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Department of Mathematics and Computer Science, Middleburg College, Middleburg, VT 05753,
USA

1. Introduction

Let 1 be an element in the upper half plane and imaginary quadratic over @Q. Then ©
satisfies an integral quadratic equation at?+ bt +c=0 with a, b, ceZ, (a,b,c)=1.
Denote by disct=d=b>—4ac<0 the discriminant of 7, h=h(d) the order of
the class group of the quadratic order O=Z[(b+ Va)/ 2]
C(Q(]/H)=K, and w=w(d) be the number of roots of unity in that order.

The value j(r) where j is the elliptic modular function, is called a singular
modulus and is an algebraic integer of degree h over @Q.

Fix two fundamental negative disriminants d, and d,. Denote by w; the number
of roots of unity in the quadratic order of discriminant d;, and let h; denote the class
number of those orders.

Three objects of study are:

1. The differences of singular moduli

(1.1) Jd,,d,)= I1 (j(z1)—j(r2) wiw,
e
disc(rz) =d»

Here [1] denotes an equivalence class modulo SL,(Z).
2. The “polynomial”

(1.2) filx)= ( M (- j(,c))>2/w(d/g2) ,
disc t[t'—' d/g?

where [1] denotes an equivalence class mod PSL,[Z]. Note that

Jdyd)= [1 S,y

[r1]
disc(t1)=dy

3. The m™ modular polynomial, ¢,(x, y)€ Z[x, y] defined by
(1.3) onlj@) =)= tH (j(2)—i(z).
ety=m

mod SL2(Z)
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This product is taken over all equivalence classes of 2 x 2 matrices of determinant
m, modulo the left action of SL,(Z).

In [8] Gross and Zagier produced a formula for ord/(J(d,,d;)) at a finite
rational prime /. Using the formula they then studied f; and ¢,, with the
application of finding the index, I, of Z[j(t)] in its integral closure in Q(j(z)). These
results, with general relatively prime composite discriminants, were later used in a
fundamental way in their paper [7]. They gave algebraic and analytic proofs of
their results. However, the algebraic proof was only for the case of prime
discriminants.

In [4], generalizing the work of Gross and Zagier, we produced a formula for
ord(J(d,,d,)) at a finite rational prime / in the case of relatively prime composite
discriminants and gave a totally algebraic proof of our theorems. In this paper we
use our earlier results and the blueprint provided by Gross and Zagier to
generalize the study of ¢,, and I to composite discriminants. We also produce a
formula for the index I in the case of composite discriminant d.

One simply stated result is any prime 4 of either Q(l/dT) or Q(]/Z) dividing
@n(j(t,)—j(r,)) must have characteristic £ <md,d,/4. A complete description is
given in Sect. 4.

The results on the index, I, are quite technical and we must introduce some
additional notation. Let d, K, and ¢ be as in Sect. 1, and for non-negative integers n
let R(n) (resp. r,(n)) the number of integral ideals (resp. integral ideals in the
principal class) of @ having norm n. Extend both functions to IR by setting R(x)
=r,(x)=0for arguments other than non-negative integers. For each prime p, finite

of infinite, let ¢, : (Q,,([/c?)-—»{ +1} be the local character given by class field theory.
Define

0 if there exist two primes p|d such that

o/n)= ep((n—ldl)/n)=—1.
270 otherwise, where a(n)=Card{p|(n,d)} .

(1.4) Theorem. Let £ be a rational prime not dividing d. Then

ordd=5 T T odn): (R)—r,(n)- R ("”T_")

A more precise form of this theorem extending it to all rational primes is found
in Sect. 5.

As in our earlier paper the proofs depend on the interplay between the
geometry of supersingular elliptic curves in characteristic £ and the arithmetic of
orders the definite quaternion algebra ramified at £ and oo. These results can be
found in detail in [3, 4] and are collected, without proofs, in Sect. 2 for the
convenience of the reader and to introduce notation. Section 3 presents the results
of [4] that will be generalized in this paper. Sections 4 and 5 contain the main
results of this paper, and Sect. 6 gives a simple example of an index computation.
Section 7, the appendix, is devoted to a proof of the formula for the discriminant of
Qj(r))/Q. A formula for the discriminant may be well known, however we could
not find it in the literature. Dummit, Gold, and Kisilevsky [5] compute the square
free part of this discriminant.
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2. Preliminaries

In addition to the notation already given let ¢ be the number of distinct prime

factors of the discriminant d. H will denote the Hilbert class field of K =(Q(]/a),
G =Gal(H/K) = Pic(0), where Pic(®) is the ideal class group of K. Let y, be the
primitive quadratic character defined modd extended to Z in the usual way. For
each p|d let x, be the associated quadratic character modp.

