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1. Introduction

Let H:R?¥ SR be a continuously differentiable function and denote

0 —I
Jz(l 0)’

where I is the N x N identity matrix. Consider the Hamiltonian system of
differential equations

x=JH'(x). (HS)

If x(t) satisfies (HS), then %H (x(£))=0, so each solution of (HS) must necessarily lie

on some energy surface {x e R*V: H(x(t))=const}.

In this paper we will be concerned with the existence of periodic solutions of
(HS) (of a priori unknown period) on a given compact hypersurface H ™ (1). Such
solutions are called periodic orbits. The problem of existence of at least one
periodic orbit on H ~!(1) has been studied by several authors, see e.g. Seifert [16],
Weinstein [22], Rabinowitz [12], Viterbo [20], and Hofer and Zehnder [8].

Let x=(p,q)eRY xRN, A special kind of periodic orbits, henceforth called
brake orbits (cf. [22]), are those for which the g-component of the solution of (HS)
oscillates back and forth between two restpoints. More precisely, the correspond-
ing p(t) and q(t) are T-periodic functions for some T>0, p odd and ¢ even about 0

T U . .
and 3 Recently Rabinowitz [14] has shown that if H is even in p [i.e., H(—p,q)

=H(p,q)] and H (1) bounds a compact star-shaped neighbourhood of 0e R?¥
such that x - H'(x) %+ 0 Vx € H (1), then (HS) possesses a brake orbit (see also [15]
for a more general result).

In [4] Ekeland and Lasry have shown that (HS) has at least N periodic orbits if
H™'(1) bounds a convex region and satisfies a certain geometric condition. This
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242 A. Szulkin

result has been later generalized by Berestycki et al. [2] to the case of H™ (1)
bounding a star-shaped region. Results of the same type, for Hamiltonians having
certain symmetry properties, have been obtained by Girardi [5] and van Groesen
[19]. The proofs in these papers were carried out by reducing the problem to the
one of finding critical points of an appropriate S'- or Z,-symmetric functional.
Multiple critical points were then obtained by invoking minimax arguments and
topological index theories for symmetric sets.

When looking for brake orbits of (HS) it is natural to work in the space of
periodic functions (p(t), q(t)) such that p is odd and g even in t. Although the
functional is no longer symmetric in this space, it has a useful partial Z,-symmetry
as we will see later. Our goal is to show that if H(—p,q)=H(p,q) and H ™ !(1)
bounds a star-shaped region and satisfies a geometric condition similar to that in
[2], then (HS) possesses at least N brake orbits on H ™ !(1). The main tool in the
proofis an index theory which we construct in Sect. 2. It is a variant of the relative
index introduced by Berestycki et al. [2] and further developed by Tarantello [18]
(see also Benci [1] for a related concept of pseudoindex). A special feature of our
index is a strong dimension property (see Proposition 2.8 and Remark 2.9). In
Sect. 3 we establish an abstract minimax principle which we employ in Sect. 4 to
the problem of existence of N brake orbits.

An important role in the proof of dimension property is played by the
generalized Borsuk theorem (Lemma 2.10). Its different versions are known in the
literature (see e.g. Michalek [10], Nirenberg [11], Wang [21] and the references
there). Our version is a simple adaptation of that in [10, 11, 21] to the case of
partial Z,-symmetry. For the reader’s convenience we include an appendix
containing a proof of Lemma 2.10.

2. An Index Theory

In this section we develop an index theory similar to that in [2, 18]. Although we
restrict our attention to the symmetry group Z,, it is clear that at least for
separable spaces one obtains a corresponding theory for other symmetry groups
(in particular, for S' and Z, with p a prime integer).

Let E be a real Hilbert space and T a unitary representation of Z, in E. That is,
T, = I ; (the identity mapping on E) and T, is a linear isometry such that T, = T, .
A subset ACE is said to be T-invariant (or simply invariant) if T;ACA. Let

E¢={xeE:Tx=x}

be the fixed point set of T. To T there corresponds an orthogonal decomposition
E=ECS@F. It is easy to see that F is invariant and

T, (x+y)=x—y Vxe E®, yeF.
Let
X={ACE: A is closed and invariant} .

