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1. Introduction

This is the announced second part to the joint paper “Compactifications of €3, 17
with M. Schneider.

In order to state the results of this paper and to put them in connection with the
general theory remember that a compactification of C? is a compact complex
manifold X with a divisor YCX such that X\Y~Q? biholomorphically. We
assume always b,(X)=1 (ie. Y is irreducible) and X projective (for the non-
projective case see [P-S]). Remember that X is a Fano 3-fold of index r, i.e. wx ! is
ample and there is a generator % € Pic(X)~Z such that #"~wy'. One knows
r<4 and the cases r =4 (resp. r=23) give the classical compactifications IP* (resp.
Q,, the 3-dimensional quadric) with divisors Y atinfinity IP, resp. the quadric cone.

If r=2 Furushima [Fu1] constructed a new compactification X with two
possible divisors at infinity — one normal and one non-normal. By [Fu1]and [P-S]
these are the only ones for r=2. Observe that X is rational and has b;(X)=0. Also
by[P-S]and [Fu2],ifr=1and Yisnormal then X hasto berational with b5(X)=0;
i.e. X is a Fano 3-fold of “genus 12”. Two such X are known, one constructed by
Iskovskij [Is 1], one by Mukai-Umemura [M-U]. Probably these are the only
ones (recently proved by Mukai as I understand). Both cases cannot be a
compagctification with normal divisor at infinity, as proved by Furushima [Fu3];
the non-normal case is still undecided.

This paper now deals with the case r=1 and Y non-normal. The main result is
the

Theorem. Let X be a compactification of €3 with by(X)=1 and divisor Y at infinity.
Assume that X is a Fano 3-fold of index 1 and Y non-normal.

c 1(wx)3
2

Then the genus g(X)= — +1=12, in particular X is rational and

b;3(X)=0.

Even in the case g(X) =12 we get some information: the non-normal locus E of
Y consists of one or two smooth rational curves meeting transversely in one point;
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the conductor ideal is reduced. If f: Y— Yis the normalization then E — the analytic
preimage of E — is reduced too and consists of two smooth rational curves meeting
of order two in exactly one point. In particular, b5(¥)=0 and hence Y and Y are
rational.

In conclusion one can state now the following

Theorem. Any projective compactification X of C3 with b,(X)=1 is rational with
b,(X)=0.

The only remaining open problems — besides a problem in the non-algebraic
case (cp. [P-S]) —are the questions of existence for the Mukai-Umemura example
(normal case) and the Iskovskij and the Mukai-Umemura example (non-normal
case) — provided these are the only Fano 3-folds with r=1, b,(X)=1, g(X)=12.

Some remark to the proof of the main theorem.

Let X be a compactification of €* with b,(X)=1 which is a Fano 3-fold of
index 1. Let Y be the (irreducible) divisor at infinity. Assume that Y is non-normal.
Let f: Y- Y be the normalization and n: ¥— Y a desingularization. It is easy to see
x(Y)= — co. In order to show b,(Y)= Owe have to do two things. First, we have to
control the topology of ¥, namely, we want to prove b,(Y) = b,(Y). Second, we must
prove the rationality of Y (i.e. the rationality of Y). Then b;(¥)=b,(Y)=0, hence
b5(Y)=0.

The first problem is solved by analyzing carefully the map f;i.e. the non-normal
locus ECY and its analytic preimage EC Y. The second one is treated by very
special hyperplane sections (and by using the Iskovskij classification for X).

2. Preliminaries

(2.1) We recollect some notations and facts from [P-S]. A compactification of €*
is a pair (X, Y) consisting of a compact complex manifold X and an analytic subset
YCX such that X\ Y~C? (biholomorphically). Necessarily Y is of pure dimen-
sion 2. We are only interested here in the case b,(X) =1 which is the same as to say
Y is irreducible. We also assume that X is projective. Then X is a Fano 3-fold, i.e.
the canonical sheaf wy is negative. We treat in this paper the case of index 1, i.e. wy
generates Pic(X)~Z (cp. [P-S], Sect. 0). For more properties of (X, Y) see again
[P-S], Sect. 0.

(2.2) For a Fano 3-fold X the genus g(X) is defined by

_ ¢y(wy)’

gX)= >

+1.

Iskovskij [Is 1, 2] proved that for a Fano 3-fold X of index 1 with b,(X)=1 one has
always 2<g(X)<12 and g(X)=11. Moreover these 3-folds can be classified (see
[Is 1,2]). The anticanonical bundle is always very ample except for two cases (cp.
3.14). If oy ! is very ample, X is said to be of the principal series.
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We need to know the Betti numbers b;(X), which are given by the following
table (see [Is-So])

8(X) 3b3(X)
2 52
3 30
4 20
5 14
6 10
7 5
8 4
9 3

10 2
12 0

(2.3) Lemma. Let X be a purely 1-dimensional reduced projective complex space. Let
X'CX be an irreducible component with the reduced structure. Then wy. is a
subsheaf of wy ( denotes the dualizing sheaf ), moreover

wxlwy = Homg, (Ix x> O) -
Proof. It is well known (see e.g. [A-K]) that
Wy = Homg, (O, 0x). 1)

Let .# be the ideal sheaf of X' in X. Then from the exact sequence 0—. >0y
—-0y.—0 we obtain:

0~ Homg, (O, 0x) = 03— Homg (S, w0x) = E2g, (O, ). *
So by (1) it is sufficient to show:
E=6xly (Oy,05)=0. )

Let ®(1) be an ample line bundle on X.
Take v> 0 such that §®O4(v) is globally generated.
Then it is sufficient to show
H°(&(v)=0. @)
But H%(&(v)) ~Extg (O, wx(v)).
Since X is 1-dimensional, it is Cohen-Macaulay. So by Serre duality:

Extg Oy, 0x(v)) = H(Ox(—v))=0
which proves (2), hence (2).
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(2.4) Lemma. Let X be a purely 1-dimensional projective Cohen-Macaulay space.
Let » be the sheaf of nilpotent functions on X. Then there is an exact sequence

Oﬂwredx_‘wx_)%mﬂ)x(ﬂ, (DX)—>0 .

Proof. Same as that of (*) and (2) in the proof of (2.3).

3. The Main Result

Let (X,Y) always denote a smooth projective compactification of €* with
b,(X)=1.Then X is a Fano 3-fold of genus g(X). We assume that X is of index 1, i.e.
wy generates Pic(X)~Z. Moreover let Y be non-normal.

(3.1) Theorem. X has genus g(X)=12, moreover b;(X)=0 and X is rational.
The proof will follow from several propositions of this section.

(3.2) Wedenote by E the non-normal locus of Y equipped with the structure given
by the conductor ideal. Let E be the analytic preimage of E with respect to the
normalization f: ¥— Y. In order to prove (3.1) it will be sufficient (by the Iskovskij
classification, 2.2) to show g(X)> 10, equivalently b;(X)=0.

We denote by r (resp. 7) the number of irreducible components of E (resp. E).

(3.3) Proposition. 1. H(Op) = H'(0,.45)=0; in particular all components E; of red E
are smooth rational curves.
2) Wg > (9E

Proof. 1. Using the exact sequence [Mo, 3.34.2]
0-0y—f(Oy)>wg—0
and wy=~ 0y, we obtain by H'(0y)=0:
0=Hwg) >~ H"(0p),

since E is Cohen-Macaulay (see e.g. [Mo, K-W, S]). Letting » be the sheaf of
nilpotent functions on E and taking cohomology from

0-2>0g—0,.45—0
we obtain HY(O,¢qz)=0. “TTE &

Last H'(0g)=0 follows in the same spirit, so E;~P,.
2) This follows from wg =+ f*(wy)®Ug ((Mo, 3.34.1]) and wy~0y.
If E is reduced we can say immediately a lot on the structure of E:

(3.4) Proposition. Assume that E is reduced.
a) If a connected component of E consists of exactly one irreducible component
E,, then E; is a torus or a singular rational curve with wg,~ 0, i.e. a cubic in IP,.
b) If a connected component of E consists of more than one irreducible
component, then all these components E; are smooth and rational.

Proof. a) By (3.3, 1) we have wg,~0p,.
b) By (2.3) wg, is a proper subsheaf of wg, ie. of Oz Hence H%wg)=0 and
HY(0g)=0, ie. E,~P,.
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(3.5) Proposition. H'(03)=0; h%(Op)=h%(Op)=h'(0z)=1.
Proof. Let g=h'(0y). By the exact sequence
0-0y =1 (Oy)>wg—0
we obtain h'(0y)=h"(wg)—1=h%0g)—1=pu—1 by definition of p.
Since wz~ 0y, we have h°(0)~h'(0z). Now by the exact sequence [Mo,
>0l 0-05-1,(05) 050
we see h%(O)=h"(Oy) since h°(wg)=h'(0)=0. Thus:
g+1=p=h%Op)=h%0r)=h"(0z). (1)

Hence it is sufficient to prove g=0. Assume g>0, so u>1. Let 7: Y—»Y be a
minimal desingularization of ¥, ¢: Y- Y,, a minimal model. Since x(Y)= — oo and
g>0, Y, is a non-rational ruled surface. Let p: Y,,—C,, be a ruling. Let Z be the
exceptional set of n. Then I claim:

dimpoa(Z)=0. (2)

Assume dimpoa(Z)>0and let §,, ..., S, be the irreducible components of Z with
dimpoo(S;)=1.

Since wy is a proper subsheaf of Oy by [Mo, 3.34.3], H*(Oy)=0. Moreover
H*(03)=0. So from the Leray spectral sequence we have

H'(0y)~H'(0))@H°(R'n,(0y)). 3

By Riemann-Hurwitz g(S,)=§: =g(C,).

Hence h'(0s)= g and consequently h'(0,) > q - § where Z carries the reduced
structure. This last fact is clear by considering the normalization of Z.

Let (Z)={yy, ..., y,}. Define 4, by

R'n (0g),,~C*.

t
Then Y A;2q- g because the restriction map H(0;)—H(0O,), Z the completion
i=1

of Z, is surjective, then use Grauert’s comparison theorem. Hence (3) implies:
g=g+Y A4;=g+qg-£ So q=0since g>0, i.e. dimpo o(Z)=0 and (2) is proved.
We thus find x,...,x,€C,, such that

(poo)™'(x).

