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The space of rapidly decreasing sequences s plays a prominent role in the theory of
nuclear Fréchet spaces. In this article, we prove among other things, that if s is
isomorphic to a subspace of a nuclear Fréchet space E, then E has a complemented
subspace isomorphic to s. We note that we do not assume the existence of a basis in
E. In fact, with the additional assumption that E has a strong finite dimensional
decomposition, Holmstrom [8] obtained the same result.

We deal with the problem in a more general setting by assuming that there is
what we call a local imbedding i: A(4)— E and an imbedding j: E—A(A)~, where
A(A) is a stable, nuclear G -space. In this setting we prove that E has a
complemented subspace which is isomorphic to 4(4). By Vogt’s characterization
of subspaces of s [23], any subspace of s, which has a regular basis, can be
expressed as a nuclear G -space.

Pelczynski’s decomposition method [13] has been adopted by Vogt [24] to
apply to nuclear, stable power series spaces, so that if a Fréchet space E is
isomorphic to a complemented subspace of a stable nuclear power series space
A (o) and A («) in turn isomorphic to a complemented subspace of E, one
concludes that E and 4 («) are in fact isomorphic. This powerful method has been
used extensively by Vogt in [24, 25]. As a corollary of our result we improve this
method so that one can reach the same conclusion by only requiring that there is a
local imbedding of A(x) into E and, as before, that E is isomorphic to a
complemented subspace of A ().

By the well-known Komura-Komura imbedding theorem [9], every nuclear
Fréchet space is isomorphic to a subspace of s™. Even in the case of a nuclear, stable
G .-space, the existence of an imbedding j: E— A(4)N can be expressed in terms of
the diametral dimension simply as A(A(A4)) C4(E) [16, 17]. In order to apply our
version of the decomposition method effectively, in the second section we deal with
the problem of the existence of a local imbedding i: A(4)—E. In [14] Pelczynski
asked whether a complemented subspace E of a nuclear K6the space has a basis. In
its generality this is still an open problem. For a complemented subspace E of s,
Wagner [31] has proved that if E is isomorphic to E x E, then it has a basis. As an
important application of the improved decomposition method, we show that if E
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and E x E have equal diametral dimensions, then E is isomorphic to a power series
space A (a). For other positive answers to Pelczynski’s problem in the case of
complemented subspaces of s, we refer to [5] and [11]. Using our result, it is a
simple matter to conclude that the space of analytic functions O(M) on a Stein
manifold M of dimension d has property (DN) of Vogt [23] if and only if O(M) is
isomorphic to the space of entire functions O(TC?).

0

We use the standard terminology and notation of the theory of locally convex
spaces as in [10]. For nuclear spaces we refer to [15]. Throughout E will denote a
Fréchet space over the real R or the complex field € with a fundamental sequence
of seminorms | [[(=|| [|;=... and U,={x€E:|x|,<1}. L(E,F) is the space of
continuous linear maps from E into F and B(E, F) the closed unit ball of L(E, F)
provided E and F are Banach spaces.

A Fréchet space E is said to have property (DN) if it has a fundamental
sequence of seminorms such that for each k there isa p and C >0 with || x|, <r x| o
+(C/r) | x|, for all x€ E and r > 0. A nuclear Fréchet space has (DN) if and only if it
is isomorphic to a subspace of the space of rapidly decreasing sequences s [23]. E
has property (2) if for every p there is a g such that for every k thereisajand C>0
with

U,CCrU,+ % U,

for all r>0. For nuclear Fréchet spaces, the condition (£2) characterizes quotient
spaces of s [29].

The diametral dimension 4(E) of E is the set of all sequences (&,) such that for
every k there is a p with lim £,d (U ,, U,)=0, where d,(U,, U;) denotes the n-th
Kolmogorov diameter of U, with respect to U, [15, 20]. For the calculation of
A(E) in case E has (DN) or (22) we shall refer to [22]. In particular if a nuclear
Fréchet space E has (DN) and (Q), for p=0 we find g, as in the () condition and set
a,= —logd,(U,, Uy). We then have A(E)=A(A () [22, Sect. 3, (2)].