Associated to y, is an idéle character &: Af/Q*NAY —>Gal(K/Q)={+1}. Thus
for each prime p of Q there is a local character ¢, : Q,— Gal(K/Q) associated to the

F {

—1 if p remains inert in K.

Then ¢, can be evaluated on any integer n by writing n=u - p*» where gcd(p,u)=1
and letting

sgn(n) p=w
(2.1) ey (n)=1 Frob p® ptd

XoWa(p) pld

The ¢, can be thought of as the genus characters of K. In this language the main
theorem of genus theory states

2.2) ]"l & (INa)=1 for all ideals a in O.
P
Here N is the absolute norm.

Let Z be an inert or ramified prime in K. We now describe maximal orders
containing @ and their subrings in the definite quaternion algebra ID defined over
@ ramified only at £ and oo. Details for the following are given in [3].

Assume ¢ is inert in K. Fix a prime g such that for all p|dy,(—/q)=1. The
existence of g is guaranteed by Dirichlet’s Theorem. These conditions imply that
g0 =qq and that x2= — #q mod p has two solutions for each p|d. For each p fix one
such solution ,. By the Chinese Remainder Theorem we fix a congruence solution
A€Z such that A=4,modp. Then D= {d, —/q} (see Vignéras [12] p. 2 for the
notation) and can be realized as the subalgebra

o Bl
D= {[a,ﬁ]— |:_qu &].a,ﬂeK}.
Here a+—a denotes complex conjugation. Note, there is a fixed embedding of K
into D by a+>[a,0].

For any ideal a of @ there exists a maximal order R(a) in ID containing ¢
optimally, that is @ C R(a) and R(a)nK = . Namely let A;,= —1°"%®1 where p is
the prime of @ above p. Let 4’ be the corresponding congruence solution and let
27! be the inverse different of @. Then
(2.3) R(a)=R(a,V)={[e,fleD:ae2 ,peq '@ 'a 'a; a=7fmod0}.
Observe that R(a) admits a filtration

2.4) R(a),={[«, f]€R(a): f=0mods"~'}.
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That R(a) is maximal is proved in [3] where the following important facts
concerning R(a) are established:

1. Any maximal order in ID containing @ optimally is of the form R(a) for some
ideal a.

2. The conjugation relation R(a)b=DbR(ab) holds for integral ideals a and b
of 0.

3. Up to conjugation by K* there are exactly h distinct maximal orders
containing @ optimally.

A critical observation is if the ideal bl(ﬂ) then Bb~'=1 so R(a,A)b
=bR(a, A") where 1" differs from A’ only in the choice of sign on the 4,’s. Thus, up to
conjugacy by K* there are 2! orders that all look like R(a) except for the
congruence solution. Note, we do not obtain 2° orders since changing all the signs
on the A, amounts to conjugating by ]/EEK*. This ambiguity will cause an
obstruction as pointed out in the proof of Lemma 4.8.

Now assume ¢ is ramified in K so £ =p|d. Choose a prime q such that for all

p'ld, p'+p, x,{9)=1 and y,(q9)= —1. Then
_ |« By
D= {[“,ﬁ]— [—qﬁ &].a,ﬂeK}

R(a)=R(a,A)={[o,fleD:aep2 ",
feq '2 'a”'a; a=A'fmodp’, p'+p}

and

(2.5)

(2.6) R(a),={[o, ] € E(a): f=0modp"}.

As before p is the prime of K over p. The same observations and facts hold in this
case as they did previously.

3. Review of Earlier Work

Some of the results and techniques from [4] are used in an essential way in what
follows so we review that work with some detail now.

Let d,=d and d, be another fundamental negative discriminant relatively
prime to d,. Let w;=w(d;). Fix a finite prime v of H having characteristic £ and
denote by 4 = A4, the completion of the maximal, unramified, extension of the ring
of v integers in H. Let W= W, = A[s] where s is a fixed element which satisfies an
integral quadratic equation of discriminant d,. Let e be the ramification index of
W/A and 7 a uniformizer for W.

