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Introduction

The Heisenberg group and especially the sub- (or Kohn-) Laplacian 4, on this
group has been studied extensively by many authors during at least the last decade,
and it would be beyond the scope of this article to even try to list the possible
applications and results related to this study. Let us only note that A4g is a
prototype of a so-called “subelliptic” operator, a notion which is perhaps not well-
defined but commonly used for operators such as the “sum of squares” studied by
Hoérmander [10], or for the so-called “Rockland operators” studied by Rockland
[13], Helffer-Nourrigat [7] and others. Therefore, it is desirable to have as much
explicit information about A as possible, and quite a bit is in fact known by now.
For example, Folland was the first to calculate an explicit fundamental solution for
Ag, and Gaveau (see [6]), using stochastic integration, as well as Hulanicki [11]
and Cygan [ 3], making use of the representation theory of the Heisenberg group,
derived a formula for the fundamental solution of the corresponding heat operator
0/0s— Ax. However, although this formula suffices to give a canonical way of
calculating a fundamental solution for Ay, it has one decisive drawback: it is
explicit only up to the partial Fourier transform along the center of the Heisenberg
group, and it seems very unlikely that one might be able to carry through this
Fourier transform explicitly. Therefore the best one might hope for is to be able to
describe the asymptotic behaviour of this fundamental solution. A partial solution
to this problem has already been given by Gaveau ([6]; compare also
Theorem 1.1), but his results did not cover regions which are in some sense “close”
to the center of the Heisenberg group.

In this article, we shall present a complete picture of the asymptotics for the
fundamental solution of the heat operator. Moreover, we shall apply these results
resp. methods in order to solve the analogous problem for the operator Ay —pu, pa
positive real number. Finally, in Sect. 3 we shall use these descriptions of the
asymptotic behaviour in order to prove that the so-called Martin boundary
corresponding to 4x—2 of the Heisenberg group is homeomorphic to the closed
unit disk in €. Moreover, we can show that the minimal Martin boundary, that is
the space of extremal rays of the cone of all positive solutions k of the equation
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(4x—2)h=0, is homeomorphic to that part of the Martin boundary that
corresponds to the unit circle. These results are in sharp contrast to the classical
situation of the Laplace operator on IR", where the Martin boundary correspond-
ing to 4 —2 is homeomorphic to the unit sphere S* ! in IR". A consequence of our
result is that each positive eigenfunction of 4, corresponding to a positive
eigenvalue is independent of the central variable of the Heisenberg group.

0. Preliminaries

(a) In order to avoid a few additional technical problems which arise for higher-
dimensional Heisenberg groups and to fix the ideas, we shall only deal with the
3-dimensional Heisenberg group H,.

H | is the 2-step nilpotent Lie group whose underlying real manifold is € x IR,
and where multiplication is given by

zu)(Z,u)=(z+2,u+u' +2Imz -2’

for (z,u), (z/,w')e € x R. We introduce real coordinates (x, y, u) for H, by writing
z=x+1iy. Let X, ¥, U denote the left-invariant vector fields on H, whose values at
the neutral element O are given by d/0x, 0/0y, and 0/0u respectively, i.e.:
0 0 0 0 0
X=— — Y=— —2x— U=_—.
TP 5 Fow u
Then we have [ X, Y]= —4U, and hence it follows for example from [10] that the

sub-Laplacian
Ag=X*+Y?

is hypoelliptic. With respect to the coordinates (x, y, u), Ay is explicitly given by

0> 0> 0 J10 0*
A = — P 4 e e Y 4 2 2 -

K=ot 0y? + [yc'?x xay] "l "+ )6u2
The group of automorphisms of H, contains two canonical subgroups of outer-
morphisms, namely the maximal compact subgroup SU(2)~T, which acts on H,
by ®(z,u): =(e’z,u), 0<p<2m, and the group R*, which acts by dilations
D,(z,u): =(rz,r?u),r >0.Itis easily seen that 4, commutes with the action of SU(2),

and that .
AK(foDr)=r (AKf)ODr

for all fe C?(H,) and r> 0. This shows especially that, by a suitable dilation, the
operator 4 —2 can be transformed into a multiple of the operator 4 — u for any
u>0. Therefore, it will be no restriction that in Sect. 2 we shall only consider the
operator A —2 instead of 4 —p.

(b) We shall frequently use the following standard notation from asymptotic
analysis:

If X is a locally compact Hausdorff space, and if A is a subset of X, then we say
that two complex functions f and g on X are asymptotically equivalent for x in A as
x tends to infinity, if for any >0 there exists a compact subset B, of X, such that
|f(x)—g(x)| £ emin(| f(x)], |g(x)]) for every x e A\K. In this case we write

J)~g(x)
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for xe A as x— c0. Note that if f(x) and g(x) are nonzero for sufficiently large x,
then this just means that the quotient f(x)/g(x) tends to 1 as x € A tends to infinity.
In some statements, we shall pose some additional restrictions on the range of
validity for an asymptotic equivalence by demanding that certain functions of x
tend to certain limits as x tends to infinity.

Note that in case of the Heisenberg group X = H,, there is a natural topology
on H, which is defined by any homogeneous norm (in the sense of [5]) on H,, for
example by

Iz, Wl =(zI> +u)> or by |i(zu)l=(z|*+u*)"*.