A Kothe space A(A) which satisfies the following conditions is called a G-
space [4, 20]

(1) a7=1 and a;=<a;,,

(2) for every k there is a p with ((@})?/ad)e/ ., .

Power series spaces of infinite type are certainly the best known examples of
G -spaces. A(A) is nuclear if and only if (1/a¥) e £, for some k [20]. Any subspace of
s, which has a regular basis, can be expressed as a G -space [23] (cf. also [18]). A
Fréchet space E is called stable if it is isomorphic to E x E. Stability of a G -space is

simply equivalent to: for each k there is a p with (a%,/af) e £, [21]. We shall use the
following equivalent fundamental sequence of norms for a nuclear G -space:

% o 12
Ixhe= % Ix,la; and IIx||k=<;1(IXIna’,§)2) :
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The diametral dimension is a complete isomorphic invariant for the class of
nuclear G -spaces, since A(4(4))=A(4) [20].

1

A continuous linear map i: A(4)—E will be called a local imbedding if there is a
continuous seminorm || || on E such that |x|, < ||ix| holds. Certainly an imbedding
of 1(A4) is a local imbedding and a local imbedding is one-to-one. The map which
sends each x € A (o) to (x,R*") for some fixed R >1 is a local imbedding of A_()
into the finite type power series space 4,(x) and it is easily seen to be compact.
However, a power series space A ,(«) of infinite type is not necessarily isomorphic
to a subspace of A,(a). Even this simple example shows that a local imbedding can
be quite different than an imbedding.

If E is isomorphic to a subspace of a nuclear locally convex space F, we have
A(F)CA(E) [20]. Here F need not be metrisable. Our first result indicates that in
terms of diametral dimension a local imbedding has the same effect as an
imbedding.

1.1. Propeosition. If there is a local imbedding of a nuclear G _,-space A(B) into a
nuclear locally convex space F, then A(F)C A(A(B)).

Proof. Let i:A(B)—»F be a local imbedding. We have |x|,<|ix| for some
continuous semi-norm || || on F. Let U={yei(A(B): |lyll<1}, and (£,) € A(F).
Since A(F)C A(i(A(B)) there is a neighborhood V of i(A(B)) with lim &,d,(V, U)=0.
By continuity of i we find k and C,>0 with P(ix) < C,|x|,, xe A(B). Now if V
CdU + Lwhere Lis a subspace of i(A(B)) with dimension not exceeding n and d >0,
using the fact that iis 1 — 1, we find a subspace L of A(B) of dimension not exceeding
n, i(L)=L and so get
U,CCdU,+1L.

Hence
(bﬁ)_ 1= dn( Uka UO) é den(Va U)

and therefore (¢,) € A(B) = A(A(B)).

Throughout the rest of this section we let A(4) stand for a stable, nuclear G .-
space. We note that even in case of an imbedding i: A(4)— A(A), it may happen that
i(A(A4)) is not complemented. For example, we have an exact sequence

i
0—>s—s—sN—50

[23] and here i(s) certainly not complemented in s.
For the canonical basis (&) of A(4)N we have

. a for j<k
lleall= :
0 for j>k,

where (| ||,) is the sequence of standard Hilbertian seminorms on the product
space A(A)N. With the bijection f:IN x N—NN defined by f(j,n)=2'"12n—1) we
set fy;,m=el. Hence || f, |, < ak. Using the stability of 2(4) we find r,, D, >0 with

ki, DA’
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So if || fllx=*0, then f,=e) with j<k and
al\‘z=a§f“(2n—1)§Dka:xk=Dk ”fv”rk .
Hence we either have || f, [, =0 or @ <D, || £,ll,,.. These simple observations will be

used in the proof of the following result which is crucial in the subsequent
development.

1.2. Proposition. Let i:A(A)—A(A)N be a local imbedding. Then there is a
complemented subspace G of A(A)N which is isomorphic to A(A) and contained in

i(A(A)).
Proof. For each k, we find m(k), C,>0 so that for all xe A(4) we have

llix[l, = Cklxlm(k)
and
Ixlo £ Co llix]|,

where || | is a suitable semi-norm on the nuclear space A(4)" defined by a scalar
product (, ) and we may initially arrange things so that ||y|| = ||yl m) holds for
ye A(A)N. We note that | || is in fact a norm on i(A(A4)). Let Q be the projection on
AAN with Q71(0)={ye A(4)":|ly| =0}. By stability of A(4), the range of Q is
isomorphic to A(A) itself.