C=

ZC
i=1
Hence from H'((p~6)™'(x), 0)=0, we obtain H'(0,)=0. Since R*(p© 0),(03)=0,
even H'((po 6)~ (x;),, ®) =0 for any infinitesimal neighborhood (p - 4) ~*(x;),, thus
H 1((92“) =0 for any infinitesimal neighborhood Z, of Z, consequently H'((0,)=0.
This proves R'n,(03)=0 and g§=g by (3). We next prove

dimpoa(E)=1, 4)

where E is the strict transform of E in ¥. In fact, otherwise we would get [using (2)]
a lot of smooth rational curves [ in Y\E. Then [ is a Cartier divisor in ¥, so
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Oy(l)~ O(k) for some k € N. Since Pic(X)->Pic(Y) we can write [= YN H for some
hypersurface HCX. But (H-E)>0, so HNE={ is not possible. This proves (4).
By (4) we find a component, say E,, of £ such poo(E,)=C,. So g(E,)=g=g.
Hence red E contains a curve of genus > g implying h'(0,.,z) = g. On the other
hand by (1): h*(0z)=g +1. So we obtain the inequality

g+1=h'(0x)Zh"(O,car) 22 - ®)

Now consider E, the strict transform of E, equipped with the reduced structure. If
g>1, the component E, described above is unique because otherwise
hl((OredE)gzg'

(A) So assume g>1 for the moment. Since all other components of E are
components of fibers (p )™ (x), we easily get h'(0z)=g.

Exactly the same arguments apply to E=n"!(E) with the reduced structure
[use (2)!]. So h'(0)=g. Now clearly 0,45~ ,(0f), so we conclude

hl((oredE)=g’ (6)

ie. (5) becomes a strict inequality and (5) excludes the case E =reldE.~
Assume that E, is non-reduced. Let .# be the ideal sheaf of red E in E. Then by
(3.7a) below (for u=1) we obtain:

hY(E, 0z/5%)=2g,

since h'(#/#?)2g. Namely, .#/Fred £, ~ 0,4z, modulo torsion (3.7).

Hence h'(03)=2g, contradiction.

So E, is reduced. But then clearly wg, is a subsheaf of w|E| ~ O, [cf.(2.3), E, is
smooth, so wg, is locally free!]

Hence g(E,) <1, contradiction.

(B) So we are reduced to the case g=1. Then

1 éhl((predf‘:)éz .

(B,) First let h'(0,.qz)=2.
Letting O, = O/ S 2 we have the exact sequence

Oﬁf/fzﬁ(pgm—)@,edig—)() .

Taking cohomology gives the exact sequence (5):

0—H(F/$)~HO5,,) > H(Oreq5)~H'(F/.5?)
_)Hl(@ﬁ(l))_’Hl(@redE) -_)0

Since h!(0,.qz)=2 and since h'(0z)= 22 h'(O,,,) we obtain h'(Op,, )=2.

So y being surjective, h'(#/£%)=0.

We see that the components E; of E of genus 1 (there are exactly one or two!)
must be reduced because otherw1se again #/8 2lredE 0,cqr, modulo torsion by
(3.7a), hence h'(#£/#%)>0. But then wg, is again a subsheaf of O, E; being of
genus 1, we conclude by Sect. 2 that E; is a connected component of E

First assume that there are two elllptlc components, say E; and E,. Since
h%(0,.q5) =2, we conclude E=E,UE,, ie. 7=2. So r<2. By the exact sequence
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([Ba-Ka, 3.A.7])

0—-HX(Y,Z)-»H*Y,Z)® HXE,Z) *>HXE,Z)-» H*(Y,Z)-» H*(Y,Z)~0

~ ~ ~

Y/ z z?

we obtain 2<b,(Y)<by(Y)+2=4.
Since «#0 (« is the canonical “difference map”) we must have b;(Y)<3, so
b4(Y)=2since b4(Y)is even. So b;(X)=2. But by Iskovskij there is no Fano 3-fold
X with by(X)=2. Hence there is a unique elliptic component E,. With the same
arguments we exclude the case E = E, UE,, E, a singular rational cubic in IP,. Since
h%(0O,eq5)=2, there is a second connected component E' consisting of smooth
rational curves. If £’ is not reduced we conclude by the method of (3.7) that
H'(#*/#**1)=0 for all u. Namely, all components of E' have to be smooth [if
some is singular then by h*(0,.q5)=1 it has to be a singular cubic in IP, whence
h'(#/.9%)> 0, contradiction]. In fact, since we know H'(.#/.#2)=0,and all E;~PP,
itis an easy exercise to exclude the only other possible case H'(#*/#** 1)~ C (look
at the normalization of red E'). Then using the higher analogs of (5) (for the
infinitesimal neighborhoods of red E in E) we get the contradiction h°(0z) = 3.

(The contradiction can also be derived directly from h*(#*/.##* ') <1 using (5)
since h%(#*/#**1)>0 as long as S*/#**140.)

So E' is reduced. We know that H'(03z)~C. Let E:=n ‘(E ). Then
H(0g)=0 since dimp - ¢(E')=0 and n,(05)~Of. This contradicts H'(Oz)~C.

(B,) We are left with the case h'(0,.4z) = 1. Now the elliptic component of E is
uniquely determined. Call it E,.