For A e X we define the index of A, denoted y(A), to be the smallest integer k such
that there exists a continuous mapping f: A—R*—{0} satisfying f(T;x)= — f(x).
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If there is no such k, then y(A4)= co. For the empty set () we define y(§)=0. Observe
that if AnES 40, then y(4)= oo (because f(x)=f(T,x)= — f(x) Yxe€ ANE®). It is
easy to verify that y satisfies the usual properties of index (which may be found e. g.
in [13, 17]). In particular, denoting N(A4)={x € E : d(x, A) < 6}, where d(x, A) is the
distance from x to A4, we have

2.1. Proposition (Continuity Property). If AeX is compact, then y(A)=7(N4A))
for some 6>0.

Let Y be a closed subspace of E. Henceforth Py will denote the orthogonal
projection from E to Y and Y€ will be the set YNE®. A function ¢: A—Ris said to
be T-invariant (or invariant) if {(Tix)=¢&(x) VxeE. A mapping f:A—E is
T-equivariant (or equivariant) if f(T,(x))=T, f(x) Vx€E, and f is compact if the
image of each bounded subset of 4 is contained in a compact set.

Letnow E=Y@® X, where X, Y are orthogonal to each other and invariant. For
AeZ, let #(A) be the set of all continuous mappings f=(f}, f,): A—Y x R
—{(0,0)} satisfying the following conditions:

(i) f is equivariant in the sense that f,(T\x)=T, fi(x), fo(Tyx)= — f(x),

(i) fi=Py—K, where K is compact and K(A) is bounded in Y,

(iii) fi(x)=x YxeANYC (and f,(x)=0 by equivariance).

Let Ae Z. We define the index of A relative to X, denoted 7,(A4, X), or shortly
7,(A) when no ambiguity can arise, to be the smallest integer k such that %, (4) + 0.
If there is no such k, we set y,(4)= oo, and we define y,(@)=0.

It should be noted that the main difference between our index and that in
[2, 18] lies in the requirement that K in (ii) above be of bounded range. In the
following propositions we collect some basic properties of ,.

2.2. Proposition (Mapping Property). Let A, Be X and let g: A— B be a continuous
mapping such that g(x)=e ™ *“®Lx— K(x), where
(i) L: E—E is linear, equivariant, selfadjoint and LY CY,
(i) &: A—R is invariant and £(A) is bounded,
(i) K:A—E is equivariant, compact and K(A) is bounded.
If éIAnY(-;:O and K‘Ar\YG:O (i°e'> lf glAnYG=IAr\Yc)’ then VI(A)§‘Yr(B)

Proof. The conclusion is trivial if y,(B) = co. Assume that y,(B) =k < co. Then there
exists an f € #(B), f =(f1, f2), f1 =Py — C. Note that PyL= LPy by selfadjointness
of L. Define ¢: A— Y x R* by setting

0(x)=(@1(x), P2(x))= (€ f1g(x), f>8(x))-
Then ¢ is equivariant, ¢(x)+(0,0) Vxe 4 and
@1(x) =" PH(Py — C)g(x) =Py — C) (e P x — K (x))
=Pyx—e“®P,K(x)+ C(g(x))) = Pyx — N(x).

Itis easy to see that N is compact and N(4) bounded. If xe An Y, then g(x)=xe€ B
NY€ so ¢,(x)=x. Hence p e #(A) and y,(4)Sk=y,(B). [

2.3. Proposition (Monotonicity). If A,BeX and ACB, then y,(A)<y,(B).
Proof. Take g(x)=x in the preceding proposition. []
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2.4. Proposition (Subadditivity). If 4,Be X, then y(AuB)<y(A)+ y(B).

Proof. 1t suffices to consider A, B with y(4)=k< oo, y(B)=m< 0. Suppose
f=(Py—K, f})e #(A) and g:B->R"—{0} satisfies g(7,x)= —g(x). Since the
convex hull of a compact set is compact, there exists a compact extension K : E—Y
of K such that K(E) is bounded. We may assume that K is equivariant (if it is not,
replace it by 1K +1 T, K T;). Similarly, there exist extensions f,: E»R¥, g: E5R™
of f, and g such that fo(T,;x)= — f,(x), (T, x)= — &(x). Let now

h(x)=(Pyx — K(x), f,(x), 8(x))e Y x R x R™.