Let j, =j(t,). The algebraic integer
(3.1) a=o(ty,dy)= ( G ~j(r2»>4/wz,

disct2=d;
[z2]
lies in H, and, in fact, lies in @Q(j,) when d,, d, + —4. Observe that Ny g a;)(®)
=J(d,,d;). The product is taken over representative classes mod SL,(Z). One can,
of course, try to compute ord,(«) for any v in H. Let E be an elliptic curve defined
over W with complex multiplication by ¢ and invariant j(E)=j,. It is easy to show
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such a curve exists, and, by a theorem of Serre and Tate [11], E has good reduction
and is unique up to W isomorphism since the residue field is algebraically closed.
Similarly, for each 7, of discriminant d, let E’ denote the elliptic curve defined over
W having complex multiplication by Z[s] and invariant j(E')= j(r,). Then

ord ()=

Z ordn(](E)—](E,)) ’

EW Wy disc(rz)=d2
which by [8, pp. 196 and 200] gives
ord ()= 5

€W W, disc(tz)=d; n=1 2

Card{Isoy (E,E)} .

Thus the problem is reduced to counting isomorphisms f: E>E' mod=", or
equivalently, [8, pp. 200-201] endomorphisms s, = f ~! o 5o f of E mod " belong-
ing to the set

g )€ Endy -n(E) : Tr(etg) = Tx(s), IN(ap) = IN(s),
™" )&, induces multiplication by s on Lie(E).

Thus, ord (@)= — Y. Card{S, ,}.

2
€Wy nz1

If £ =char(v) splits in K then ord () =0 since E has ordinary reduction in this
case. If / is inert or ramifies in K then one can hope to determine ord,(«) with the
aid of the R(a),. For simplicity we consider the case £ inert. An analogous sitation
holds for ¢ ramified.

Deuring’s theory [2] tells us that in this case there exists an integral ideal a of
0O such that Endy, ,+(E) = R(a), where R(a), is given by (2.4). One then checks that
an o, € R(a), gives rise to an integer x and an integral ideal b of @, b~ ga? solving
the Diophantine equation x?+4¢>""!INb=d,d,. However, the converse is not
quite true. A solution (x, b) does indeed give rise to an endomorphism, however it
does not necessarily end up in the original R(a), but in one of the 2'~! rings
conjugate to R(a), by an ideal ¢|n. There is no way to distinguish in which of these
2'"! rings the endomorphism lies. Moreover, a single solution (x, b) not just one
but Card{p|(x, d,)} endomorphisms. Thus, while in principle one can factor «in H,
the hopes of finding a formula for this factorization seem unobtainable by our
present method. The above difficulty is overcome by descending to the subfield L of
H fixed by the subgroup of G generated by the elements of order 2. Note [H: L]
=2'"1 and if u is a prime of L under v then

ordu(NH/L(a)) = le‘,u ordv'(a) .

It turns out that a formula for ord,(INy,(«)) can be obtained and the
remarkable fact is that it depends only on the genus class of q but not of a. We
remark that an analogous situation holds if £ = p|d, but now we obtain a solution
(x,b)to x? +4pINb=d,d, with x e Z and b an integral ideal of O in the class of pga?.
Here p|p.

Let r (n) be the number of integral ideals of @ in the class of * having norm n.
Then u has characteristic £ and we have



182 D. R. Dorman

(3.2) Theorem. Let ¢ be a rational prime and H, L, u, a, p, and q be as above and in
Sect. 2. Then

0 i a(6)=1

1 d.d,—x?

— a(x) , 1%2 . _
ord,(Ny, (@) =1 2 x;, ngl 2% Foqn (“—4 Z ) if x,(0)=—1

1 d.d,—

5 xel 2a(x) ranz ( : zp : ) lf [=p]d

where a(x)=Card{p|(x,d,)}.
Proof. See [4, Propositions 3.4, 3.9, 3.11, 3.13, and Theorem 4.1]. [J

4. Generalization to Modular Polynomials

From here on we fix one fundamental negative discriminant D having ¢ distinct
prime divisors and we assume j =((D + 1/1_))/2) is a singular modulus. All notation is
as before except for W which we will define later.