This topology agrees with the Euclidean topology of the space € xR. Let us
mention here that the “norm” | - || is of special importance, because Folland’s

. .. . 1
fundamental solution for Ay is just given by — in I(z, )| ~2

1. Asymptotic Estimates for the Heat-Semigroup

Let us denote by p,(z,u) the positive fundamental solution of the heat operator

:% — % AgonR x H,.Itis well-known (cf. [6] or [11]) that p, is given explicitly (for
s>0) by

1 xu |zf? X
pdz, u)= 2075 l,[exp (l 2 Tsxcothx)mdx,

and that {p},., is a probability semigroup on H,.
If we set p:=p,, we have especially

sz, u)= Sizp (—172-; Z—) . (1.1)

We set R:=|z|%, and

h(R, u): =iei""_R"°°“‘"———dx, (12)

sinhx

hence

1 Ru
p(z,u)= W h <§, §> . (1.3)

We shall first describe the asymptotic behaviour of p(z,u) as |z|? +|u| tends to
infinity for the case, that the ratio o= |u|/|z|? stays bounded from above.
As in [6] we define a function

0:1—n,n[-R (1.4)

by 6(y)=(2y —sin2y)/(2 sin?y). Obviously, 6 is an odd function, and in [6] it has
been shown that 0 is a strictly increasing diffeomorphism. Let 1:R—]—nx, n[ be
the inverse function of 6, i.e.

=671, (1.5)
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The following theorem follows by a somewhat technical, but straight-forward
modification of the proof of Theorem 2 (3°)in [6] (and a correction by a factor 1/2):

Theorem 1.1. If the ratio = u|/|z|* tends towards a limit w < co, then p(z,u) is
asymptotically given by

_of Jul)1z12
plz,u)~ ¢(ww)ﬂe ’ (=|2)

as |z)* + [u| > .

Here, y and @ are given by

Yw)=1(w)/sint(w),

1 sint(w) 12

2(2m)3/? (@) l:sinr(w)—r(a)) cos t(w)] ’ (1.6)
31/2

2007

Now we turn to the case where the ratio |u|/|z|? tends to infinity, or,
equivalently, where

D(w)=

if %0, and y(0)=1, &(0)=

R/(mul) (1.7)

tends to zero.

Note, that we may assume u>0, since p(z,u)=p(z, —u), and that §—0 and
R+ |u|— o0 imply |u|— oo.

So let us assume that u— + 00, and 6—0. In this case, the proof of Theorem 2
(3°) in [6] breaks down for the following reason: The proof is based on the
stationary phase method. However, in case that 6—0, the critical point in the
complex plane of the phase iuz — Rz cothz of the integral (1.2) approaches the point
in, where this phase has a simple pole. But, as we shall see, it is possible to transform
the integral (1.2), modulo an error term, into another one, to which the stationary
phase method is again applicable.

In order to prepare the next theorem, let us introduce the following functions:

For complex ze C with |z| <1 let

r(z):=1+;—(z+1)ncotnz, (1.8)

ifz%0, and r(0)=0. Since n cot wz has only one simple pole with residue 1 at z=01in
the open disc |z| < 1, r is holomorphic in this unit disc. We can even describe the
Taylor series of r around z=0:

The function n cotnz has the well-known Laurent-expansion

1 © _
ncotnz=;— Y dz 1,

n=1
where

, (27f)2" > 1
n= (211)' 2 —2_
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B; denoting the j-th Bernoulli number (cf. [2]). Especially one has
2<d, <4 1.9)
for all neN. This implies

1 0 0
(z+1)rcotnz=1+ o Yy &zl - ¥ dz*,
n=1 n=1
hence, for |z| <1,

W)=Y d", (1.10)
n=1
where

d,=d[,+1y2 [x] denoting the integer part of x. Note that consequently (1.9) im-
plies
Iz)l = 41z|A1 —|z]), (1.11)
if Jz| < 1.
Next, for any real ¢ with 0<e<1/6, define the holomorphic function ¢, on
|zl <1 by
qz)=coshz+ gr(—se’z). (1.12)

We shall sometimes also write g(g, z) instead of g,(z).

Lemma 1.2. Let 0=5e<1/6.

(i) The restriction of q, to the real numbers R is a real valued function.

(i) There exists exactly one critical point 6=0(c) of q, in {|z|<10e?}. If ¢ is
sufficiently small, then o(¢) is real, and the function e—a(g) is smooth.

Proof. (i) is clear by the definition of r. In order to prove (ii), we consider the

derivative
2

q,(z)=sinhz+ %e’zr’(—se_’).
Now, by (1.10),
@IS Y ndlz"" <4 § nlz"?
n=1 n=1

_ 4
S =z
This implies
|q.(z) — sinhz| < 2e2e'*! /(1 — ee!™)2 < 662,

if |z|=10¢2. On the other hand, one easily shows that |sinhz| =8¢ for |z| =10¢>.
Therefore

|q:(z) —sinh z| < |sinhz| + |g;(z)]
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for |z] =10¢?, and so Rouché’s theorem implies that ¢, has, similarly as sinh, exactly
one zero in |z| < 10e2.

