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1. Introduction and Basic Definitions

Let X be a real affine or spherical semialgebraic set over a real closed field R. By
spherical set we mean a subset of the manifold of the rays through the origin in the
affine space RM*!, or equivalently a subset of RY*!\{0}/R*, defined by
homogeneous polynomial relations. It is clear that in this latter space, using
equivalence by positive homogeneity, we can define semialgebraic sets by systems
of homogeneous polynomial equations and inequalities just as we define projective
varieties by systems of homogeneous equations. Spherical geometry enjoys
advantages not to be found in affine or projective spaces and in this paper we will
show, using natural mappings between spherical and affine spaces, how it can be
applied to affine geometry as well. As an application (Proposition 5.1 below) we
demonstrate lower bounds for the number of inequalities necessary to define
certain affine semialgebraic sets. Our key ingredients are a coarse, highly
structured measure for the complexity of affine or spherical semialgebraic sets, a
complexity reducing operator for spherical sets, and several complexity-
monotonic mappings between spherical and affine spaces.

We introduce our complexity measure and an associated filtered algebraic
structure for semialgebraic subsets of X in the following sequence of definitions.

Definition 1.1. Let X be a semialgebraic set. Let (y(X), +, -) be the Boolean algebra
of all semialgebraic subsets of X equipped with the operations Y;+Y,=(Y,;
VION\(YnY,)and Y- V,=Y,nY,.

This has the structure of a Z,-algebra well known in measure theory (see
Halmos [H]) in which addition is symmetric difference, ¢ is the additive identity
and X is the multiplicative identity. For the moment it merely expresses the
Boolean structure of y(X) in an alternate notation.

Definition 1.2. Let X be an affine (spherical) semialgebraic set. Let U(X) be the
collection of all principal basic open subsets of X of the form U = {g>0}nX where
g is a polynomial (homogeneous polynomial).
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Since the collection U(X) generates p(X) as a ring, any semialgebraic subset Y
of X can be represented as a polynomial in the elements of U. In terms of these
representations one can define various measures of the complexity of Y: the
minimum number of generators, the miniumum multiplicative or additive
complexity among all polynomials representing Y, and so forth. From among these
we choose a less obvious notion which, as we will show, is well suited to the
semialgebraic category.

Definition 1.3. Let y, be the subring of y =y(X) generated by the algebraic subsets
of X.

Obviously y=7y,[U], that is, every semialgebraic set can be written as a
polynomial P in y,[U]. This allows the following notion of complexity.

Definition 1.4. For S €y let k(S), the complexity of S, be the minimum total degree
of any polynomial representing S as an element of y,[U]. Let y, be the y,-module
of semialgebraic subsets of X of complexity not exceeding k. For k<0 let 7, be the
trivial ring {X, ¢}.

Thus the lowest level of complexity, complexity 0 in our scale, is represented by
sets requiring for their definition, in addition to the defining relations of X, only
equations or inequations but no true inequalities.

The author is indebted to Ludwig Brocker for reading a preliminary version of
this paper and suggesting many improvements.

2. Elementary Properties of Complexity

Lemma 2.1. For Y, Z, Wey(X)

1. k(Y°)=«(Y),

2. K(YZ)Sk(Y)+x(Z),

3. K(YUZ)Zk(Y)+k(2),

4. If YnZ=¢, then k(YuZ)<max{k(Y),k(Z)} and if k(Y)+k(Z), then
equality holds,

5. k(Y)=0 <« Yevy,,

6. W algebraic = k(WY)<k(Y).

Proof. 1. Since Y=Y+ X, if P represents Y, then P+ X is a polynomial of the
same degree representing Y*.

2. An obvious property of the total degree of a polynomial over any ring.

3. This follows from 1 and 2 by DeMorgan’s law.

4. If YNnZ=¢ then YUZ=Y+Z and the inequality again expresses an
obvious property of total degree of a polynomial. If inequality holds, say x(Y)=k
but k(Z)<k, then Y+Zey,_, implies Y=Y+Z+Zey,_,, a contradiction.