Then h: AUB—Y x R**™ his equivariant, h=(Py— K, h,) and h(x)=(0,0) Yxe A
UB because (Pyx — K(x), f5(x)) =(Pyx— K(x), f5(x)) % (0,0) on A and g(x)=g(x) %0
on B. Since y(B)< o0, BnY%=(. Therefore (AUB)NY® =ANYC, and for xe 4
NYS Pyx—K(x)=x. Hence he %, (AUB) and y(AUB)<k+m. []

2.5. Proposition. If 4,Be X and y(B)< oo, then y(A— B)=7,(4)—v(B).

Proof. It follows from Propositions 2.3 and 2.4 that y(4) <y,(4 —BuUB)<y,(A— B)
+7(B). O

2.6. Proposition (Intersection Property). Let A€ ZX. Suppose that X=X,®X,,
where X o, X | are orthogonal to each other, invariant and X ,nE®={0}. If dim X,
=k< oo and y(A)>k, then AnX,=+0.

Proof. Suppose that AnX;=0 and let f(x)=Pyx+Pyx. Then f:4
->Y®X,—{0}. Since X, is invariant and X,nE%={0}, Tixo= —xo Vxo€ X,
(because x + Ty xo € XoNE®). So Py, Ty x =T, Py x = — Py x. It follows that X, can
be identified with R* and f with the equivariant mapping x > (Pyx, f,(x)) from 4 to
Y xR* (f,(x)eR* corresponds to Py xeX,). Hence #(4)+0 and y,(A)<k, a
contradiction. [

In order to state the next property of y, we will need the following geometric
condition.

2.7. Definition. A set A is said to satisfy condition (%) if for each finite dimensional
subspace E, of E and each r>0 there exists an R>0 such that if |x||<r, then
An(x+ E)CBg.

Here x+Ey={x+yeE:yeEy} and Bg={xe€E:|x||<R}.

2.8. Proposition (Dimension Property). Let X,CX be an invariant subspace with
dimX,=k and X,nE®={0}. Let U be an open invariant neighbourhood of the
origin in Y®X,. If U satisfies condition (%), then y,(0U)=k, where 0U is the
boundary of U in Y® X,

2.9. Remarks. (i) For the index in [2, 18] the conclusion of Proposition 2.8 remains
valid if U is bounded but fails in general (see Bogle [3]). In Sect. 4 we will employ
the above proposition to sets which satisfy condition (%) and are unbounded. It
was the need of a dimension property for unbounded sets that has motivated us to
look for an index theory different from already existing ones.

(ii) As we have just observed, our index satisfies a stronger dimension property
than that in [2, 18]. On the other hand, our mapping property is weaker (because
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the mapping K in Proposition 2.2 has bounded range). This has the disadvantage
that in order to establish the minimax principle of the next section it seems
necessary to modify the standard deformation lemma. Such a modification will be
carried out for a class of functionals satisfying a compactness hypothesis which is
somewhat stronger than the usual Palais-Smale condition.

In the proof of Proposition 2.8 we will use the following generalized Borsuk
theorem (cf. Appendix).

2.10. Lemma. Let W be an open bounded neighbourhood of 0 R™ x R" such that if
(x,y)€ W, then(x, —y)e W. Let f =(g, h): W—R" x R" be a continuous mapping with
g(x, = =g(x,y), h(x,—y)=—h(x,y) Vx,»)eW, flow*+0 and [f(x,0)=(x,0)
V(x,0)€ OW. Then the Brouwer degree deg(f, W,0) is an odd integer. :