We now construct a basic sequence (g,) in i(4(4)). We choose g, e sp{iey, ie,}
with (g,, f1)=0and | g, || =1. We want to select g, with the following properties:

(i) g.espfieg,....iez,}.
(i) (g, f,)=(mg)=0forv=1,..,nandj=1,...,n—1.

(iti) [|g,/l=1.

Suppose we have already determined g, ...,g,- . Since sp{iey, ...,ie,,} is a 2n-
dimensional space, we can find g, # 0in this space with (g,, f,)=0forv=1,...,nand
(8ng)=0forj=1,...,n—1. We simply let g,=(1///g,[)&,. Further if

2n
8=l (Z l‘;’ej)

we have
2n 2n
Y=Y Wiejo=Colgall=Cy
and therefore
2n 2n
Ignlle < Ci [T Hiesfmay < Cie T |5la7“ < CCoazi® .

Using the stability of A(A4), for each k we determine s, ¢ > 0 such that the inequality

(iv) llgnll = 0ay

holds for all neN.
At this stage we note that we can replace g, by Qg, in (ii), (iii), and (iv), because

(08, ¥)=(g,y) for all ye (AN, and | Qg, =< Il g,llx-
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For x= Y x, f, € A(A)N we have
(gn X l18all = vgn (8 SN 1%,] 118l

<o Z Pl 1S llmoyan
<o Y Ix) “fv”m(O)aik'
v>n

For n fixed, let I()={v:v>n, | f,|;%0}. From above we get the estimate
lgw®) lgulli<e Y Ix,Jal@al.
ve I(m(0))
Using the fact that A(A4)is a nuclear G, -space, we now determine m, >m(0), o, such
that
0ap Vg S o~ 2
holds and from I(m(0))CI(m,) obtain

g N Igullesam™ 3 Ix,lad™.

vel(my)

If we select r, and C>0 such that a7*< C|| f,|l,, whenever || f,|,, #0, the above
estimate yields

V) l(gwX)l gl S0Cn~2(xl,, -

Hence we can define a continuous operator P on A(4A)N by

Px= Z:l (gm x)gn'

We have P(g,)=g,€i(4(4)) and so P is a projection. Its range G is contained in
i(A(4)) and (g,) is a basis of G.

To conclude the proof it remains to show that G is isomorphic to A(A). Since
(Qg,) satisfies (ii), (iii), (iv), and (v), we can define another projection P, on A(4)N by

Pox= ¥ (0,02,

so that the range G, of P, has (Qg,) as a basis and it is contained in Q(A(A)M),
which is isomorphic to A(4). Hence, as a complemented subspace of A(4), G, is
isomorphic to some G ,-space A(B) [21, Theorem 3.1]. So A(A) = A(A(A))C A(G,)
=A(BY. Since (Qg,, y)=(g,, ) for all ye A(A)N, P, and P have equal kernels and
therefore G, is isomorphic to G. Hence it remains to show that G, is isomorphic to
A(A). For this purpose we must prove A(B) = 4(G,) C A(4), but this is an immediate
consequence of 1.1 Proposition.

We would like to note that if i: A(4)— A(4)N were to be an imbedding, then the
space G would be contained in i(A(A4)) and one could show that it is isomorphic to
A(A) itself without having to introduce G,. It should also be noticed how
extensively the stability of A(A) is used in the proof.

A Fréchet space E is said to be (4, N)-nuclear if 4(4) C A(E). This generali-
zation of Ay(o)-nuclearity [17] was introduced by Ramanujan and Rosenberger

[16].
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1.3. Theorem. If E is A(A, N)-nuclear and if there is a local imbedding of /.(A) into
E, then E has a complemented subspace isomorphic to A(A).