The last statement of (ii) follows easily from the implicit function theorem,
applied to the real function (g, t)—q.(¢) near (¢,£)=(0,0). [

Let finally I, denote the modified Bessel function

T

1= _
Io(x)=—[e ™% (cf. [4]).
mo
Theorem 1.3. (i) If 0=|/|z|*/(nlul) tends to zero, and if u||z|*— + oo, then p(z,u) is
asymptotically given by

(z,u)~ 1 e—%—%lulwwn/w 2
P 4o P (ful 2177

as |z|? + |u|— oo, where (with ¢ as in Lemma 1.2)
2(6)=4(, 6(3)).

Moreover, g(6)=1+ 0(d?).
(i) If |z|*/|u| tends to zero, and if |u||z|>* < C for some positive constant C, then
for |z|* +|u|— 0

E
plz,u)~ Ao/l [2Pe 2 2,

Remark. There is an explicit formula for p if z=0, namely
p(0, u)=s[cosh3u] ~*

(cf. [6], Theorem 2 (2°), where a factor 2 had been omitted). The proof of this
theorem is based on

Lemma 14. If 0<R<u, then
h(R, “)= ne-—R—nu _.[ eszOS'+Rr(_6eit)(p5(t)dt +g(R, u) ,
where ¢ is given by 6 =|/R/(nu), and

()= noe
PAD= Sin(mde")

it

(1—ée"),

and where g can be estimated by

40 -3z,
gRu|S ———e 2.
1+)/R
P " L = iuz — Rzcothz .Z .
roof. Let f(z)=e e

S has exactly one (essential) singularity within the region 0<Imz<3n/2,
namely at z=mni. Therefore, the theorem of residues easily implies

2

h(R, u)=ljlf(x)dx=i[f<x+ 3n i) dx+2niRes, -, f.
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Let g(R,u)= j- f <x + 3;:) dx. Since
R

37'[ —-3—7—!-1; x+37'Cl/2 iux—R x+—3,—n—i tanhx
) = 2 T i
‘f<x+ 2 l) ¢ coshx
3n
<e_T"Ix| +3TE/2 —Rxtanhx
= coshx ’
we have for R<1
3n 3n

——=u |X|+37I/2 - u

Ru)<e 2 |——dx<4 27,
8(R W] <e l[ 129072 e <ane

And, if R>1, we get

3n

lg(R,u)| <dme % j ¢~ Rxtanhx gy
R
3n

L 1 00
Sdme 2| [e R¥Bdx+4 [ e R¥24x |,
o 1
since for 0 <x <1 one has

sinh x
coshx

[\

X
2>
2e* =

>

W =

and for x> 1 one has tanhx>1/2. This implies

ls(R )|<4ne_§2£“ 342
gLl = 2R™73

if R>1. Combination of the estimates of g(R, u) for the two cases R<1 and R>1
yields the desired estimate for g(R, u).

Next, in order to calculate the residue of f at z=mi, we substitute z by niz + 7i
and get

Res, - ,; f(z)=miRes, - of (wi(z + 1))

— _nie—nuRes _ e—nuz—R(z+l)ncot(1rz)7r(Z+1)
z=0 sin(nz)

Now, by the definition of the function r, we have
R
—nuz—R(z+1)ncotnz= —R—nuz— S + Rr(z).

We intend to calculate the residue by integrating along a circle with center z=0.
The radius ¢ of this circle has to be less then 1, since (z+ 1) cot(nz) has a pole at
z=1, and, because of the estimate (1.11) for r(2), it is clear that in the case u > R only

R q .
the terms —nuz and — — from above have a strong contribution to this integral.
z

Therefore, we choose 6 so, that for |z|=4 we have |nuz|=|R/z|. This implies

0=)/R/(ru) .
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Thus, if R >0, integration along the circle de”, 0 <t < 2nm, yields

27

2niRes, -, f= —mie™™ | cxp[-—R——Z nRu cost+Rr(5ei‘)]
]
. moe" i
X [lm(] +5e ):'dt .

Substituting ¢t by t — yields the desired formula for A(R, u)—g(R, u).
Finally, the case R=0 follows from the case R>0 by continuity. []

Proof of Theorem 1.3. ad(i): We may assume u>0, and set R=|z|>. We set
Kk =2]/nRu, so that k— + co. Let
H(R,u)= ! eZVmcost+Rr(—6e“)(p6(t)dt’

so that by Lemma 1.4
h(R,u)=me R~™H(R,u)+ g(R, u).

For |z|]<1 and 0Ze<1/6 we set

4.(z)=cosz+ ;r(— ge'?).