First let us see that E must be connected. In fact, by (3.7a) we see that
ho(#*/#** 1) >0 as long as S£#/F**1+0, and that h'(#*/F**1)<1. So by
h°(O,eq5) = 2 we would obtain [using (5)] that h°(Og,,)=h%(0y/#** )23 for all v,
in particular h%(Og) =3, contradiction.

Next I claim that

E,=f(E,) ™

is not reduced.

Assume that E, is reduced. Then we find some j such that E; is non-reduced
[otherwise we would find ho((OE) 1,E belng connected!]. Hence by [K-W] for
general y, € E; the formal local ring 0y, is not of the form (F )C[X, Y]/(X - Y)and
not of the form (F)C[X, Y]/(Xx*— — Y3). Now by Iskovskij we find through any y, a
conic /CX. Since (I- Y)=2, we conclude ICY. Namely, assume I¢Y. If Y is
irreducible at y, (for generic y,), then f is locally around y, a homeomorphism and
(by [K-W] and [S, 1.2.20]) we are in situation (F,). Otherwise, if Y is reducible at
Yo, We can locally only have two smooth irreducible components of Y meeting
transversely, ie. Oy , ~C{X,Y,Z}/(X - Y). So we are in situation (F,).

Thus we have /C Y and Y is filled up by conics. The strict transforms [ of those
conics | are contracted by p - g (since g=1). By construction the general [ meets a
fixed component £, with fo n(E,)=E;. So po o(E;)=C,, hence E, = E,, contradic-
tion. This proves (7).
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The same argument shows that E| is the only non-reduced component of E and
that only finitely many conics meet Ej, j=2.

Now let E0 be the non-reduced part of E; E, CE,. The components of E not
belonging to E, are smooth rational curves meeting exactly one component of
red E, transversely in one point (use the exact sequence

0w, - Op— Hom( I, 03)—0).
Let # be the ideal of E, in E. Then by
0-wg,— g Homl F,05)—0
we obtain
0 Hwg,)— H(Og)~ H(Hom( £, Op))
&
—HYwg,) > H'(Op)—H'(#om(F, 0p))~0.

&

supp H#om £(F,05) = U EJ, where jeJ <> E; is reduced.
All these E are dlS_]Olnt and ¢ IE ~(0(—-2), so

ho(Hom(F,O0p)=3ro, ro=#J

and h!(#w( ¥, 05)=0.
Now E is Cohen-Macaulay, so

kN wg) =h%(0,)=2,
hence the above sequence gives

3ro<2, so ro=0.
But r, =0 implies:
r=1: 8)

assume that there is an reduced irreducible component E, C E. We have seen above
(when we proved reducedness of E;) that through a general point y € E, we cannot
find a conic in Y. Moreover either Y is a topological manifold around y or
Oy,,~C{X,Y,Z}/(X - Y) (otherwise we would find conics). But then by [5, 1.18,
1.2.20] we can conclude that generically f~!(E,) is reduced, hence reduced,
contradiction. Thus r=1 and (8) is proved.

Asseen above, through any point of E there is a conicin Y. The strict transform
of the conics in ¥ are contracted by p o 6. Thus the images of the fibers (p o o)~ 1(x)
are just the conics in Y.

We want to prove (9): #=1. Assume #> 1. Then take E, CE,, E,+ E,. Since
dim p - o(E,)=0and since f(E,)=E, = E (set-theoretically), we conclude that E, is
a conic or a line. Now E, =E being the non-normal locus of Y, we have for the
conormal bundles of redE, in Y resp. X:

N:‘edElleN:‘edEﬂX
(see [P-S, proof of 2.3]).
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By [Is 1] we know

0pO
o(—1)@0(1)
Niae x> { 0(—2)@0(2) conic case
O(—4)d04)
o1 oo } .
line case.
0Q2) @0(-1)

Let (redE), denote the 1* infinitesimal neighborhood of (redE) in Y.
Then by the exact sequence

0-H (Nredmx)"HO(@(redE)l)—’Ho(@(mus)_’o
we get by the table for N*:h%(0eqg),) 23, hence h°(Ofreqr),) 2 3-
Now let _# be the ideal sheaf of red E in E. Then consider
OﬁHO(jv/jv*-1)_>H0((9(redE)v—)H (@(redil)vfl)
_)Hl(jv/]v+ 1)_>Hl((g(redE)v)_)Hl((O(rediZ)v; 1)_>0 .

Here (red E), denotes the v-th infinitesimal neighborhood of red E in E. Since
h'(#*/ #**1)<1 for all v (3.7) and since h%0Oz)=h'(0z)=2 we conclude
h%(O 4eary,) <2 for all v, contradiction and (9) is shown.

So #=1. Similar as in the case (B 1) we obtain by the exact sequence [Ba-Ka,

3.A7]: -
bs(Y)= ba(Y)= 2

and a contradiction as in (B 1).
This ends the proof of (3.5).

(3.6) Proposition. E is non-reduced iff H'(0,.q5)=0.

Proof. If H'(Oyeqz)=0, clearly E+redE since H'(0)~C. So assume E non-
reduced. Let 72 C O, be the sheaf of nilpotent functions on E. Then by (2.4) we have
the exact sequence

0 yeq = Op—— Aoy, Op)— 0.
Taking cohomology and using HO(QE)z(L‘ (3.5), moreover H(p)#0,it follows
H%w,oq7)=0, i.e. H(O,q5)=0, red E being Cohen-Macaulay.