Proof of Proposition 2.8. By Proposition 2.6, y(0U)<k (because dU does not
intersect the orthogonal complement of X, in X). Suppose y,(0U)<k. Let
f=(Py—K, f,):0U->Y xR*" ! where fe#_,(0U). By replacing f,(x) with
£2(x)/(1 +|f5(x)]) if necessary we may assume that f,(0U) is bounded. Since X is
invariant and X,nE%={0}, we may also assume (as in the proof of Proposi-
tion 2.6) that f=P,— K+ f,:0U->Y®X,, where X, is a k—1 dimensional
subspace of X,. Let K: U—Y, f,: U— X, be equivariant extensions of K and f,
such that K is compact and K(U), f,(U) are bounded (cf. the proof of
Proposition 2.4). Since K|,;;.yo=0, we may assume that K|;,.yc=0. Let r be a
number such that K(T)CB,. By condition (%), there is an R>0 such that

UN(y+ X )C By whenever |y||<r. (1

Let xe U. Suppose || Pyx|| <r. Since x=Pyx + Py x CPyx+ X, x€ Un(Pyx + X)
C By according to (1). It follows that if xe UN0dBg, then |Pyx| >r, and therefore
Pyx—R(x)%0. Hence f(x)=Pyx—K(x)+ f5(x) %0 whenever x € d(U N By) (recall
that 7= f +0 on dU). Furthermore, f =1— C, where C=K + Py — f, isa compact
mapping. It follows that the Leray-Schauder degree (see e.g. [9]) deg(f, U Bg, 0)is
well defined. Since f(UNBR)C Y@ X}, f(x)+te+0 for any xe UnBpg, t>0 and
ee X,— Xj. So by the homotopy invariance,

deg(f, UNBg,0)=0. 2

It follows from the properties of K and f, that the mapping C is equivariant
and Clg.ys=0. Given &£>0, there exists a mapping C, such that [|C(x)—C/(x)||
<eVYxeUnBg and C,(UnByg) is contained in a finite dimensional space [9,
Theorem 4.2.2]. By a slight modification of the proofin [9] we will obtain C, which
has some additional properties. Since the set C(UnBpg) is compact, it may be
covered by open balls

B(v)={ze Y®X,:lz—v;| <e}, O0=<Li<2N.

Moreover, we may assume that v,=0 and v, y= —v; for i=1,...,N. Let my(x)
=max{0,e— [|C(x)—uv;|} and

Oi(x)=mi(x)/2£ mix), O0<i<2N.
j=0
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Define
2N
Dx)= T 0o

and C,(x)=1D,(x)+3T,D(T,x). It is easy to see (cf. [9]) that C, has the properties
mentioned above, it is equivariant and C,|g=3zyc=0. (Indeed, if xe UnBgxnY¢,
then C(x)=C(T;x)=0, so myx)=m;, y(x) for 1Zi<N. Therefore D,x)
=D,(T;x)=0. It follows that C(x)=0.) Choose a finite dimensional invariant
subspace Y, of Y such that Y,@® X, contains the range of C,. If ¢ is sufficiently small,

deg(f, UnBg, 0)=deg(I — C,, UnBrN(Yo® X ), 0). 3)

By Lemma 2.10, the right-hand side of (3) is an odd integer, a contradiction to (2).
Hence y,(6U) cannot be less than k. [

3. A Minimax Principle

Let E be a real Hilbert space with an inner product {, ) and T a unitary
representation of Z, in E. Let L: E—E be an equivariant and selfadjoint bounded
linear operator. Define @(x)=24{Lx,x). Then @ is an invariant functional and
@'(x)=L(x) (here we assume via the Riesz representation theorem that ¢'(x)e E).
Let y be an invariant functional on E such that p~!'(1)%0. Set M=y !(1).
Suppose further that e C!'*(E, R) and v’ is a compact mapping which is bounded
away from 0 on bounded subsets of M. Then M is an invariant C**!-manifold. For
x€ M denote

_ Ly
FEClk

and observe that {Lx — A(x)y'(x), v'(x)> =0. So Lx — A(x)y’'(x) is an element of the
tangent space T(M). In particular, xe M is a critical point of &|,, if and only if
Lx=A(x)yp'(x). We will need the following compactness hypothesis which is
stronger than the usual Palais-Smale condition:

A(x)

Xp— }'(xn) w’(xn)

L
" .
(C*) If (x,)CM is a sequence such that &(x,)—ceR and e+ 17 -0,

then (x,) has a convergent subsequence.
Let
O ={xeM:P(x)=c} and K,={xeM:P(x)=c, Lx=Ax)p'(x)}.