Then, for e=0:= ]/IW, we have
2|/nRu cost+ Rr(—de")=kd,(1),
hence
H(R, u)= ’f 0 (1)dr
Now, we have
§d2)=q/—1i2),

and so Lemma 1.2 implies that g, has a unique critical point in {|z| < 10¢?}, namely
the point ia(g). Moreover, if 6 is small enough, the function z—e*®gy(z) is
holomorphic in the strip |Imz| <2062, Therefore, we choose a path y: [ — =, n] >C
such that y(—n)= —x, y(n)=m=, Imy(t)]| £1962 for all te[ —n, =], and

W(t)=t+ia(d)
for te[—3%,%], and clearly have
H(R,u)= | @M Op,0(t)y'(t)dt .
If we set F(t)=g;o y(t)—§;° y(0), we obtain

H(R, u) =€ [ ¢FOp, o y(tyy(t)dt
a4

e'cll(a) VK
= [ e FasViRiy s/ ]/E)ds ,
K

Vi -h
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where Yot =g o ALY (1)
One verifies easily that
Fy0)=Fy0)=0,
F3(0)= —cos(ia(d)) + 0(5?),

and

/2
F‘,(t)—F;'(O)? <Cr,

where C does not depend on ¢.
Together, this implies

lim &F(s/]/x)= —s?/2
Pl
for every selR. Also, since y'(0)=1, we have

lim y,(s/}/k)=1.
-0

Moreover, it is not difficult to show that, for ¢ sufficiently small, one has
JeF oV Shpy(s/)/ )| < Ce ™10

for|s| < n]/E, uniformly in § and . So, the dominated convergence theorem implies

6—0
hence <)
H(R, u)~(2n)"2 5‘/—
K
as k— oo and d—0. This implies
TE(2TE)1/2 ~R—nu nRu
h(R, u) ~ W R + 2VTQ(6) + g(R, u)

as k— oo and §—-0.
Moreover, (1.12) and Lemma 1.2 imply

=4(6,0(6))=1+0(5).
This implies 0(0)=q(3,0(0))=1+0(5)

—R—nu+2|/nRuo(0)= —=n[1+ 62 —260(0)Ju= —=r(1+0(d))u.

Since u— oo and % —0, this and the estimate of g(R,u) in Lemma 1.4 show that
2(R, u) is negligible for the asymptotics of A(R,u), and by (1.3), we finally get

n(2m)!/? —g —Zu+V/aRue(d)
P )~ S Ra) T ¢ ’
if u>0 and R=|z)%
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ad (ii): We adopt the notation of the proof of (i), and write
H(R,u)= | e?V™Ricostyyt)de

where
P(e)= "N (1)
For § <1/2, estimate (1.11) implies

3\ 1/2 3/2
|Rr(—5e“)|§8R5=_8__<%,> <8C 1

Vx
since Ru< C. And, if R/u—0 and R + u— o0, then u— 00, and so Rr(—ée") tends to
zero uniformly. Moreover, since d—0, ¢; converges uniformly to the constant
function 1 on [ —=, n]. Consequently, w—1 uniformly on [ —=n,n] as R+u— o
and R/u—0.

But, since p(z,u) and consequently A(R,u) is positive, we have

h(R,u)=me R~ [ ¢2V=Rucost Reyy(1)dt + Reg(R,u),

where also Rey—1 uniformly on [ —7, @].
But, since e?V™R*c*! i5 positive, this clearly implies

h(R,u)~me R=™ [ g2V7Rucostgs 4 Reg(R,u)

as R+u— o0, R/u—0, and Ru<C.

Moreover
T /2
j- e2VnRucostdt> j e°dt=n,
-n —-n/2

and so the estimate of g(R,u) in Lemma 1.4 shows that the term Reg(R,u) is
negligible for the asymptotic behaviour of A(R, u). Thus in combination with (1.3),
we get

R _z,
2 2 Ie/nRucostdt

-n

1
Pz~ o

Since
0 T
J- e¥eost ]t — j' e*cost s R
“n 0
hence
[ exeostdt=2nlo(—x)=2nl(x),
we obtain

R =
72

plz, u)~LI(/nRu)e , qged. O
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Remark 1.5. The proof of Theorem 1.3(i) shows that the exponent in the
asymptotic formula for p(z, u) is just the value of the phase { —iu{ — Ry coth{ of the
integral (1.2) at the (unique) critical value {, € € of this phase. The same is true for
the exponent for the asymptotics of p(z,u) in Theorem 1.1 (compare the proof of
Theorem 2 (3°) in [6]). Therefore we have

sl + o0 TP = (,'Z“l'z)'z' : (1.13)

Moreover, a careful analysis of the function ¢(t) near t =7 and of the function t(w)
for w— + co shows that, with @ = |ul/|z|?,

P(r(o) _ 1
" 4@a) X (mull2) 7
as
el Al —0.

Thus, in the case of Theorem 1.3 (i) we have the same asymptotics

_af tul ) ]212
(1.13) p(z,u)~9|§zfl"_)e ! (l)
as in the case of Theorem 1.1.

However, the right-hand side of (1.13) does no longer describe the asymptotics
of p in the case of Theorem 1.3 (ii), and moreover the formula of Theorem 1.3 (i) is
more informative than (1.13).

2. Asymptotic Estimates for the Fundamental Solution of — A, +2
For (z,u)e H,\{0} let
K(z,u): =% | pJz,u)e " ds. 2.1
0
Since p is a Schwartz-class function (see e.g. [5]), it is clear that this integral

converges for every (z,u)=+0. In fact, the same observations in combination with
the homogeneity of p as expressed by (1.3) even imply that K vanishes at infinity.

