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Introduction

In this paper we consider only real Banach spaces. This is not a restriction since the
properties we consider in this paper depend only on the real structure of the space.
In Theorem 1 we give dual characterizations for the properties (I,,) defined by:

Every convex compact set with affine dimension
at most n, is an intersection of balls.

This will be used to characterize the property:

Every finite dimensional convex compact set a.)
is an intersection of balls. J.d

We also prove that for n-dimensional Banach spaces, property (I, - ;) implies
property (I,), and examples are constructed to show that this result is the best
possible.

At the end we give (without proofs) some stability results for property (I ;),and
we ask whether every Banach space can be renormed to have property (I;). We also
mention an application of Theorem 1 to spaces of compact operators.

Notation

A point x of a Banach space X is said to be an extreme point if x =0 or if x/| x| is an
extreme point of B(X), the unit ball of X. The set of extreme points of X will be
denoted by Ext(X).

For a finite dimensional set C, dim C will always mean the affine dimension of
C.

A slice of a bounded set C (in some Banach space X)is a subset of C of the form:

S(C, f,0)= {xeC:f(x)> <51épf> —5}
for some fe X*, §>0.

The closed ball [resp. open ball, resp. sphere] centered at x and with radius r
will be denoted by B(x, r) [resp. B(x,r); resp. S(x;r)].
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Results

Our main result is the following theorem, which is analogous in its spirit to
Theorem 1 of [4].

Theorem 1. For every Banach space X, and every natural number n, the following
properties are equivalent:

(1) Every compact convex subset C of X with dimC=<n, is an intersection of
balls.

(2) For every feX*, every (n+1)-points (x;)o<;<,€ X, and every >0, there
exists g e Ext(X*) such that sup Ix(f—g)l<e.

This theorem will be an immediate consequence of the more precise result
stated in the next lemma. But we need first to introduce some notation.

For a bounded convex set C, let C denote the intersection of the balls
containing C, and define o(C)= sug dist(x, C).

X€E

If X is a Banach space, and n an integer, let A=A, =sup{o(C): CCB(X),
dimC £n}. [Hence X has (I,) if and only if 4,=0.] We also define
A=A, =inf {,u> 0 such that :VfeS(X*),
VCCB(X), dimC<n, 3ge Ext(X*): sup |f—g|§,u}.
C

With these notations, a “quantitative version” of Theorem 1 is given by:

Lemma 2. - A <A<2A

Proof of A<2A4. It is enough to prove that given CCB(X), dimC=n, and
S eS(X*), there exists for every >0, an element g € Ext(X*) such that sup |f—gl
S2A+n)
Let C, f, and 75 be as before.
If m= sup |f|=2(4 +n), take g=0.
C

If m=2(A+n), choose uye K=cv(+C) such that f(us)=m, and let
U= A:; 1 u,. Define also D=Knkerf.

It is clear that D C B(X), dimD <n, and dist(u, D)= A + 5. By definition of A4,
there exists a Ball B(z,r) containing D and not containing u.

Let w be the unique element of S(z, r)ncv[ z, u], x the norm one vector
choose an extreme point k of B(X*) such that h(x)=

,and

One can easily check that 0< sup h=< sup h<h(u). So there exists o >0, such
B(z,r)

that sup ah=1, and from the above inequalities we deduce that sup ah<ah(u)
D

SA+11
- m
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Then, by Phelps’ lemma [applied to the Banach space sp(K) with K as a unit

ball], we obtain ;j:‘— +ah|| £L2 % This concludes the proof of “A<2A4" since

K
both +amh are in Ext(X¥).

Proof of A<2J. It is enough to prove that given CCB(X), dimC=<n, then xe X
can be separated from C by a ball whenever dist(x, C)>24.