Assume meZ is not a perfect square. Then Kronecker’s identity relating
PnlX, X) to fp(x) is

(Pm(X, X) =1 H f;z - 4m(X) .
teZ;t2<4m

Suppose that m=1 is not the norm of an element (a+b]/l_))/2 in @. Then the

value @,,(j,j)=0. Thus for £ inert and a and q as defined in Sect. 2, Kronecker’s
identity can be use to recast the results of Theorem 3.2 as

. 4 1 |D| (4m—t?)—x?
4wz _ - a(x) ,
Ol'du(]NH/L((Pm(]’])» W2 2 §z4m {2 xgz "‘;1 2 ¥ qa <—————4 i
- atn) mDl—n
ngo k; 20 ()rge: ( * ’

where n=(x%—Dt?)/4 is the norm of an ideal in the principal class. For an ideal
class b define ry(0)=1/w. If £/=p|D the last line above would read

m|D|—n
= z Z 2"(”)7'1(11)7‘@1:02 < l plk )

n20kx1

This formula can be generalized. Let b be an ideal of ©® and m=1 an integer
which is not the norm of an ideal in the class of b. Denote by o, = ¢ be the element of
Gal(H/K) that corresponds to b under the Artin map. Then

4.2) B=@ul,j)*™
is an algebraic integer and we now produce a formula for ord,(INy,.f).

First observe by 1.2
43) ol ) = T1G=1*",
J
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where j' is the modular invariant of a curve E’ which is m-isogenous to E°. Recall 4
is the completion of the maximal unramified extension of the v-integers of H. Now
let W= A[j'] the field obtained by adjoining all the invariants j' of curves that are
m-isogenous to E°. Let  be a uniformizer for W. Note if Lym then W = A4 since the j'
are all unramified over A. This is the case of greatest interest since m=1 in the later
application.

Let E be an elliptic curve defined over W having complex multiplication by ¢
and modular invariant j(E)=j'. From the definition of ¢, it follows that the
factorization of  depends on determining the cardinality of

S,={Isoy,mw(E, E'); E' m-isogenous to E}.
By (1.3) and (4.3) Card(S,) is related to the cardinality of the set
'I;l = HomW/n"W(E’ Ed)degreem .
(4.4) Proposition. With the notation as above T,=S,,.

Proof. To see this let f €S, and ¢ an m isogeny between E’ and E°. Then f o @ is an
misogeny for E to E° so S, C T,. On the other hand, if ¢ is an m isogeny for E° to E
define E'=E°/ker¢p. Then ExFE' thus T,CS,. [

Since ord,(f)=4/w? Z ord,(j—j), by Proposition2.3 in [5] ord,(f)

=4/w? Z Card(S,)/2. And since S, =T, we can use T, in the above formula.

As mentloned in Sect.2 the ambiguity in the congruence solution in the
definition of the R(a) will prevent us from determining ord,(f) in H. Instead
descend to the subfield L and let u be a prime of L under v. Then

4.5) ord,(Ny ) = 12 y y Card)

nx1v'|u 2
The formula for (4.5) is given by
(4.6) Theorem. Let m, 8, L, and u be as defined above and let ¢ be a rational prime not
dividing m, and let B=INy, 1,
1. If yxp(¢)=1 then ord,(B)=0
2. If xp()= —1, then for a and q as in Sect. 2

ord(B)= ¥ 3 2%r_,(n)rye <Tll31,;ﬂ>
n=0 k>1 I3
3. If £=p|D, then for a, q, and q as in Sect. 2
D|—
ord(B)= T T 27yt ('"' A ").
nZ0k> p
The proof of this theorem is broken down into 3 lemmas.

(4.7) Lemma. Assume yp(/)=1. Then ord,(B)=0 for any prime u of L of
characteristic £.