Obviously K is positive and integrable, since | py(z,u)dzdu=1. K is afundamental
H

solution for — A+ 2. This is indicated by the fl'ollowing formal calculation, which
can easily be made precise in the sense of distributions:

AK=1T (4 Kps)e‘sds—j ”s e~ *ds
29

=pse's(|) + (j)pse“ds;

but p, =4, is the Dirac distribution at the origin, and so
AKK = - 60 + 2K 5
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hence
(—4x+2)K=4,. 2.2)

Of course, all this is well-known.

Moreover, by a result of Hervé ([9], p. 142), K is in fact the unique positive
fundamental solution of —Ax +2 which vanishes at infinity.

We are now going to describe the asymptotic behaviour of K(z, u), and again we
start with the case where w = |ul/|z|* stays bounded. We adopt the notation of the
preceding paragraph.

Theorem 2.1. If the ratio w=|ul/|z|* tends towards a limit w, < 0o, then K(z,u) is
asymptotically given by

K(z,u)~ T(ww)l |2 ﬁv(%)lzl

as |z|* +|u| - 0o, where

~ sin®1(w) "
Fla)= 8 I:sin ©(w) —t(w) cos r(cu):| '

Proof. Assume that lim |u|/|z|* = @, < 00 as |z|> + |u| = 0. Then, by Theorem 1.1, for
every £>0, there exist N(g)>0 and J(g)>0, such that

plz,u)
—= 2.3
e w) 23
if |z|2 + |u| > N(e) and iz 12 —m,| <0(e); here p(z,u) denotes the function
o lul) 212
Bz, u)=P(w,, ) o (.,p) 2 2.4)

Now, fix £>0, and assume that

|ul

|21

Then (2.3) implies, since p and p are positive,

(1—8)17(1_};9 ép(% E) = H)p(% 9

if s<|z|*3, for in this case

|z)?3 > N(e)+1, W,| <O(e).

2

2 4/3
N N L gﬂ=&-|z|2/3>lz[2/3>N(8);
l/s— s s s
|u/s] |ul
and of course — W] = =5 —w,| <(e).
lz//sI? l2I? ©
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Set

|z|4/3

K(z,u)=% | pyz,u)e”*ds,
0

KII(Z>M)=% j ps(z,u)e'sds,
Jzf4/2
and form K, and K,; analogously by replacing p by p. Then clearly
(1—e)K,(z, ) K (z,u) (1 +&)K (2, u). (2.5)
Moreover, if we set C; =sup{|p(z, u)|:(z,u)€ H,}, then
Kulzi)= | ( Z u>e—2ds
243 l/; s) s

<C, | e~%ds

’z|4/3

=C,e —lz14
Similarly,

N lul |21
2K, /(z,u)= oo,) L ('z'2> = s

lz| 2
< Do) T
I A P

SP(w,)e H.

Thus, with 2C, =max(C,, ®(w,,)), we have
Kz, £Coe 1" Rz, u) S Cre™ ™, (2.6)
Next, we can calculate explicitly K = K, + K;;: From ([4], p. 82 (23) and p. 10

(42)), it follows that
?5—3/2 5 ds:l/ie—zra,
0 a

© 42 lu] Izl2
Rz, u)= le‘;r) g s~3%0 <lz|2) 2 s,

if a>0. Now

hence

1 Hwy) —ﬁy(%) el @)

e
l2I? . Jul
|2

The estimates in (2.6) and (2.7) show, that there exists an N'(e)> N(g) + 1, such that
KII(Za u)/K(Z, u)<8, KII(Z3 u)/K(Za u)<8,

R(z,u)=P(0,)—
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if |z|?/3 > N'(¢). But this, together with (2.5), easily implies
(1-26)K(z,u) £ K(z,u) (1 +2)K(z, ),
|u|

E
This clearly implies the theorem. [J

if |2/*3> N'(¢) and W, <d(e).

Finally, we deal with the case |z|?/|u|—0:
Theorem 2.2. (i) If 6=/ |z|?/(m|ul) tends to zero, and if |z|— + oo, then K(z,u) is
asymptotically given by

—(2(wul + |22~ 20/ 7l 2120112
(mlul)>*|z| "2

as |z|2+ [u|— + co0, where ¢ is defined as in Theorem 1.3.

(i) If 6=}/ |z|2/(rt|u]) tends to zero, and if there exists a constant C >0, such that
|z| £C, then

e

K(z,u)~%

V2xlul

34
Kz~ > ‘floq/ |z|) s

as |z|* +|u|—o0.

Proof. We may again assume that u>0.
We set

where h and g are defined as in Lemma 1.4. Then (1.2) implies with R=|z|?, that

1 R u R u

We first estimate G(R, u):
Lemma 1.4 implies

3nu

=S

P11
|G(R,u)|§40nj—ﬂ ST s
1+ ()

©1 _3mu_
<4 —e 25
=< Oncj).sze ds
Moreover, by ([4], p. 82 (23)),
© 1 —‘i—s
e S ds=—K,(2 if R 0
(j)sze I/ 2)/a), if Rea>0,
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where K, denotes the modified Hankel function of order 1, and ([4], p. 86 (7))

implies
Kl(z)=]/2n—ze_z[1+0(|zl“)], if Rez>0,

which together yields

©] -2 ' —1y2
([)s—ze s ds= We [1+0(a )], (2.9)
if Rea>0.
Thus there exists C >0 such that for |u|>C
' —Vénu
e
|G(R, u)| < 80n>/? WL (2.10)