Let C and x be as above. We can suppose that x € B(X), since if not B(X)
separates C and x.
C—x
Let K= 3
separate 0 and K.
Since dist(x, C) > 24, we have dist(0, K)> A, which means that K(AB(X))=0.
This implies that we can find f € S(X*) such that inf f > 4, and by the definition of
K

A, we can find g e Ext(B(X*)) such that inf g=23¢>0.
K

C B(X), and observe that to separate x and C, it is enough to

Since g is an extreme point of B(X *), by a well known result due to Choquet, we
can find xe S(X), 6 >0 such that:

geS(B(X*);x,8)C {heB(X*): sup |g—h|<a}.
K

We are going to prove that there exists an r>0 such that K is included in
D, = B(rex, (r— 1)¢). This will conclude the proof, since none of the balls D, contain

Indeed, if not, by a compacity argument, and since the balls D, are increasing
(with r), the set L= () (K\D,) will be non empty.
r>0

Take an element y € L, and for every r >0, let g, € S(X*) be such that g(rex—y)
=|rex—yl||=(r—1)e. This inequality implies easily that lim g.(x)=1, and so
g,€ S(B(X*),x, ) for r large enough. r=eo

On the other hand, it is not difficult to see that (g—g,)(y)=2s¢, and so
sup |g—g,| = 2¢, for every r>0. This conclusion contradicts the preceding one by

K

the choice of x and 4.
This completes the proof of the lemma. []

That Lemma 2 implies Theorem 1 is an immediate consequence of the
following geometrical observation: If C is a compact convex set with dimC <n,
there exists (n— 1)-points (x;)o <; <, Such that CCK=cv{x;:0<i<n} (and K also
satisfies dimK <n). -

In the sequel we will list some consequences of Theorem 1.

Corollary 3. For every Banach space, the following properties are equivalent:

(1) Every finite dimensional compact convex subset of X is an intersection of
balls.

(2) The set Ext(X*), of extreme points of X*, is w*-dense in X*.

Proposition 4. Let X be a Banach space such that for every n=1, X has an
equivalent norm | - |, which satisfies property (1,). Then X has a equivalent norm [ - |
which satisfies property (1 rd)
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Proof. Let us denote by | - || the original norm of X. It is easy to see that we can
suppose that |-|,2] - | for every n, and hence |- [¥<| - [|* (on X™*).
Define on X* an equivalent dual norm by:

= (£, p)

and let us prove that its predual norm works.
An easy (and standard) convexity argument shows that Ext(Xf))
p] U Ext(XF, ). This implies by Theorem 1 that Ext(X¢: ) is w*-dense in X*, and

the conclusmn follows by Corollary3. [

Proposition 5. Let E be an n-dimensional Banach space with property (1,,_,). Then E
has property (1,).

Proof. We will prove that under the hypothesis of Proposition 5, the set of extreme
points of B(E*) is norm dense in S(E*). This clearly implies the conclusion in view
of Theorem 1 (see also [1, 3]).

Let (e;); <<, be a basis of E, then for every f e S(E*), and every £ >0, there exists
5>0, such that for every ge E*, || f —g|| <¢ whenever sup le{f —g)|<é.

_l'l

Assuming (I,_,), for every feS(E*), we can find geExt(E*) such that

sup le{ f —g)| <9, hence || f —g| <& and then ”f—”—l—I <2 O
15isn

The result of Proposition 5 cannot be improved as it is shown by the following:

Proposition 6. For every natural numbers k and n such that n=k+ 2, there exists on
R" an equivalent norm |- |, ; satisfying (I) but not (I, ,).

k+1 1/2
Remark. The norm ||, , (we will define) is given by |x|, , = < Y lii|2> , where
i=1

(%)1 <i<n is the decreasing rearrangement of (|x;]); <;<, But this formula is of no
help in proving the proposition.

Proof of Proposition 6. Let n and k be fixed natural numbers such that n=>k+2.

We need first to introduce some notation and to prove a preliminary result.