(3.7) Proposition. a) Let E be a non-reduced component of E such that redE is
smooth. Then, letting . be the ideal sheaf of redE in E, (#/.9%|red E 1)/,0,510,, _(O,ed Ep
and (£*/5"* \ted E )/ orsion €ither contains the subsheaf O,qg, or is 0.

b) E is reduced.

Remark. (3.7, a) will be proved independently of (3.5)!

Proof. a) Denote by E,, ..,E the irreducible components of E with the induced
structures (so E;=the biggest subspace of E with underlying reduced space red E,).
By (2.4) there is an exact sequence

quredi}—)wif_"%mof-;(j, (QE)—)O (1)
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Restricting (1) to red E ; gives
Oreaplted B~ O,y 5, —— Hom (S, Op)lred E;—— 0. )

If E is reduced, a; is (generically) injective; if E is non-reduced, «;=0 (observe that
E; then is non- reduced everywhere because E is a Weil d1v1sor on the normal
surface Y.

Now take E; non-reduced.

We consider the canonical map

¢ : Hom (I, Op)red E;— Hom(F | F2|red Ej, O,ear)-
Ji J

Because of (2), H#om (S5, (DE)lredE ~0reuz,

Generically .#/.# 2hasrank 1, 50 #m(F/F 2jred E}, 0,04z is locally free of rank
1 (redE is smooth). Thus ¢ is injective.

Now it is an easy exercise to show that ¢ is also surJectlve ie. any
homomorphism (#/.#%|red E J),;-»(9 can be lifted locally. Namely, it is sufficient to
lift homomorphisms (£/.# 2Ide Viorsion— @ locally. The left sheaf being a line
bundle, this is clearly possible (for instance lift first to Y, then restrict to F).

Thus ¢ is an isomorphism, i.e.:

Hom( I, 0p)lred B;~ 0,45, 3)

Let E, be the union of all non-reduced E ; with the induced structure. Then we

obtain also:
’%m(j’ @E)Ired EO = ,%aﬂ(f/lered EO’ (gredizu) = @rediio . (4)

This proves the first part of a).
We consider the canonical homomorphism

o SHI| I > FH FuHT

o is an isomorphism on supp(£*/#**1) outside a finite set.

By (4), SHF/FYred E)/iorsion ™ Orea i, and via , for any component E of E,,
(£*/F#* Y1ed E )/ grsion coNtains the subsheaf @z, or 0. This proves the ‘second
part of a).

b) Assume that E is non-reduced. Then from a) and red E;~P, for any j (use
3.6) we obtain:
ho(#£*/##**1)>0 aslongas S*/ #4140, (5a)

1 +1
for any 4. (5 PP+ 1) =0 (5b)
Some explanation for (5b):
Denote by E(u) the union of those E; for which (##/9***|red E})/ orsion 0

Then
@redEo(u) (jﬂ/jﬂ"’ llEO(#))ltorswn

50 by h'(Og,,) =0 (since h'(U,.qz)=0) we get our claim (5b).
Let (red E)u be the p-th infinitesimal neighborhood of red E in E. Then by (5):

h° ((g(rediz‘)“) < h ((O(redi?)u + 1)

as long as f"/f""l:t:o ie. (red E),#(redE),. . Since h%(0,.qp,=1=h"0z) by
(3.5), we deduce red E = E, a contradiction.
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(3.8) Proposition. E consists of two smoot~h rational curves meeting in exactly one
point of order two. Moreover by(Y)=b,(Y).

Proof. We have an exact sequence ([Ba-Ka, 3.A.7])

0=H'(Y,Z)-»H Y, Z)®H\E,Z)»H\E Z)~H*Y,2)

~H Y, Z)OH*E.Z).
From (3.5) we know H'(Y, Z) =0, (via exponential sequence) moreover H'(E, Z)=0
by 3.2).
So HY(E,Z)=0.

Hence (3.4.2) cannot appear and consequently (E is connected) all irreducible
components of E are smooth rational.
Take a component E,. Then we have the exact sequence

0— g, »wp~Op— Hom(Ig, 1, 05) >0 (2.3).
U
0g,(—2)
This sequence immediately implies that either E, meets exactly two components
transversely in a point or meets one component in two points transversely or meets

one component in one point of order two.
In the first case E must be a cycle:

v /

But then H!(E, Z)~Z, contradiction.

So E is not a cycle, hence clearly 7<2 (smce E, is arbitrary in the above
cons1derat10ns) The case 7=1 is not possible since wz~ . If F=2 and the two
curves meet in two points (transversely), then H'(E, Z) +0. So we are left with #=2
and two smooth rational curves meeting in exactly one point of order two. It
remains to prove b;(Y)=b,(Y). To do this we use another part of the above exact
sequence:

0~HX%,Z2)~H*Y, D@ HE,Z)~H*E, D)~ H (Y, D)~ H*Y,Z)-0
14 A U
y/A z Z?
Since r=2, by(Y)>0 and~since by(Y) and b,(Y) are even (b5(Y)=b5(X) and b4(Y)
=b4(Y)!)), we obtain b;(Y)=>b,4(Y).