5 and 6 follow directly from the definitions.

A few examples illustrate the character of the function x.

Example 2.2. In R? let Y={x2+x2+x3<1}\{x;>0, x,>0, x3=0}. Then
k(Y)=2. But k({x}+x3+x3<1})=1.
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This example shows that complexity is not a generic property. It also shows
that the operation of topological closure can reduce complexity. On the other
hand it can easily happen that a set consists of disjoint pieces of low complexity, the
closures of which intersect in a more complicated way, so that its topological
closure has greater complexity.

Example 2.3. In R? let Y ={x3+0} {x; >0} + {x;=0} {x,>0}. Then

{x3=0} Y ={x3=0} [{x, 20} U{x, 20}]={x3=0} + {x3 =0} {x, <0} {x, <0}
which has complexity 2. Hence, by Lemma 2.1.6, x(Y)=2>1=«(Y).
Proposition 2.4. For Yey(RY)(p(SM), k(Y)<dim(Y) (dim(Y)+1).

Proof. By induction on d=dim(Y). If d =0 the conclusion is true in the affine case.
However in the spherical case the estimate x(Y) <1 cannot be improved since, even
if N =0, we still need one inequality to separate a point from its antipode. More
generally, since the decomposition ¥ =Y {x,>0} + Y{x, <0} + Y {x,=0} repre-
sents any Y by summands, the first two of which can be identified with affine sets
and a third which is a subset of S¥ ~ !, it follows by induction on N that the asserted
affine estimate implies the spherical. If Y is affine it follows by results of Brocker
[B1] [B2] using the abstract theory of the stability index that Y is generically a
disjoint union of basic open sets defined by no more than d inequalities. That is,
there is an algebraic subset W of dimension less than d such that x(YW¢)<d.
Applying Lemma 2.1 and the induction hypothesis to the decomposition Y=Y W
+ YW* completes the proof.

Corollary 2.5. If X is affine then the ascending sequence y,(X), k=0,1,2,... gives a
filtration of y(X) of length no greater than dim(X).

3. An Operation Which Reduces Complexity

Definition 3.1. Let ¢ denote the involution x— —x of S¥. Let X be a g-invariant
semialgebraic set. Denote the operation induced on y(X) by Y— Y?. Define ¢: y(X)
->p(X) by Y=Y+ YC

From now on we will assume, unless we specify otherwise, that X is a
¢-invariant subset of S™.

Itis plain from our definitions that k(6 Y) < k(Y). Moreover it is easy to see that
the raw number of Boolean operations needed to define a set is, in general, not
reduced by the action of §. However the following proposition shows that our
complexity is strictly reduced by this action. We note that g also acts on R" but
seems not to enjoy any useful properties there. Thus this proposition depends
critically upon using spherical rather than affine geometry and upon using our
complexity measure.

Proposition 3.2. 1. §?=¢.
2. oy X) Cyp— 1(X).

Proof. 1. *Y=Y+Y'+(Y+Y)=Y+Y+Y+Y=¢.
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2. By induction on k. For k=0 any element Y of y, is g-invariant and
0Y=Y+Y=¢ey_,. For k>0, since J is an y,-homomorphism of modules, it
suffices to establish the property for basic open sets defined by k inequalities. Any
such set has the form Y=Z{g>0} where Zey,_,. If g is an even form then
0Y={g>0}(Z+2Z¢} which, by induction hypothesis, belongs to {g>0}y,_,
C¥k—1- If g is an odd form then

{g>0}={g<0} =X +{g>0}+{g=0}
and
0Y=Z{g>0}+YZ°[X +{g>0)+{g=0}]
={g>0}(Z+Z9+Z°X + Z°{g=0}.
Again by induction hypothesis this implies
OY Cy1Pe-2+M-170+Ph-170CPh-1-

Remark 3.3. Let h(X) be the length of the filtration [y,(X)] of y(X). Then the
sequence

) P ] s
DSOS P> Ppr— -~ Vo

(3.1) forms a complex.