Proof. Let i: J(A)—E be a local imbedding and j: E— A(A4)Y an imbedding, whose
existence is equivalent to the A(4, N)-nuclearity of E [16, 17]. Then ji: 1(4)— A(A)N
is a local imbedding and so by 1.2 Proposition there is a subspace G isomorphic to
A(A) which is contained in ji(A(A4)) = ji(1(A4))) Cj(E) and G is complemented in A(A4)".
With the additional assumptions that E has a basis and there is an imbedding
of A(4) into E, Holmstrém [ 7] reached the same conclusion asin 1.3 Theorem. Ina
subsequent work [8] he obtained the following corollary, by assuming E has a
strong finite dimensional decomposition and a subspace isomorphic to s.

1.4. Corollary. If thereis alocal imbedding of s into a nuclear Fréchet space E, then
E has a complemented subspace which is isomorphic to s.

Let 4 («) be a stable nuclear power series space of infinite type. Complemented
subspaces of A («x) have been characterized by Vogt and Wagner [30] as those
Ap()-nuclear Fréchet spaces which have the properties (DN) and (). Vogt’s
decomposition theorem [24] in this case states that if 4 (o) is isomorphic to a
complemented subspace of E, where E is a complemented subspace of A4 («), then
E must be isomorphic to 4 (). An immediate consequence of 1.3 Theorem is the
following improvement of Vogt’s decomposition method.

1.5. Corollary. Let A (o) be nuclear and stable. Let E be a Ay(a)-nuclear Fréchet
space with (DN) and (Q). If there is a local imbedding of A.(x) into E, then E is
isomorphic to 4 ,(x).

2

As we have already pointed out, the existence of an imbedding j: E—A(4)N can be
expressed in terms of the diametral dimensions of 4(4) and E. In order to exploit
the decomposition method given in the previous section more fully, we need to
know more about the existence of local imbeddings. We start with an example. We
believe that this can serve as a model for constructing a local imbedding into a
space of functions. In fact, quite a number of Fréchet spaces of functions can be
represented as power series spaces [19, 24, 25].

Let M be an irreducible Stein space of dimension d and let T: A, (n'/?)—0(C?)
be an isomorphism [19]. We determine C>0 and R,>1 so that the inequality

Ixlo < C sup{| Tx(2)|: z& Ro*)

holds, where R,4“ is the polydisc in € around zero with multiradius R,. Fix
R, > R,. Choose a regular point £,e M and find f,e O(M). i=1,...,d, such that
fi&,)=0and F=(fi,...,f)): M—>C? has rank d at &, [6, p. 209]. By composing F
with a linear transformation of €“ if necessary, we can determine a relatively
compact neighborhood U, of &, such that F maps U, onto R, 4¢ biholomorphi-
cally. We define F,:0(CY)—O(M) by F . (f)(E)=f(F(&), £eM. F, is in fact a
continuous algebra homomorphism. Furthermore we have

sup|f(z)|:z& Rod?} <sup{lg(F(¢)): £ Uy} .
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Hence F,T:A,(n"")—0(M) is a local imbedding.

Let M be now a Stein manifold of dimension d which is always assumed to be
connected. By the Oka-Cartan theorem [6], O(M) has property (22) and O(M) is
isomorphic to a subspace of A,(n'/?) [2]. If O(M) has property (DN), then it is
already Ay(n'*)-nuclear [22, 30]. Now that we know the existence of a local
imbedding i: 4, (n**)—0(M), 1.5 Corollary yields the following result.

2.1. Proposition. Let M be a Stein manifold of dimension d. The space of analytic
functions O(M) has property (DN) if and only if it is isomorphic to O(T?).

We note that this proposition was already proved in [2] under the additional
assumption that O(M) has a basis. In [34] Zaharjuta states that O(M) is
isomorphic to O(CY) if it satisfies (DN), but in the discussion he also seems to
assume that O(M) has a basis. In the case of d=1, our proposition was proved in
[1] and [11] by different methods. Zaharjuta [32] gave another characterization
of O(C). Aytuna and Vogt showed that O(M) has property (DN)if and only if every
bounded plurisubharmonic function on M is constant [1]. In case M is an
algebraic variety, Mitiagin and Henkin [12] asked whether O(M) is isomorphic to
O(CY. This was answered positively by Zaharjuta [33], Djakov and Mitiagin [3]
and also by Vogt [24] as an application of the decomposition method.