In the following we let : ?—»? be a minimal desingularization of ¥ and let
o: Y- Y, be a minimal model of Y.
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(3.9) Proposition. If by(X)>0, Y, is a non-rational ruled surface. If p:Y,—C,

denotes the ruling, g(C,,)= _b3(2X ).

Proof. It is clear that k(Y,,)= — oo i.e. ¥,, is ruled or IP,. So it suffices to prove g(C,,)
b;y(X) . . 3
3(2 ) in case Y, is ruled and that ¥, +1P,. Let Y, be ruled. Then b3(Y)=b4(Y)
=b,(Y,)=2g(C,). By (3.8), b3(Y)=b;(Y). Since b;(Y)=bs(X), we obtain the
equation we want. If Y,,=IP, the same arguments show b;(X)=0, contradiction.
We first consider the case that X is of the principal series, i.e. the canonical
divisor is very ample. We take over all notations of Sect. 2 concerning the genus
of X etc. We will make heavily use of

(3.10) Proposition. Let Z be the exceptional set of 7. If b3(X)>0, dimpoo(Z)=1.

Proof. Assume dimpoo(Z)=0. Then obviously R'7,(03)=0 (so Y has only
rational singularities). Moreover we know H'(0y)=0 by (3.5), thus H Y ©;)=0.
Hence Y is rational and b5(Y)=b,(¥)=0 (3.8).

(3.11) Proposition. g(X)=8 (i.e. g(X)e{8, 9, 10, 12}).

Proof. Remember that X is embedded in IP, . ; by the canonical divisor. If we take
two smooth hyperplane sections H, H' C X, the resulting smooth curve C=HnH’
has genus g(C)=g(X)=g. But here we want to consider C:=YnH. Since HNS(Y)
40, C becomes singular, possibly reducible. C being connected (since
HY(O4(—1))=0), we have h'(0;)=g(X) (since C is a degeneration of curves of the
form HAH'). Let C, C C be an irreducible component. So h'(0¢,) < g(X);1.e. g(C,)
(= genus of the normalization) <g(X)<7. Let C, be the strict transform of C, in ¥.
If H is general, dim po 6(C,)=1. Let C,—»C, be the normalization. Then we apply
Riemann-Hurwitz to the map C—C,, which has degree say a:

2¢(C)—2=u(2g(C,)—2)+degR, *)
R the ramification divisor.

Now g(C,)= ngX ) by (3.9), hence by (2.2):

g(Cn25.

Since g(C)<7, we obtain from (*): =1 and g(X)=5.

Now for general H, C is irreducible and reduced. Then we obtain (fr(F) - H)=1
(at least if Cnf(S(Y))=0). So fn(F) is a line in Y. Since n+id (otherwise
dimpoo(E)=1 and Y would be rational!), by (3.10) all the lines of the form fr(F)
pass through one fixed point, namely the point f(n(Z;) where Z;CZ is a
component with poa(Z,)=C,,.

But every Fano 3-fold X with g(X) =4 (of the principal series) has the property
that through any point there are only finitely many lines ([Is 1]), contradiction.
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(3.12) Proposition. g(X)=38.

Proof. Assume the existence of X. Then proceeding as in (3.11) and using the same
notations as in (3.11), we obtain now from g(C,)=4 and

28(C)—2=u(2g(C,)—2)+degR: *)

a<2 and =2 iff R=0, g(C)="1.

The case a=1 is excluded as in (3.11).

So a=2 (which means that fr(F) is a conic, hence Y is filled up by conics
through a fixed point).

Since R=0, C is smooth, i.e. C=C. Since C—C,, is unramified, C'=g(C) is
smooth. Let C, a section of ¥, with minimal self-intersection; G a fiber of p. Define
by C§= —e (cp. [Ha, Chap. V, Sect. 2]). Write for numerical equivalence:

C'~2Cy+pG.
Then the adjunction formula gives:
12=2g(C")—2=(—2Co+(6—e)G-2Cy+ BG)+ C*=2p—2e+12.

Hence fi=e. R
On the other hand, for general C, C is an ample divisor on ¥, hence €2>0. So
C'?=C%>0. But C'*=4p—4e=0, contradiction.

(3.13) Proposition. g(X)=+9.

Proof. The proof being similar to (3.14) treating the case g(X)=10 (and in fact
easier) we will omitt it.

(3.14) Proposition. g(X)=+10.

Proof. Assume g(X)=10. Then we will make use of the following construction due
to Iskovskij ([Is 1]). Take a sufficiently general line Z C X. Then there are exactly
four lines Z,,...,Z, meeting Z. Let 1,: X, —~X be the blow-up of Z in X. Let
7,: X, X, be the blow-up of the strict transforms Z{" in X ,. Let Z® be the strict
transform of =7 (Z) in X, let Z{* be the proper transforms of the Z{V.

Let Z:=1,%1, *(Ox(1))@N—2ZP)Q0O(— X Z?).

Then & is globally generated and h°(X,, #)=35. Let ¢:X,—IP, be the
associated morphism. Then ¢(X,) is a smooth 3-dimensional quadric Q5.

Moreover ¢ is birational and contracts exactly S, and Z!», where S, is the
strict transform of the surface S C X swept out by all conics in X meeting Z. So far
Iskovskij’s construction.