Proposition 3.4. The sequence (3.1) is exact.

Proof. By induction on the dimension N of the ambient sphere. For N =0 (S°
consists of two points) the assertion is trivial. For N >0 suppose that Yey, and
dY =¢ or, equivalently, Y¢=Y. Then

Y=Y{xy+0}+ Y{xy=0}
=Y {xy>0}+ Y%{xy <0} + Y{xy=0}
The set Y {xy=0} can be identified with a subset Y’ of S¥ ~ ! satisfying § Y' = ¢. By

induction Y’'=4Z'. Morover Z’ can be identified with the cylindrical subset defined
by the same relations in S¥. Then

Y=0(Y{xy>0})+{xy=0}6Z"
=0[Y{xy>0}+{xy=0}Z"]€0y;+,-

4. Some Mappings Between Affine and Spherical Sets

We next describe some mappings useful in applying the structure {y,, 8} to affine
geometry.

Definition 4.1 (lifting from S~ to RN*1). For YCSY let Y*C R¥* '\ {0} be the union
of the open rays in R¥*! parameterized by the points of Y.
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Observation 4.2.

1. The mapping Y — Y* gives an injection of the semialgebraic subsets of SN into

RN*1\{0}. If Y C SV is defined by any set IP of homogeneous polynomial relations

then Y* consists of the nonzero solutions of IP regarded as relations in R¥*1.
2. kK(Y)=xr(Y*).

Definition 4.3 (restriction from RN (S¥) to R¥~*(S¥~1)). For YCR"(S") and 1 a
nonconstant affine function (linear form), let Y|, _, be the image of the restriction
of Y to the hyperplane (hypersphere) {A=0} under some fixed isomorphism of
{A=0} with RN~ 1(s¥ 1)

Observation 4.4.

1. If Y is defined by any set IP of polynomial relations and 4 has the form xy— g,
then Y|, -, can be identified with the subset of RY~*'(S"~') determined by
substituting x, = u into each polynomial in IP.

2. k(Y];=0)Sk(Y) since

a) any representation of Y in y descends to a representation of the restriction of
Y of no greater degree upon multiplication by the element {1=0} of the ground
ring y, and

b) complexity is preserved by an isomorphism.

We also require the following somewhat subtler mapping from affine spaces to
spheres. Geometrically it is a mapping from R" to the generating (N — 1)-sphere of
its tangent cone at a point.

Definition 4.5. Let a be a point of RY (or o0). For Ye y(RY)let 7, Y be the set of rays
through a (the origin) which sufficiently near a (ultimately) lie in Y.

Proposition 4.6. If Yey(R") then
1. 7, Yeyp(SV ),
2. k(t,Y)Zk(Y).

Proof. By definition 7,Y is a subset of S¥~'. We need to show that it is
semialgebraic. Consider the case a= oo. Suppose Y is an open set determined by a
single polynomial inequality {g>0}. Let the decomposition of g into its
homogeneous parts be g=go+g,+...+8&, Where g; is a [degree(g)—j]-form.
Then 7, {g>0} is given explicitly by

5, {2>0} ={go >0} +{go =0} {(8,>0}+...+{go=81=".-=8n-1=0} {g,>0}.

Hence 7., {g>0} is semialgebraic and has complexity not greater than 1.