Next, we are going to determine the asymptotics for F(R, u): By Fubini’s theorem,

we have
1 a(t)

FRw=r | e T Cdsey(t)dt
where
a(t)=nu+ R —2)/nRu cost— Rr(— de"). (2.11)
Since we may assume u > R, we have Rea(t) >0 for every t e[ — =, 7], and thus (2.9)
implies —2a®
F(R,u)=n3? I [ 0T [1+&O)]pst)dt, (2.12)

where ¢ is smooth, depends also on u and R, but where the supremum norm ||&}|
of £ on [ —=,n] satisfies
€] o =O(ul~17?). (2.12)

For the sequel, it is also important to note, that for the asymptotics considered in
Theorem 2.2 we have, uniformly on [ — =, 7],

a(t)~mnu. (2.13)

In order to prove (i), let us now assume R— + oo : The complex critical points
of the phase — 2|/ a(z) are given by a'(z) =0, or, equivalently, by §5(z) =0, where g, is
defined as in the proof of Theorem 1.3 (i). Thus, again the only critical point of this
phase in {|z| <1057} is the point io(d). So, introducing a path y as in the proof of
Theorem 1.3 (i) and arguing like there, we obtain

—ZV«Tw(T n . 3/4
F(R,u)=n"? n )3/4 feVR(t) (t)[ (t):I dt,

where

b(t)=[2)/aia(d)) —2)/a- 1) /)R,
Pt)=[1+< 905 @)y (1)

depend also on R and u.
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Now, clearly b(0)=>b'(0)=0, and

)= — G100
O Lo R
_ "‘2003(10')-*—52 e ( 56 0') 63 “Zarll( 68_0)
B [1+46%—25 cosha— 6%r(—de~°)]'/? >

where we set o =0(0). Since |¢| <1052, this implies, for -0
b"(0)—>—2. (2.14)

Similarly, but with a bit more technical effort, one can show that b” is uniformly
bounded on [ —=, ], independently of u and R, if ¢ is sufficiently small and u
sufficiently large. In fact, for 1/6 and u sufficiently large, one even has

|b”(t)| <4Isint|, te[—-%%].
So we can apply similar arguments as in the proof of Theorem 1.3 to show that, if

also R— o0,

wR1/4

R1/4jel/ﬂb(» (t)[ :‘3/4dt= [ eVRosiming, /Rm)[—*—}mds
a(t) /R

—gR1/4

tends towards | exp(—s®)ds= 1/1?

Here, one should also note that, as u— + oo, 1 + £(t) tends towards 1 uniformly
on [—m=n, 7] because of (2.12), and that nu/a(t) tends towards 1 uniformly on
[ —m, ] because of (2.13). Thus we have shown that

F(R, u) ~ n2e ™ 2Valo@) /[ (qy)3/+ R1/4] (2.15)

as u— +o00, 0—0and R— + o0.

But, since
a(io(0))=nu + R —0(9)2)/nRu ,

this and (2.10) show that G(R, u) is negligible for the aéymptotics of K(R, u), and so
(2.8) and (2.15) imply (i).

It remains to prove (ii). So, assume that |z| is bounded by some constant C > 0.
This case is similar to case (ii) of Theorem 1.3, and therefore we abbreviate the
argument. Consider formula (2.12). Since

I/ a(t) — (nu+ R—2)/nRu cost)1/2|=0<R|rl(/_£eit)l> =0<R;> =o(ﬁ)

because of (1.11), and since £(t)—0 and @,4(t)— 1 uniformly on [ — 7, 7] as u— + o
and 6—0, we easily see that

r e—2[1|:u+R—2]/1:Ruc:ost]‘/2

F(R, u)~7t3/2_j' ()

dt,
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where once again we have also made use of (2.13) and the positivity of K.
Moreover,

[mu+R—2)/nRu cost]'/? =(nu)'*[1 + 6> — 25 cost]*/?
=(rmu)'?[1 -6 cost +0(6%)],
and since

(n.u)uz . 52 —

the term O(52) is negligible.

Thus we have
32 r
FR )~ (e ™ | etVSom,

hence
F(R,u)~ )3 2 Io(2)/R)e™ 2™,
Again, this shows that G(R, u) may be neglected, and together with (2.8) this implies
@. 0O
Remark 2.3. Formula (1.8) shows that the function — a(t) is just the phase function

{—iul — R cot{ of (1.2) composed with the function t—mi(1 + de'* ~™). Therefore,

by the proof of Theorem 2.2 (i), it is clear that — a(io()) is nothing but the value of
2

this phase function at it’s critical point, that is —y <|l1—l2> L (compare Re-

mark 1.5). Therefore we have
—[2(mlu] + 22 — 200/ mlul |2[2)] 2= — /2y <l |2) (2.16)

Moreover, similarly as in Remark 1.5, one can show that, with w=|u|/|z|?,

w() 1
21> 8(rlul)*’|z|" /2

as 0—0, and thus we also have

ul
K(z, u)~ "l’(rz’) V() (2.16)

in the case of Theorem 2.2(i). But again the analog is no longer true in case of
Theorem 2.2 (ii).