Proof. By During’s theory [2] Endy.»wE = ©. Let b be an ideal in the class of ¢. By
results of Serre [1] Homy,(E, E°)=~ @ as an EndyE =~ 0 module inside K. Thus
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Homy/(E, E°)=Homy /,y(E, E*)=0b=Db. Now assume ¢ is an isogeny. Then
deg @ =Na/INb where « € b. Since we are looking for isogenies of degree m it follows
that Noo=mINb. Put ¢=(a)b~!. Then Nc=m. Hence r,-.(m)=r,(m)>0. This is
impossible since assuming that m is not the norm of an ideal in the class of b means
r,(m)=0. Thus Card(T, ,)=0; for all v and the lemma is proved. [

1
(4.8) Lemma. Assume yp(£)%=1 and £fDm. Then the sum Y Y 3 CardT, , is
nz0v'u

equal to the number of solutions to the equation N¢+£2*~'INb = Dm where ¢ and
are integral ideals of O in the class of b~ and gba? respectively. Each solution is
counted with multiplicity 2°®9 . 1. w2,

Proof. Since £ ¥ Dm, Deuring’s theory tells us that there exists an ideal a of @ such
that R(a),= Endy zmw(E). Serre’s result in this case shows that Homy, ,.y(E, E°)
=Endyw(E)b as an Endy ,.y(E) module inside ID. Explicitly

Homy .y (E, E°)={[a, fleID:ae 27 'b, fc 2 'q~'¢* 'baa™!; a=fmod O} .
Thus we must find homomorphisms [a, f] with norm equal to mINb. Writing
ot=y/]/5 with yeb and f=¢"" 16/1/5 where de(qa)”! - ga the norm condition
implies

—1(Ny+g£%"~ 'IN§)/D =mINb
or equivalently
(4.9) Ny +q£2"~'IN6 = |D| mNb.
Setting ¢=(y)/b and d=(6)qa(bd)~? we obtain a solution (¢,d) to
(4.10) Nc+7£2""'No=|D|m

where ¢ and b are integral ideals of @ in the class of b~! and gba? respectively.

On the other hand, beginning with a solution (¢, d) to (4.10) reversing the steps
in the above argument a homomorphism [«, f] is constructed in at least one of the
2!~ 1 conjugate right ideals R(a, A),. However, there is no way to determine in which
of these ideals the homomorphism lies. Moreover, it is possible for a single solution
to contribute more than one homomorphism if ged(D,IN¢)> 1. For example, if
p=ged(D, N¢) then reducing (4.10) modp shows #2"~ *Nd=0mod p. This implies
d=0modp, hence 0=Nc= +1,6? modp is trivially satisfied with both signs on 4,
Thus 2 homomorphisms are constructed from a single solution. Continuing in this
way it is easy to see if a(N¢)= Card{p|gcd(D, Nc)} then 2°™9 homomorphisms are
obtained from a single solution.

Both of these ambiguities are bypassed by descending to the field L where
computing the ord,(B) is the same as summing over all the right ideals K*
conjugate to R(a). This accounts for the inner summation sign.

The - w? term is 1 if D < —4. When D = — 3 the generator 6 of d(aq) ~*ba and
the generator 7 of ¢b can each be altered by a sixth root of unity giving 9=4%-w?
times as many homomorphisms as expected for each solution (¢, d). Similarly, when
D= —4,yand d can each be altered by a fourth root of unity giving 4 =% - w? times
the number of expected homomorphisms. []
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The final lemma is

(4.11) Lemma. Assume yp(¢{)+1 and ¢£=p|D, but £fm. Then the sum
Y. Y. $Card(T,) is equal to the number of solutions to the equation N¢+p"~'INd

n20v|u
= |D|m, where ¢ and b are integral ideals of O in the classes of b~ 'p and qbp"a?
respectively. Each solution is counted with multiplicity 2°®° . L. w2,

Proof. For some ideal a (4.6) provides a discription of Endw(E). Combining this
with Serre’s result gives
Homyy, np(E, E°)={[o, fleD:xep2 ™", fe2 'q~'p"a” 'ba;
a=Apmodp’, p'+p}.
The argument now proceeds as in the last lemma. Note in this case we can obtain

an extra factor of 2 in the special case N¢=0mod D which allows a change of sign
on the generator of D itself. [

The proof of Theorem 4.6 is simply a matter of combining the above three
lemmas.