We next check that 7, is a ring homomorphism by observing that it preserves
intersections and complements. It is obvious from its definition that it preserves
intersections. Less obvious is 7,,(Y°)=(1,(Y)). For example, if Y is the spiral
{r=10g0} in R, then 1,(Y)=1,(Y)=¢. However in the semialgebraic category
such pathology cannot occur. For if a ray lies ultimately in X = YU Y“ it can cross
between Y and Y° only finitely many times and hence must lie ultimately in one or
the other. Since 7., is a ring homorphism, properties 1 and 2, already established
for generators, follow for general Y. For ae R we simply replace the decompo-
sition of g into homogeneous parts by its Taylor expansion around x=a.
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5. Applications

As an application we use the structure {y,(X),} to obtain lower bounds for the
complexity of certain semialgebraic sets. Our reasoning imitates the following very
crude argument in the topological category with the structure {C,, 0} where C,
denotes the Z,-module of k-dimensional chains and ¢ is the usual boundary
operator of algebraic topology. Here it is obvious that: 1) 0 reduces dimension and
2) restriction to a subchain does not increase dimension. These weak properties
suffice, for example, to prove the primitive result that the dimension of S¥ is not less
than N. For otherwise by 2) dim{xy=0}<N and by 1) dimd{xy=0}
=dimSV ! <N —1. Iterating, we find that S° is empty, a contradiction.

Proposition 5.1. In R let X = ﬂ {(x;21}, Yy= U {x;<0}. If Sey(R") satisfies
XnCSCYy then k(S)=N.

Proof. Using coordinates (Xo, X, ..., X; ;) in R’ and the operations defined in Sects.
3 and 4, for Yep(R’) define ;Y =(d1,, Y)*|,,_,=1- Then the following check of the
four indicated operations shows that

GDj?k(Rj)CVk—l(Rj_ Y. (5.1

First, if «(Z)=k, then, by Proposition 4.6, ., maps Z into y,(S’~'). Next, by
Proposition 3.2, § reduces the complexity by at least 1. Finally, the lifting ( )* from
$7to R’ and restriction x;_, =1to RI™1 by observations of Sect. 4, do not increase
the complexity.

We now derive a contradiction from the assumption that Seyy_,(R") by
producing a disagreement between an algebraic and a geometric calculation. For,
let T=@,05... pxS. Then repeated use of (5.1) shows that Teyo(R). But at the level
of point sets it is easy to check that X;_, Co(X;) and ¢(Y;)=Y,_,. Hence we find
X,CTCYf or [1,0)CTC(0, o). Since yo(R), the ring generated by the algebraic
subsets of R, is precisly the ring of finite and cofinite subsets, this is impossible.

Corollary 5.2. The positive orthant in RN has complexity exactly N.

Proof. Obviously N is an upper bound for the complexity. What is less obvious is
that N is also a lower bound. But this follows immediately from the preceding
proposition.

Other proofs of this fact can be given but these also seem rather complicated by
comparison with the very simple conclusion. However it is reasonable that some
delicacy is required since, for example, the relation x+y—(x*+ y*)'/2>0 defines
the positive quadrant with a single inequality of a more general type. A circle of
related questions involves the Mostowski separation theorem [BE] [C] [M] and
the Mostowski number m(N). This number, roughly speaking, is the largest
number of square roots of definite polynomials which must be adjoined to the
polynomial ring to obtain a function which separates a disjoint pair of closed
semialgebraic sets in a variety of dimension N. Proposition 5.1 can be used to give
lower bounds for m(N) along the lines given in [S]. However, since other methods
give sharper estimates, we merely give a corollary which shows the principle
of the argument.

Corollary 5.3. For N <2 the Mostowski number satisfies m(N)=N —1.
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Proof. By contradiction. If m(2)=0, then any disjoint pair of closed semialgebraic
sets in the plane can be separated by a polynomial function. In particular (recalling
the sets X and Yy defined in the proof of Proposition 5.1) there exists a
polynomial function f positive on X, and negative on Y,. But then the set { f >0}
violates Proposition 5.1. Similarly if m(3) <2 then X5 and Y; can be separated by a

function of the form f=a+ bVé where a and b are polynomials and g is a definite
polynomial. Let D =a?—b?g. Then it is easy to check that { f >0} ={a>0} {D >0}
+{b>0} {D<0}+{b>0} {a>0} {D=0}. It follows that x({f>0})<2 and again
the set {f >0} violates Proposition 5.1.
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