3. The Martin Boundary

We are now going to determine the Martin compactification of H,. As references
to the notions and results from potential theory which we shall use, we recommend
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the classical book of Helms [8], where the theory is developped for the Laplacian
on R" in such a way that it could easily be extended to our situation, and Brelot’s
book [1]. The latter book presents a more abstract potential theory which is
already sufficiently general to cover our situation.

By definition, the Martin compactification M(H ) of H, corresponding to the
operator —Ag+2 is the unique (up to homeomorphisms) compactification of
H,, such that each of the functions

K
=— " H,,
X yed,

which may be considered as a continuous function from H, to [0, o], can be
extended continuously to M(H,), and such that the set of all those extended
functions separates the points of 4:=M(H)\H,. The set 4 is called the Martin
boundary of H,.

Note, that if the extension of F* to M(H,) is again denoted by F”, then the
function F(x, y): = F¥(x) is continuous with values in 0, co[ on 4 x H, ; moreover,
for any fixed xe 4, the function F.(y):=F(x,y) is (—4g+2)-harmonic and
positive.

Next, let 4, denote the set of all xe 4 such that the function F, lies on an
extremal ray of the cone I of all positive (— 4, + 2)-harmonic functions on H,. 4,
is called the minimal Martin boundary. Then the representation theorem of
Martin/Choquet ([1] Theorem XIV, 4) states that every (— Ax+2)-harmonic
function h=0 admits a representation

hy)=[ Fp)dp(x), (CRY)

where p is a positive measure on 4 with u(4\4,)=0, and p is uniquely
determined by the properties. Note that (3.1) implies that every extremal ray of
I is of the form R*F, for some xe 4,.

Now we are going to describe a compactification M of H, which will turn out
to be the Martin compactification.

As a set, let M be the disjoint union of H,, the complex plane € and the unit
circle S* in €, that is M = H,OCUS'. The topology on M is defined as follows:

The neighborhoods of a point in H, are just the neighborhoods of the
Euclidean topology on H,.

If {, is a point in €, then a basis for the system of neighborhoods of {, is given
by the sets

1
U (lo)= {(Z9u)EH1 Hz—Col <&, |ul> E}U{Ceﬂf: [{—Col<e} . e>0.
If ¢'° is a point in S*, then a basis of neighborhoods of ¢*° is given by the sets

L) ] on] <o)

V(&%) = {(rei"’, weH,:r> >

. 1 . .
u{ge"" eC:o> p le* + e'?°| < s}

u{eeSt:le?—e?|<e} , £>0.
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Here 7 denotes the diffeomorphism 7:R—»]—mn, n[ from Sect. 1. Note that

limt Y(k)=+oc0, lim v }K)=—o.
K71 K™ —1

It is easy to see that these properties of T imply that M thus becomes a compact

Hausdorff space, and that M is a compactification of H,. The following lemma

shows that M is even much nicer and more symmetric than it might appear from

the very definition:

Lemma 3.1. Let M’ denote the “solid torus” M'=D x S*, where D={ze C:|z| £1}
denotes the closed unit disk in C. Introduce the structure of a fibre bundle
1:8" x S' 8" on the boundary S* x S' of M’ whose base projection is given by
(™, %)= e'® ¥ (note that in fact this defines a principal fibre bundle over the
multiplicative group S* CC*).
Define a closed equivalence relation R on M’ whose classes are the fibres
n () ={(“*",e"):teR}

and the one-point sets {v},ve D° x S*. Then M is homeomorphic to the quotient space
M’ =M’/R.

Proof. Since M’ is compact and R is closed, M '=M’/R is compact too.
Define a mapping ¢: M — M’ by

z —it(y z|2
Be= (o ), e,

¢
C=<—’-1)’ Ceca
H0= 7
Pe)=(e",1), eves,
and let ¢ denote the corresponding mapping into M’ = M’/R. Then it is easy to

check that ¢ is bijective and continuous. But, since M is compact, ¢ is necessarily
even a homeomorphism. []

Theorem 3.2. (i) M is the Martin compactification of H,. Especially, the Martin
boundary of H, is homeomorphic to the closed unit disk in C, and the minimal Martin
boundary is homeomorphic to the unit circle S* in C.

(ii) If { is a point of the part C of 4, then

Flz,u)= Io(]ﬁlz—a)
Az, u)—‘ —r =
Io()/210)
and if € is a point of the part S* of A, then
Fe"w(Z, u)=el/§Re(e"wz).

Proof. First we shall show that for any point 77 in the boundary CUS! of M and any
sequence {(z,, u,)}, in H, which converges to n in M, we have

lim F, , (zu)=F,(zu) (3.2)
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pointwise for all (z,u) € H,. In fact, we shall show that any sequence {(z,, u,)}, which
converges to n contains a subsequence {(z,, 4,,)},, such that

lim F, (2 0)=F,(z ). 3.2y

This clearly is equivalent to (3.2).