A nuclear Fréchet space E is isomorphic to a complemented subspace of s if and
only if it has the properties (DN) and (2) [29, 1.10 Satz]. In this case A(E) is equal to
the diametral dimension of some A () [22]. Also, if a complemented subspace of s
has a basis, it is isomorphic to some A («) [29, 2.9 Satz]. However, whether a
complemented subspace of a nuclear K6the space has a basis, is an open problem
which has been posed by Pelczynski [14]. Wagner [31] has proved that a
complemented subspace E of s, which is stable, (i.e. E is isomorphic to E x E), hasa
basis. Krone [11] reached the same conclusion under the assumption 4(E x E)
=A(E) and o,=n where A(E)=A4(A4,(2)). In contrast to some kind of stability
which is assumed in these and in the following, Dubinsky and Vogt [5] (cf. also [27,
7.2, 7.3] have proved that a complemented subspace of an unstable power series
space of infinite type always has a basis. We note that we can obtain 2.1
Proposition also as a corollary of the following theorem.

2.2. Theorem. Let E be a nuclear Fréchet space with (DN) and (Q). If A(E x E)
= A(E), then E is isomorphic to some A (o).

Proof. We have A(E)= A (), A(E x E)=A(A (o) x A, (2)) and so A () is stable.
Since E is isomorphic to a complemented subspace of A () [30, 3.5 Satz], from 1.5
Corollary and the following lemma we reach the conclusion.

23. Lemma. Let E be a nuclear space with (DN) and (Q). If A(E)C A(A(B)), then
there is a local imbedding of the G -space A(B) into E.

Proof. Without loss of generality we may assume that E has a fundamental
sequence of norms || |,, where each | |, is defined by an inner product. Since A(B)
has (DN) and E has (Q), by various results of Vogt [28, 5.1 Theorem 3.3 Lemma, 3.4
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Proposition] we have that for every u there is an m such that for all k and r >0 the
following holds:

L(A(B), E,)) CL(A(B), E,) + rB(A(B)o, E,) .

In this condition, called (S,) by Vogt [26, 2.2 Theorem], E, is the Hilbert space
obtained by completing (E, | ||,) and A(B), the completion of (A(B),| |o). We
choose integers (m,) increasing to infinity with my=0 such that (§,) holds for
n=m,_,;,m=m, k=m, ., and further, we may arrange things so that for every i we
have a j, C>0 with

: 1
U,,,ICCFJU,-F; Uo,r>0.

To simplify notation we set k=m, and so we have
L(A(B), E;) CL(A(B), Ey 1 1) + rB(A(B)o, Ey - 1)

and A(E)=A4,(a) =4(4,(x)) where a,=—logd(U,,U,). Since (e*")e(B)
= A(A(B)), for some j and C >0 the inequality (1/d,(U , U,)) < Cb! holds for all n. By
nuclearity of A(B) we find Cy>0 and k, with |x|o < Cy || x]|,,. So there is a k, with
b < Cb'd(U,, U,). Since limd,(U,,Ug)=0, the linking map g, o:E;—E, is
compact and hence it can be written in the form

01,0V=2d (U, U)W f)&n>

where (f,) and (g,) are orthonormal sequences in E, and E, respectively. We define
T,:A(B)—E, by
Tix= Y bi(d(Uy, Ug))™ ' xu fy-

Then | Tyx|, =C|x|,, and also
[xlo < Co lxllkg = ColX. Ixal* (B30)*) ! = Cq [ Ty x| -
We choose ¢;>0 with Y ¢,<(1/2C,). By (§,) we choose T,: A(B)—E, such that

ITyx—Toxlo<e;lxlo-

Then

1
(E(; "31) Ixlo < | Txllo -

Applying (5,) repeatedly, for each k we find T, € L(A(B), E;) such that
I Tex — Tir 1% ll- 1 S &lxlo

and
1 k-1
(—C; -5 ei) %o = I Tixlo

hold for all xeA(B). So for each k we have a map S, L(A(B), E,) defined by
Six=1im T, ;x and @y 4 1 xSi+1=>5, Thus we have obtained a continuous linear

map T:A(B)—E such that g, T=S,, where g,: E—~E, is the canonical inclusion.
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Further T satisfies

1
s¢. o= 1T,

and therefore it is a local imbedding.
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