analysis of the next section, it is sufficient to observe that (16.1) is satisfied if
F is locally convex.

7. The Locally Convex Case

In this section we suppose that F is locally convex. We shall also suppose for much
of this section that E is locally convex.

Lemma 17. We consider the condition

17.1) T is an open map from E onto T(E).

Then (17.1) = (6.1). If E is locally convex then (17.1) < (6.1).

Proof. This follows from the identity
{y:yeT(E),P/T(y)<1}=T{x:xeE,P(x)<1},

which is immediate from the definition of P/T.

Theorem 18 (On the Equivalence of Conditions). Let E be locally convex and T be
adequate. If T(E)is either barreled or metrizable then(6.2),(6.3),(16.2), and (17.1) are
equivalent.

Proof. This is immediate from Theorem 10 and Lemma 17.

Remark 19 (On Weak Singularity). T is said to be weakly singular (see [7, 36.1(7),
p. 81]) if _ —
(x,00eG=xeT }0).

We now show that if (6.4) is satisfied and E is locally convex then T is weakly
singular. Suppose that (x,0)€ G. Then 3 a net x, in E such that x,—x and Tx,—0.
Let P be a continuous seminorm on E. Then, eventually, P(x,—x)<1/2 hence
P/T(Tx,— Tx)<1/2.From (6.4), P/TisIsc on T(E). Thus, since Tx,—0, P/T(— Tx)
=<1/2. Hence

dwe —T 'Tx such that P(w)<1.

Let u=x+w. Then ue T~ *(0) and P(u—x)<1. Since this holds for all P and E is
locally convex, xe T~ 1(0).

It follows from these considerations that if E is locally convex and Prak and F is
barreled then the implication (6.4) = (17.1) can also be deduced from [7, 37.5(5),
p. 104]. Furthermore, the implications (17.1) = (6.1) = (6.2) = (6.3) = (6.4)
[which hold even if T(E) is not barreled or metrizable] throw light on the result of
[7, 37.4(1), p. 100] that, in the locally convex case, every open map is weakly
singular.

Theorem 20 (Open Mapping and the Other Half of the Closed Range Theorem).
If Eis a locally convex Ptdk space, T is adequate ( = weakly singular ) and T(E) is
barreled then T is an open map from E onto T(E) and T'(D) is w(E', E)-closed.

Proof. This is immediate from Theorem 11 and Lemma 17.
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Theorem 21 (Surjective Open Mapping Theorem). If E is a locally convex Ptdk
space, F is barreled T is adequate ( = weakly singular) and T(E)=F then T is an
open map.

Proof and remarks. This is immediate from Theorem 20. This is a special case of
[7,37.5(5), p. 104]. If T is continuous we obtain Ptak’s homomorphism theorem
(see [12,IV.8.3, Corollary 1, p. 164]), since a continuous linear map into a locally
convex space is adequate.

Theorem 22 (Semi-Open Mapping and Closed Range Theorem). Let E be a Ptdk
space and D separate the points of T(E). If T(E) is barreled or metrizable then

TYD) is w(E', E)-closed = T is semi-open = T(E) is closed in F .
If every closed subspace of F is barreled then

T(E) is closed in F < T is semi-open = T'(D) is W(E', E)-closed .

Proof and Remarks. This is immediate from Theorem 11 and Theorem 14. When
we compare this result with [3, Theorem 2.1, p. 65] and [2, Theorem 8, p. 2837, we
observe that we do not require E to be locally convex and that Lemma 3 has
enabled us to avoid considering “condition (t).” See the discussion in the next
section.

8. More General Versions of our Results

The proof of Lemma 3 shows that, in all cases in this paper where we have assumed
that T(E) is metrizable, we could equally well have assumed the weaker condition
[akin to that of T(E) being bornological]: if Q is a seminorm on T(E) such that
{0(z,):n =1} is bounded whenever {z,},-, C T(E) and z,—0 then Q is continuous
on T(E). -

We can obtain a more radical generalization of the first half of the closed range
theorem by modifying Lemma 12 rather than Lemma 3. To this end, let us say that
a subspace H of F is a u-subspace if every Mackey seminorm on H can be extended
to a Mackey seminorm on H. We can now prove the following modification of
Lemma 12: if (6.3) is satisfied, T(E) is a u-subspace of F and ze T(E) then, for all
continuous seminorms P on E, TY(4,)nE} is w(E', E)-compact. This leads to the
following modification of Theorem 14: let E be a Ptak space, 4 separate the points

of T(E) and T(E) be a pu-subspace of F. Then
T*(4) is w(E', E)-closed => T(E) is closed in F,

with a corresponding restatement in terms of T*(D) if F is locally convex. In
seminorm terms, F satisfies condition (t) (see [2] and [3]) if every Mackey
seminorm on every subspace of F can be extended to a Mackey seminorm on F. In
particular, if F satisfies condition (f) then every subspace of F is a u-subspace.
Consequently, the above result generalizes the relevant part of [2, Theorem 8,
p. 283] and [3, Theorem 2.1, p. 65]. Of course, it is requiring much less to ask for an
extension from T(E) to T(E) than it is to ask for an extension from every subspace
of F to F. Furthermore, in view of the close relationship between a subspace and its

closure, there is some hope of a reasonable internal characterization of u-subspace.
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