In the proof of the minimax principle we will employ the following deformation
lemma.

3.1. Lemma. Suppose that @,y and M are as above and ®|,, satisfies (C*). Given
ceR, £>0 and a neighbourhood U of K, in M, there exist e€(0, &) and a mapping
n:[0,1] x M—M such that:

@) #n(t, -) is a homeomorphism Yte[0,1],

(i) 7(0,x)=x VxeM,
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(ii)) n(1,X)=x Vxe M, P(x)¢(c—&,c+3),
@iv) In(1,x)—x||<2|L| YxeM(||L| is the norm of the operator L),
(V) 71(1, ¢c-M_ U)C ¢c—sa
(vi) n(1,x)=e"*™Lx —K(x), where 6(x)e[0,1] Vxe M, K is compact and
K(M) is bounded,
(vii) n(1, -) is equivariant.

Proof. Since results of similar type are well known (see e.g. [13, Appendix AJ), we
will only outline the argument. By (C*), K, is a compact set. It follows that if
Ny={xeM d(x,K )<}, where d(x, K ) is the distance from x to K, then N;CU
for 6 >0 sufficiently small. Thus we may assume that U = N,. We claim that there
exist £€(0,&) and b>0 such that

ILx—A)y'(x)| Zb(llx]| +1)V2 Zb Vxe B4y — (P -sUNs5)- 4
For if not, we find b,—0, §,-0 and x,e®,,; —(P._; UN;s) such that
1L, — ACen) @' Ce) | S byl || +1)12.

By (C*), x,— X € K, after passing to a subsequence. This is impossible because x,,
¢ N ;5. So (4) is satisfied for some £ and b. Choose € (0,¢) and let 4, x,: M —[0, 1]
be two Lipschitz continuous functions such that y,(x)=0 if @(x)¢(c—&,c+8),
11(x)=1if P(x)e[c—e,c+e]and y5(x)=0if x € Nyjg, 12(x)=1if x ¢ N;4. Since the
sets in the definitions of x, and y, are invariant, we may assume that y, x, are
invariant functions.

Let y(x)=y(x)x,(x) and consider the initial value problem

dy __ xn)
e nl+1

(Ln—2my'(m), n(0,x)=0, )

where xe M. Since H%—'}” <2||L| and the vector field in (5) is locally Lipschitz

continuous, (5) has a unique solution #(t, x) defined for all ¢ e R. It is therefore clear
that (i)iv) are satisfied. Since

: = dan\ _ x(n) _ ,
ar e <Ln’d‘> - |M||+1<L’7’L’7 Amw'(n)y
___xn) B -
=~ gl +1 1 v eI <0,

&(n(t,x)) is nonincreasing as t increases. Furthermore, according to the first
inequality in (4), %!D(n(t, x))< —b? whenever x()=1. Now one can follow the
argument in [13, p. 84] (with obvious changes) in order to obtain (v).

XX) A in [13, p. 86] or [14], one sees from () that 5(1, x)

lIx[l+1
=e 9Ly _ K(x), where 8(x)=0(1,x),

Denote w(x)=

o(t,x)= (jt) o(n(s, x))ds
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and
K(x)=— (}) Lexp(6(, x) — 6(1, x)) L]oo(n(t, x)) A(n (2, X))@' (n(t, x))dt . (6)

Hence 6(x)e[0, 1]. Using the definitions of w and 4,

([ Lx]|

@AY S 1
so it follows from (6) that K(M) is bounded. Recall that v’ is bounded away from 0
on bounded subsets of M. Therefore the mapping x — A(x)y'(x), x € M, is compact,
and the same argument as in [13] or [14] (using (iv)) shows that K is compact. So
(vi) is verified. Finally, (vii) is a direct consequence of the fact that the vector field in
(5) is equivariant. []

Now we are ready to state the main result of this section.

3.2. Theorem. Suppose that D, v and M satisfy the assumptions at the beginning of
this section and ®|,, satisfies (C*). Let E=Y@®X, where Y=X"*, X and Y are
invariant and LY CY. Define

={AeX:ACM,y(4,X)2j}
and

c;= inf sup ®(x), j=1,...,N.