5. An Application

One application of Theorem 4.6 is the computation of the index I of the order Z[ ]
inits integral closure in Q(j). When m=1 and bis not a principal ideal (4.1) and (4.2)
give the prime factorization of Ny, (j—j°). Norming this quantity down to K and
then taking the product over all calsses b~ 1 gives the discriminant of the monic
polynomial, f, of degree h satisfied by j. It is also true that

Q) - I*=d(f).
Here d(0)(j)) is the absolute discriminant of @Qj) and d(f) is the discriminant of f.
Hence the prime factorization of I can be determined once d(QXj)) is known.
Write D=D, - D, where
1 if at least 2 primes congruent to 3mod4 divide D
p if p is the unique prime congruent to 3 mod4 dividing D

4 i 4||D and no primes congruent to 3 mod4 divide D

8 if 8||D and no primes congruent to 3 mod4 divide D.
We then have
(5.1) Proposition. d(Q(j))=D}/**- Di/2h=2"1,
Proof. See appendix. []

We now determine I.
First let Z¥D so with m=1 (4.10) becomes

(5.2) Ne+£2~1Nd=|D|.

Now ¢~b~! and d~gqbmodPic(®)® if and only if ¢~qgdmodPic(O)? or
equivalently,
(5.3) g,(Ncqd)=1,
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for each genus character ¢,; p|D. Write Ne=n. Then (5.2) and (5.3) show

D|—n n—|D
N(cad)=ng ('{2',_1) =P g mod@.

Moreover, since g was selected so that — g/ was congruent to a square mod p for all
p|D condition (5.3) translates to

&, (ﬁ:}ﬂ) =1 for all p|D.

Observe that this condition is satisfied if p4n since then (n—|D])/n=1modp.
Moreover, since ¢, ((n—|D|)/n)=1 the product formula, (2.2), implies if the above
condition fails it must do so for an even number of primes dividing D.

Now assume 7 =p|D, so we are working with the equation

(5.4) Nc+p*~1INd=|D|.
There are two cases to consider.

Case 1. Assume n#+0. Then c¢~b~! and d~gbp* !modPic(®)>. Thus
c~qbp*~ ' mod Pic(0)?, or equivalently &, (cqdp*~')=1 for all p'|D, p'+p. As
above, if this condition fails it can only do so for an even number of primes divid-
ing D.
Case 2. Assume n=0. Equation (54) becomes pNdb=*D|. Hence
9~ gmod Pic(©)?. But we have d ~ bqp mod Pic(()? so b~ g mod Pic(0)?. Since it is
required that b~ 1 we have p~ 1. Now if g~ 1 then ¢,(q) = 1 for all p’ + p. However,
since x,(—q)=1 it follows that g~1 if and only if y,(—1)=1, ie, p'=1mod4.
The above analysis leads to the following definition. For each positive integer n

let
0 if there exist two primes p|d so that

e/An)= e((n—|DN)/m)=—1.
29™  otherwise, where a(n)=Card{p | gcd(n, D)} .

and for n=0
0)= 0 if p’=1mod4 for all p'+p=7,
eA= 12 otherwise.
Putm=1andn=Ncinto (4.1)and (4.2) and take norms down to K and sum over all

classes b~ 1. The same result is given in both cases, namely, for any prime 4 of K of
characteristic ¢

ord,(d(f)= T T odr) (Rn)—ri(m) R ('D'fk_"> :

Combining this with Proposition 5.1 we have proved
(5.5) Theorem. Let A be a prime of K with char(A)=¢. Then

Ofdz(l)% T T odn) (Rm)—r,(n)- R (‘Dlﬂ— ">

1/h h—2"1
—E(i‘ordl(D0)+( 5 >~ordi(Dl)> O
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(5.6) Corollary. Let ¢ be a prime in Z.
1. If xp(£)=1, then ord(I)=0.
2. If yp(f)=—1, then

owdd)=3 3, ¥ edo)-®n)-rn)- R (2 ") -

3. If £=p|D then o
o= 3, ¥ oo Ron-rion R (2"
—3G - h-ord, (Do) +3h—2""")ord(D,)).

Proof. 1. is a restatement of Theorem 4.6. 2. follows immediately from the theorem
since £ is a degree 1 prime and also there is no need for the correction term. For 3.
we need only remark that ord (I)=7ord,(I) in this case. [

(5.7) Corollary. With £ as above, if the class number is odd or equal to 2 then

orddl)= ¥ ¥ 0Am 3 (R(m)=r,(n) R ( llek_ n) :

Proof. By the above corollary we only need to check the term ord (I) when n=0 for
p|D.