Now denote by Y, the strict transform of Y in X, and let ¢(Y,)= Y, CQ;. Since
Z is general, Z is not contained in Y. Namely, otherwise Y would be filled up lines.
So the strict transforms of the lines in ¥ would have to be contracted by p o ¢ (since
8(C,)=2in our case!). But then all the lines would have to pass through one and
the same point (because of !) which is not possible by [Is1]. So Z ¢ Y. Since
(Z-Y=1),we conclude ZnS(Y)=0, in particular ZNE =§. Hence foranyi: Z;¢ E.
From this we deduce at once: E ¢ S (otherwise E would be a line or a conic meeting
Z).
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Going into the construction of Iskovskij we see that t,07,|]¥,—Y and
¢|Y,— Y, are birational, moreover the set of indeterminacy of ¢ o(t,o1,)” ! does
not contain E. Hence Y; is non-normal. Now an easy calculation shows that

degY,=6 (in P,).

So Y, is the intersection of a quadric (Q;) and a cubic in IP,. Taking the general
quadric and the general cubic and looking at its smooth intersection Y, the general
smooth hyperplane section C, of Y, will have degree 6, hence g(C,)=4 (by
adjunction formula).

By degeneration we conclude for the general hyperplane section C, of Y, (C,,
being singular): g(C,)<3. Let

fo: ?0 ~Y
be the normalization,
ny: Y0 ¥,
a minimal desingularization. Let
0o: Yo Yo m

be a minimal model.

Then Y, ,, is a ruled surface over a curve, C, ,, of genus 2 (since g(C,,)=2),
denote by p, the projection. Let C,, be the strict transform of C, in Y, and C, its
normalization. Apply Riemann-Hurwitz to C,—C,_,, to obtain:

2¢(Cy)—2=204,+degR,,

R, the ramification divisor, &, the degree of Cy—C, .. Now g(C,) < 3, hence either

a) g(C0)=3’ (X0=1, degR0=2
b) g(Cy)=3, ap=2, Ry=0
c) g(Cy)=2, ag=1, Ry=0.

a) cannot occur: because of oy =1 aO(C o) would have to be a section of Y;, ,,, hence
smooth. So €, would be smooth, i.e. C,=C, and C —>aO(CO) would be
isomorphic. Hence R, =0. Now assume b). Then we proceed as in (3.12): compute
06o(Co) in Y, ,, for numerical equivalence and conclude o4(C,)*=0, which is
impossible (argue as in (3.12)).

So we are left with case c). So Y is filled up by lines. Let o be the degree of the
images of the fibers (po )" !(x) in Y. Since Y and Y, are non-rational, we deduce
that the images of the curves (p - 6)~ }(x) under our birational map Y— Y, are just
the lines in Y,. But then we have o = 1! Namely, if Z is general, we can achieve Z;¢ Y
for all i (since by Iskowskij any line in X meets only finitely many other lines). But
then — letting [= fr(p - 6) ™ '(x) — we conclude

a=(cy(Ox(1)-)=(c1(L)- 1) =(cOg,(1))- $(I5))=1
for general I (I, is the strict transform in X,).

Conclusion: Y is filled up by lines which have all to pass through a fixed point
(since m+1d as before). This being impossible by Iskovskij the proof is finished.

(3.14) Conclusion. We have now proved: If X is of the principal series, then
g(X)=11. Since by [Is1] g(X)+11 and g(X)=<12, we obtain g(X)=12. So it
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remains to exclude the cases where X is not of the principal series. These are the
following ([Is 1])

a) g(X)=2 and the anti-canonical map ¢4-:: X —IP; is 2:1 and ramified in a
sextic

b) g(X)=3and ¢g-:: X—>Q,(=smooth quadricin IP,)is2:1 and ramified ina
surface of degree 8.

(3.15) Proposition. The case 2<g(X)=<3 and X not of the principal series does not
occur.

Proof. We use in principal the same method as in (3.11). We have g(C,,) =52 (resp.
30) if g(X)=2 (resp. 3). Take se H°(O(1)) general. Then C={s=0} is irreducible
and reduced. Moreover g(C) <2 (resp. 3); even g(C) <1 (resp. 2) since C is singular.
Considering the map C—C,, we obtain a contradiction to g(C,,)= 52 (resp. 30).

So theorem (3.1) is proved completely.
We cannot decide here whether a compactification X with g(X)=12 (and non-
normal Y) exists. But we know something on the structure of X if it exists:

(3.16) Theorem. Assume that X is a compactification of € with non-normal Y such
that X is a Fano-3 fold of the principal series, of index 1, with g(X)=12.

Then E consists either of one smooth rational curve or of two smooth rational
curves meeting transversely in one point. E consists of two smooth rational curves
meeting in one point of order 2. Moreover E and E are reduced. Here we use the
notations of (3.2).

Proof. (3.7), (3.8). The reducedness of E follows from that one of E.

(3.17) Remark.In the situation of (3.16) one can say move on the singularities of Y
and Y. Namely, by [K-W] or [S], for general yeE we have either
Oy, ~C[X, Y](X - Y) or Oy ,~C[X, Y]/(X*+Y?).

Here Oy, denotes completion of Oy .

The first case occurs exactly when E is irreducible, the second when E consists
of two components (then f is a homeomorphism).