Aelj xed

Suppose also that there exist finite numbers a, b such that c;€(a,b) for 1 <j< N and
YGn(P‘ Y([a,b])=0. Then all c; are critical values of dilM Furthermore, if ¢;=.
=¢j, for some j and some p>0 then y(K.)2p+1.

Proof. 1t suffices to prove the second assertion. Let ¢;=... =c;, ,=c, where p=0,
and suppose that y(K)=p. Since K, is compact (by (C¥)), it follows from
Proposition 2.1  that y(K)=7(N4K,)) for 6>0 sufficiently small. Let
é<min{b—c,c—a}, U=N4K,), and let ¢, 1 be as in the conclusion of Lemma 3.1.
Choose A€, , such that AC®, ... According to Proposition 2.5, (4 —N4«(K,))
27,(4)— V(Na(K NZj+p—p=j.So A—NyK eI} Let B=n(1, A— N4K,)). Since
a<c—& b>c+eand Ynd ([a,b])=0, n(1,x)=x Vxe A—N,K )N Y® by (iii)
of Lemma 3.1. It follows therefore from Proposition 2.2 (using (vi) and (vii) of
Lemma 3.1) that y,(B)=j. This is a contradiction because BC @, _, according to (v)
of Lemma 3.1. [J

3.3. Remark. (i) Note that it does not follow from the theorem that @|,, has more
than one critical point. Indeed, if all ¢; coincide and if K, consists of a single point
in EC, then (K, )= 00. So the conclus1on is not vxolated

(ii) Suppose that E°nK, =0 forj=1,...,N. Then &|, has at least N distinct
pairs of critical points because either all ¢; ; are distinct or ¢;=...=c;, , for some j
and some p>0. In the latter case y(K )22, so K., is an inﬁmte set.
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4. Existence of Brake Orbits

Let H e C*(R?N,R) and suppose that H(—p, g)= H(p, q) V(p, ) € R*". Suppose also
that the set S=H ~!(1) is compact, bounds a star-shaped neighbourhood of the
origin in R?" and x- H'(x)#0 on S (the dot denotes the inner product in R?").
There exist two positive numbers, r and R, such that

r<|x|<R VxeS. )]
Let ¢ be the largest number for which
T(S)N{xeR* :|x| <@} =0 VyeS, 9

where T(S) is the tangent hyperplane to S at y and |x|=(x - x)'/2.
We will be concerned with the existence of brake orbits for the Hamiltonian

system
x=JH'(x), (HS)

which lie on the hypersurface S. Our goal is to prove the following

4.1. Theorem. Let He C*(R?M,R) be such that:
(1) H(‘—P, q)=H(p’ q) V(pa q)eRZN,
(i) The set o/ ={xeR*:H(x)<1} is nonempty, compact, star-shaped with
respect to the origin and S=H ™ '(1) is the boundary of <,
(i) x- H'(x)%0 ¥xeS.
If R? <202 where R and ¢ are as in (7), (8), then (HS) has at least N distinct brake
orbits on S.

As the first step towards proving the above result we will find a convenient
variational formulation of the problem. In doing this we essentially follow [14]. It
is known that changing H outside S does not change the orbits (see e.g. [12,
Lemma 1.5] or [13, Proposition 6.47]). We may therefore assume that H(0)=0
and H(x)=a(x)? if x+0, where a(x) is the unique positive number such that

%X)GS. Then H is homogeneous of degree two, HeC*R*M—{0}, R)
AC!IR? R) and )
=H(p, q). Since IxI

is bounded [12, p. 160]. It is also clear that H(—p,q)

|x|
<1<
r< ) <R
according to (7), it follows that
2 2
I;—Ing(x)glelz—VxeR”. )]

By [14, Lemma 2.3], see also [12, p. 161], there is a one-to-one correspondence
between brake orbits for (HS) on S (of unknown period T) and 2n-periodic brake
orbits for