Case 1. hodd. Remark, this is a theorem of Gross—Zagier [6]. Here D= — p where
—p=1mod4 and so D,=1 and D, =p. Moreover, 2' ! =1 so

~43-h-0rd, (Do) +h—2"1)- ord,(D,)) = —itk(h—1).

Observe that 2¢,(0) - (R(0)—r,(0))- R (%) =4#3(h—1)). So the term corresponding

to 0 in the summation cancels against the correction term for the discriminant of
Q(j) and the corollary is proved in this case.

Case 2. h=2. Then D= — pq where —p=g=1mod4. So D,=q and D, =p. First
consider the prime p. In this situation g (0) = 050 %¢,(0) - (R(0)—7,(0)) - R(q)=0. But
note,since D, = pthen —(ord,(q) + ord,(p)) = 0so the termscancel. Finally consider
g. Here ¢/0)=4 50 30/0)-(R(0)—r,(0))- R(p)=4 and —Hord,(q)+ord(p))= —%.
Again the terms cancel and the corollary is proved. [

6. A Computational Example

A simple example will suffice to reveal the computational techniques involved in
Theorem 5.5.
Let D= —15. The complete diagram of fields is

/Q(l/—‘_l lﬁ>=H\
Q)=Q/5 Q15

\Q/
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Thus d(Q(j))=D,=5and D, =3. The inert or ramified primes dividing |D| — n with
0=<n=|D|are 3, 5, 7, 11, and 13. 2 is the only split prime, consequently by (5.5)
ord,(I)=0.

In the calculation of ord,(I) and ord,(I) we know the correction term is zero
since we are in the class number 2 situation. Nevertheless, we will use Theorem 5.5
directly to illustrate how the computations are made.

Case p=3. Consider the table.

n as(n R(n) r1(n) R((15—n)/3%
0 0 1 1 1
3 2 1 0 3
6 2 2 2 1for k=1or2
9 2 2 2 2
12 2 3 0 1
15 0 1 1 1

Since 5=1mod4 we have g;(0)=05(15)=0. On the other hand we have g4(3)
= 05(6)=03(9)=04(12) =2 since &5((n—|D|)/n)+ — 1 for at least two primes divid-
ing D in these latter cases. Next observe that the correction term is O since

-1
ord; ,5=0and h=2

=0. Note A5 is the unique prime of K over 3. Then from
the table above and the formula in Theorem 5.5 we see
ord;()=0+%-23+0+0+0+3)=3.

Case p=>5. Consider the table

n os(n) R(n) ry(n) R((15—n)/54
0 4 1 1 1
5 1 1 0 2

10 1 2 2 1

15 2 1 1 1

In this case ¢5(0)=4 and g4(5)=0s(10)=2. The correction term in this case is
Hord, (5))=4%. A5 is the unique prime above 5. Then the table and (5.5) imply ord (1)
=44-1+2-1-240)—1=1.

Case p=17. The table is

n +(m) R(m) ri(m) R(A5—n)/7")
1 1 1 1 2
8 1 4 0 1

and ord(I)=%-4=2.



Singular Moduli, Modular Polynomials 189

Case p=11. Our table has one entry

n 21,(n) R(n) ri(n) R((15—n)/11%)

4 1 3 3 1

Thus, ord, (I)=%-0=0.
Case p=13. Our table has one entry

n 013(n) R(n) ri(n) R((15—n)/13"

2 1 2 0 1

Thus, ord5(I)=%-2=1.
So we find I=33-5-72-13.

7. Appendix

We now compute the absolute disriminant of Q(j) over @.

To simplify notation set F =@Q(j) and for any extension of fields B/A4 let d(B/A)
denote the discriminant of that extension. If 4=Q it will be dropped from the
notation. All other notation will be as in the previous sections.

Consider the diagram of fields

H
T \e
M
N\

Y:—l

K
Q

Here h,=h/2'"', M is the genus field of K, and M* is the composition of all the
real quadratic subfields contained in H. This last condition is equivalent to the fact
that M * is the totally real subfield of M, hence the * in the notation. Using the
norm-discriminant formula the following equalities can be read from the diagram

d(F)*Nyq(d(H/F))=d(H) = d(K)"N,o(d(H/K)).