In order to prove (3.2), assume first that #={ e C. Then we have z,-{, and
|u,|— + oo. Hence, the asymptotics of Theorem 2.2(ii) applies to the sequence
{(z,s u,)}, as well as to the sequence {(z,u) ' -(z,,u,)},, and thus

o (g V282
e T/ 21z

where

Iul 3/4

|u,—u—21Im(zz,)|
Since obviously lim a,=1, and since z,—{, we hence obtain
_ Iy(/21—2)
To()/21¢))

Next assume that n=¢" e S*. Then, if z,=r,¢'*, we have r,— o0, and

lim F, , (z,u)
n— o

elltwnr )+ onl_, Hio

Passing to a subsequence, if necessary, we may either assume that the sequence
{u,ry *}, converges to a real number w, €R, or that |u,|r, *— + co.

In the first case, Theorem 2.1 applies to the arguments {(z,, u,)}, as well as to
{14}, Where

(Z;v u:l) = (Z’ u)_ . (Zm un)=(zn —Z,U,—u— 2 Im(ZQn)) .

Then it is clear that

Fe., un)(z’ u)~ eV >
where
u u,
Q = _n_ Z | — L zl .
n ’Y(IanZ)l nl y |Z;|2 ' nl
. Uy Uy
Now, with w,= —>5 and w, = —, we have
"l TR
n n

Weop) =nwy) +7 (@2,) (@, — w,) + 0w, — o),

since limw,=limw,=w,.
Then a simple estimate shows that

u,—u—2Im(zz u
w;’_wn= n ( n) . r|12

Izn_2|2 |Zn

u,Re(z,z) Im(zz,)
=2 — 2
|z |zl

] +0(z,|%).
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Especially we have
ooy — @,|* = O(|z,| ~?).
One can also easily show that
Re(zz,)
|2

|zl = |20 — 2l =]zl — +0(z,71).

So, together we obtain
Re(zz,)

|2l

u,Re(zz,) _ Im(zz,)

Qn=))(wn) _2}/((011)[ |Z |4 |Z l

J +0(z, 7).
Since lz_zi'l' =¢e'z, and since e'?"—ell~ @=)*?] we get
n
,,lf.n;, Q, =y(w,) Re(el " @=)+9lz)
—2w,Y () Re (el @=)+olz)

—2Y (@) Im (e~ H@=) " lz),

But,
Y(w)= m;—z(rw()aT) (sint(w) —1(w) cost(w)),
and
0,(T)=2sinr—rcosr ,

sin3t
hence, since =071,

Y(w)=1sint(w).
This yields, by definition of § and <,

Y w) — 20y (w)=cost(w),

hence
lim Q,=cost(w ) Re(el""@=)*1z) —sint(w ) Im (el =)o)
n— oo
=Re [eit(ww)ei[_ H(Weo) + rp]z-]
=Re[ez].

Thus we obtain ViRe
: 2Re(etez
lim F, , (z,u)=e"2R€*D,
n-— oo

It remains the case where |u,|r, >— c0. Since lirin 1(k)= +n, we have
K— o0

lim efor= —e'®.
n— oo
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Since in this case the asymptotics of Theorem 2.2 (i) applies, we have
Fiop a2 u)~bye 2%,

up)

P I I O B
" Llu,—u—2Im(zz,)| z—z,| ’

Q, = [mlu,| + |z, — 20(8,))/ 7lu,| |2,1*]"*
— [l + 21> = 20(8,))/ mluyl 12,2112 .

Here we set 0,=]/|z,/*/(nlu,)), 8,=1/\z,*/(n|us), and (z,u,) is defined as before.

Since |z,|— o0 and J,—0, we also have |u,|— o0, and together this implies b,— 1.
Moreover, a tedious, but straight-forward calculation similar to those before
shows that

where

Re(zz,)
|zl
where lim £,=0. Since, by Theorem 1.3, o(6,)=1+ 0(52), and since e**"— —e'?,

n—o

this implies

lim F,_, (2, u)=e"2Re*D
n—»oo
The proof of (3.2) is now complete.

But, since H, is dense in M, it is easy to see that (3.2) implies that the functions
F@" [extended to M by (ii)] are continuous with values in [0, c0] on the whole of
M. Moreover, since for different 7,5, CuS' the functions F,, and F,, are
obviously different, it is clear that the functions F**'*, (z,u) € H,, separate the points
of M\H,. Thus we have shown that M is the Martin compactification of H,.
Moreover, it is clear (for example by Lemma 3.1), that A=M\H, is
homeomorphic to the closed unit disk in €. Finally, by (ii) all functions F, with
n € 4 are independent of the variable u. Thus, if we consider them as functions of the
variable z, they are just eigenfunctions of the “classical” Laplacian on C~IR? and
so the well-known classical theory implies that the extremal rays of the cone I are
just the raysIRF ,.,, e’ € S*. This shows that 4, =S C M and concludes the proof of
Theorem 3.2. [

The following corollary to Theorem 3.2 is clear by (3.1):
Corollary 3.3. If h=0 is a (— Ax+2) harmonic function on H,, then there exists a
unique positive measure p on [0,2x], such that

2z
hx,y,u)= | gV xeoso +ysind) ()

for all (x,y,u)e H,. Especially, h does not depend on the variable u.

The readers who are only interested in a proof of this corollary should note,
that one could proceed almost word by word as in [12] to derive this statement. In
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fact, Margulis® argument covers a large class of harmonic spaces on nilpotent Lie
groups. Especially it shows that the immediate generalization of our corollary to
sub-Laplacians on stratified Lie groups holds.
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