Moreover the only possible singularity of ¥ on E is the point where the two
components of E intersect ([K-W]). Observe that by [S] Y is weakly normal
(sometimes called maximal, cf. [F]). Let us remark that one can show that Y\E is
smooth (a priori it could have rational double points), so ¥ has at most one
singularity which must be rational.

(3.18) Remark.If Y is assumed normal in (3.12) or (3.13) we can carry out the same
construction as in the proof of (3.13) and conclude — with some minor changes in
the proof — the non-existence of the compactification (X, Y). This finishes the proof
of part I, Theorem 3.5, as promised.

4. A Remark on Compactifications with Index 2

(4.1) This section is joint work with Schneider and gives a supplement to [PS]. We
are indebted to Furushima and N. Nakayama for very fruitful discussions.
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In [PS] we proved (Theorem 2.4) that two compactifications (X, Y), (X', Y’) of
€3 with by(X)=b,(X")=1, where X, X’ are Fano 3-folds of index 2 and Y, Y’ are
either both normal or both non-normal are isomorphic. This means precisely the
following: there is a biholomorphic map ¢:X—X' such that ¢(Y)=Y'. As
promised in [PS] we present here some details which were omitted in [PS].

Note that it is already clear that X and X’ are abstractly isomorphic, namely
the Fano 3-fold V; of Iskovskij (cf. [Fu 1], [PS]). Moreover Y and Y’ are abstractly
isomorphic and the structure is well-known (see [PS], Theorem 2.4).

(4.2) Iskovskij constructed a birational morphism from the Fano 3-fold X of type
Vs to a 3-dimensional smooth quadric Q5. This construction has been modified by
Furushima [Fu 1] in the following way.

Take points p, py€l, a line in Q; CIP,. Take tangent hyperplane sections H, H,,
to p, po. Let C be a twisted cubic contained in H,,. Necessarily p,e C. Letn: X' —Q,
be the blow-up of C in Q. Let H,, be the strict transform of H,in X". Then H,~ %,
=P(0®0(—2)) over P, and X’ can be blow down along the projection H,—P,.
We obtain amodification X’— X and thus a birational map X - Q5. o is the just the
blowup of a line I, C X with Ny, ~O(—1)@0(1). If we set Y=0671"'(C), then Yisa
non-normal hypersurface in X with non-normal locus [, and X\ Y ~C3. Moreover
all compactifications (X, Y) (with X of type V) arise in this way. Remark that the
strict transform of Y in X" is just X, and that = contracts exactly the strict
transforms of the lines in Y (Y can be described as the surface of lines meeting l,).
The last facts follow from [PS].

Now consider the strict transform A’ of Hin Y'. Let A :=0(A’). Then (X, A)is a
compactification of € with 4 normal and all “normal” compactifications arise in
this manner [Fu1].

(4.3) Let (X, Y), (X', Y’) be two smooth compactifications of €3 such X, X’ is of
type Vs. Assume either both Y and Y’ are normal or non-normal. Proving the
existence of a biholomorphic map ¢ : X — X' such that ¢(Y)=Y’ comes down (by
(4.2)) to prove the following.

(4.4) Theorem. Let (Q, 0, C, 1, q) be a quintuple consisting of a smooth 3-dimensional
quadric Q CIP,, a twisted cubic curve C C Q, the uniquely determined quadric cone
C Q containing C, the uniquely determined line 1 C Q such that InC is the vertex of
and a point gel. Let (Q', Q', C', I', ¢') be another quintuple of this type. Then there
exists a biholomorphic map ¢:Q—Q’' such that $(Q)=0Q', ¢p(C)=C', ¢p()=I,
d (=9

Proof. The proof is given in several steps which are well-known and whose proofs
are very easy (thus omitted).

1. We may assume Q=Q' and J={' (since there is y: Q—Q’ biholomorphic
such that p(Q)= Q).

2. For any quadric cone J CIP; and xe J, x’ € J there is y € Aut(IP;) such that
p(x)=x', p(C)=C"

3. If CcIP, is a twisted cubic, xe C, then there is a uniquely determined
quadric cone J CIP, such that CCQ and x is the vertex of J.

4. Put x:=vertex of J in our situation.
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By 2) we find w e Aut(IP;) such that yp(C)=C’ and y(x)=x. By 3) we conclude
w(Q)=0 since the vertex of y(J) is x. Hence we have ¢ecAut(J) such that
¢(C)=C'. Then automatically ¢()=1'!

5. Now lift ¢ to an automorphism @e Aut(Q). This is possible since the
restriction map

Auty(0)—Aut()

(from the group of automorphisms of Q fixing J to Aut(0)) is an isomorphism. In
fact, it is sufficient to see dim Auty(Q)=dim Aut(0)=7 and injectivity of the
restriction map.

6. Still we have to see that we can achieve ¢(q)=¢’. To do this we just mention
that any y e Aut(C) with (p) = p can be liftet to % € Aut(Q) with y(C)= C, hence to

7 e Aut(Q).
Thus the group of automorphisms ¢ constructed in 5) acts transitively on C,

q.ed.
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Note added in proof. Recently M. Furushima proved that there exists a compactification of €3
with non-normal boundary at infinity which is a Fano 3-fold of index 1 of “Mukai-Umemura”
type.