Now d(K)=D and d(H/K)=1 since H is unramified over K. Thus the above
equations reduce to
d(F)* N o(d(H/F))=D".
Hence we can compute d(F) once we compute N o(d(H/F)).
Now consider the field M™*. That M* is actually contained in F is shown in
Rohrlich [9] where he also proves

(7.1) Proposition. The following are equivalent.
a. There are at least two primes congruent to 3 mod4 which divide D;
b. the extension M/M™ is unramified outside infinity,
C. the extension H/F is unramified outside infinity.
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Recall D=D,- D, where

1 if at least 2 primes congruent to 3mod4 divide D
p if p is the unique prime congruent to 3 mod4 dividing D

1= 4 if 4D and no primes congruent to 3 mod4 divide D

8 if 8||D and no primes congruent to 3 mod4 divide D
and

(5.1). Proposition. d(Q(j))=Dy/?*- D1/2H=2"1,

Proof. Case 1. Assume at least two primes congruent to 3mod4 divide D.
Rohrlich’s proposition shows d(H/F)=1, so d(F)=D'*" as claimed.

Before embarking on cases 2 and 3 we make some observations. Let p be the
unique prime not congruent to 3 mod4 dividing D. By class field theory p splits into
h/2 prime factors in H, each of degree 2. Corresponding to each of these factors
there is an inertia subgroup of Gal(H/@) each of order 2. Since H/F is ramified at p
at least one of these subgroups corresponds to Gal(H/F). Let {¢) be this subgroup.
To determine d(H/F) we need to see precisely how many of the other inertia
subgroups are equal to (o). By Galois theory this is equivalent to finding the order
of the normalizer of (¢ in Gal(H/Q). We know Gal(H/Q)=Gal(H/K)>< {0 ), with
the action of ¢ given by ago ~* =g~ for all ge Gal(H/K). Thus the centralizer of &
in Gal(H/Q) — which is the same as the normalizer in this case — is

Z(0)={0o"g:n=0,1 and geGal(H/K), g*=1}.

Thus Card(Z(s))=2". Thus the number of distinct quadratic subfields of H is
[H:@Q]/Card(Z (o)) =2h/2"= h/2' . Consequently the number of ramified primes
dividing the different 2y is T};/t?:_l =272,

Now onto cases 2 and 3 where we calculate the ord,(2)
for any of the primes p; dividing 2"/*. We have the formula

(Serre [10, p. 64]); ord, (Py;r)= Y Card(Gal(H/F),)—1.
nz0

Where Gal(H/F), denotes the n'® higher ramification group of Gal(H/F).
Case 2. Let p be odd. Then H/F is tamely ramified at p so Card(Gal(H/F),)=1
for nz0. Hence for all p;

2t-2
@H/F= _Hl P:-
i=

2t-2

Consequently d(H/F)= [] p; for those p;|p.
i=1
Since each p; is of degree 2 it follows that Ny, q(dyr)=(p?)* *=p* . Thus d?
=D"p*"" hence dp=D}/**.p!/2#=2") a5 claimed.
Remark. If D=p we find dp=p®*~ 12 which was obtained by Gross in [5].

Case 3. Let p=2. Then H/F has wild ramification at 2 and we must compute the
higher ramification groups. Since Gal(H/F) is a subgroup of Gal(H/Q) we have
Gal(H/F),=Gal(H/Q),nGal(H/F). So the question is reduced to computing the



Singular Moduli, Modular Polynomials 191

higher ramification groups for Gal(H/@Q). These can be computed using
Herbrand’s Theorem from the knowledge of Gal(H/K), and Gal(K/Q),.

Let 9 =Gal(H/Q), # = Gal(H/K), and G = Gal(K/Q). Since H/K is unramified
#,=0 for n=0. If 4|D then G=GO=Glng=0. And if 8| D the G=G,=G,
=G, 2 G;=0. Following the notation of Serre [10, p. 73] we have the transition

formula " "
Opxu)= g(ﬁfoiéﬁ)-ldt= g 1dt=u.

So in particular @y (n)=n for any integer n=0. Herbrand’s Theorem gives G,
=(9/#),=(9,#)/#.So Gal(H/Q),=Gal(K/Q), for all n=0. Using this fact it is
easy to see that 5 )

2 2 if 4D

Zwr= l1 vi; where a= {3 if 8D’

A computation similar to that in case 2 reveals d(@Q(j))=D{/?"- DV/2#=2"" 35
claimed. [
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