Let (e;); <i<n be the natural basis of R”, || - || be the Euclidean norm, < -, - > the
Euclidean scalar product, and S the Euclidean unit sphere.

Let 2={Ac[1,n]:cardA=k+1}, and for every Ae? define
H ,=sp[e;:ie A]. Define also the sets & = U (SnH ,), and C=cv(8), and let us
prove that Ext(C)=6.

By the Krein-Milman theorem, since & is closed, it is enough to prove that
é”CExt(C) and to do this, it is again enough to prove that if x, x;,...,x,€8,

P
1 -4, €IRT are such that x= Z ix;and Y A;=1, then x=x,=...=X,.
=1 i=1

Let us prove that the above statement istrue. Let A € 2 be such that xe H ,,and
denote by P, the orthogonal projection on H ,.
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From x= Z Jx; we deduce that x= Z AP 4(x;) which implies that
i=1 i

x="P 4(x,)=...=P 4(x,) by the properties of the Euchdean norm.

In particular we have | P ,(x;)|| =1, for every i, and so P 4(x;) = x; (since || x;|| =1).
This proves that x=x;=...=x,, and concludes the proof of & =Ext(C).

Let us return now to the proof of Proposition 6. Since C is convex, symmetric,
closed, and with no empty interior, C defined a (dual) norm on R", the (pre-) dual of
which we will denote by |-, ,=|-|, i.e., BIR].)=C° (the polar set of C).

But what we have proved in the preliminary part we have that

Ext@R!..)=R-&= |J H,.
Ae?

Let now f €IR", (x;)o <;<x €R", and suppose that (x;)y <; <, is a maximal linearly
independent subfamily of (x;)o<;<; Then choose an AeZ such that ((x)o<;<i;
(e;);¢ 4) is still linearly independent, and find geR" such that (g, x;> ={f, x;) for
0<i<l, and {g,e;>=0 for every j¢ A.

Sucha gisin H 4, hence g € Ext(IR}.}:), and also is such that sup x(f—2)|=
(by the “maximality” of the chosen subfamily). O=izk

Theorem 1 implies then that RY.; has (I).

On the other hand let f eIR" be such that (f,e;>=1for 1 <i<k+2. Then there

is no element ge Ext(R].;s) such that sup [e(f—g)l<1.
15isk+2

Indeed for every Ae??, the set [1,n]\A intersects [1,k+2] (cardinality

argument), then for every ge H ,, we have sup |e,.( f—gl=1.
1<igk

Theorem 1 again implies that RY.| fails (I, 1) O

Remark. Using the same proofs* as in [4], one can obtain the following results:

1) If T: X— Y is such that T and T* are injective, and if Y has an equivalent
(I;,-norm then X has also an equivalent (I ;)-norm.

2) Every Banach space has an equivalent (I ;)-norm if and only if the above
result is true without the hypothesis “T* injective”.

3) If (P,)o <4 <, 15 a Schauder decomposition for the Banach space X, such that
for every a, 0 <o <, the space (P, ; — P,)(X) has an equivalent (I ;)-norm, then
X has an equivalent (I, ;)-norm.

Using the Hahn-Banach theorem, one can easily see that for every Banach
space X, the set Ext(X*) of extreme points of X * intersects all the affine, w*-closed,
1-codimensional subspaces of X*.

In view of this one can ask the following:

Problem. Does every Banach space X have an equivalent norm such that Ext(X*)
intersects all the affine, w*-closed, 2-codimensional subspaces of X*?

A positive answer to this will imply that every Banach space has an equivalent
(Iy)-norm. Up to now it is unknown if this conclusion holds even for Asplund
spaces.

* We cannot reproduce these proofs because of their length
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Remark. In [5], Theorem 1 is used to prove that the spaces K(X,Y)and X ® Y

(with their usual norms) never have property (I,) if dimX >2 and dim ¥ =2, and
Theorem 1 is also used to show that the space K(I2)=13 X I3 has property (I,).
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