X=AJH(x), >0, (10)

on S. The number 4 in (10) is unknown and related to T.
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Now we introduce a suitable function space. Let H'/%(S*, R?¥) be the Sobolev
space of 2n-periodic R?V-valued functions

x= Y ce™, where ¢,eC*® and c_,=¢,
keZ

such that
Y (14K el < o0
keZ

Let

E={x=(p,q)e H*(S',R*): p(—t)= —p(t), g(—t)=q(t) Vt}.
For x=(p,q)€E, set z=p+iq. Then

z= Y ae™*, where a,eCV. (11)
keZ

Since pis odd and q is even, it is easy to see that Rea, =0 Yk. A convenient norm in
E, equivalent to the H'/2-norm, is given by

HXI|2=27r(Iaolz+ LY Iaklz)- 12
k0
Note that
2r
IxllZ:= (!) lezdt=2ﬂkZz lal* < llx)|?. (13)

Let E=E"®E°@®E™" be the orthogonal decomposition of E into the parts
corresponding to k<0, k=0 and k>0 in (11). If e,, ..., ey is the standard basis in
R", then E° is spanned by (p,q)=(0,¢), 1<j<N, and E* by

(p,9)=(e;sinkt, Fe;coskt), 1=<jsSN, 1=k<co.
For x€E, let

<D(x)=% z(y)”(—Jx-x)dz

and @'(x) = Lx (recall that @'(x) e E via the Riesz representation theorem). It is easy
to see that

1 2r
()= [ (~iz-2)di

(here - denotes the inner product in CV), so by (11) and (12), if x=x"+x°
+xteE"@E°@®E™, then

O(x)=L|x*|?— 4 |x|* and Lx=x*—x".
Let

w(x)=21—n2(§:H(x)dt and M=y 1(1).
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By [14, pp. 607-608], each critical point of ®|,, corresponds to a 2zn-periodic brake
orbit for (10) on S, and therefore to a brake orbit for (HS) on S.

By [14, Proposition 2.10], we C*(E,R) and v’ is compact. Since y is
homogeneous of degree 2, {y'(x), x> =2y(x)=2 Vxe M. So M is a C!*!-manifold
and vy’ is bounded away from 0 on bounded subsets of M. By (9),

2z
[x||2.<R? | H(x)dt<2nR?*> whenever w(x)<1. (14)
0
In particular, M is bounded in L?.

4.2. Lemma. ®|,, satisfies condition (C*).

Proof. We slightly modify the argument of [2, Lemma 3.7]. Suppose that (x,)C M,
&(x,)—c and

_ Lx, = Axn)y'(x,)

Z"—W—*O. (15)

Since ®(x,)=3|x, |>—3Ix, ||? there are positive constants a,, a,, a; such that

—az+a; xS lx, | Saz x| +as. (16)
Recall that <{y'(x,), x,> =2w(x,)=2 and {Lx,, x,»=2®(x,). This and (15) imply
M) = D(xp) =51 Xl + 1) V22 X, -

So |A(x,)| £ a,+as||x,|*%. Scalar multiplication of (15) by x,5 gives

2n
"x: "2=(”xnll +1)U2<me:>+/1(xn) I H’(xn)'x:dt'
0

Since is bounded and M is bounded in L? the integral above is also

[H'(x)|
|x|

bounded. Consequently,

x4 112 < a6 +aql1x,]%2. (7

Since ||x2] 2= Ix2|l, (x°) is bounded in E. This, (16) and (17) imply that (x,) is
bounded. After passing to a subsequence, x,—x weakly in E, strongly in L?, and
A(x,)— . Since y’ is compact, it follows from (15) that Lx,=x, —x, converges
strongly. Therefore x,—X strongly in E. []

4.3. Lemma. The set #={x e E:y(x) <1} satisfies condition (%) of Definition 2.7.

Proof. Let E, and r be given. Since the E- and the L?-norm are equivalent on E,
[wl| < C|w| 2, where C is a constant independent of we E,. Let ye Bn(x+ E,),
x| <r. Then y=x+w, weE,. Using (13) and (14), it follows that

w2 Iyl + x2S/ 2n R+r.
Therefore

Iyl lxll+lwlsr+Clwl=(C+Dr+)/2zRC. O
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Proof of Theorem 4.1. Let Tyx=x and Tyx(t)=x(t+n). Then T={T,, T;} is a
unitary representation of Z, in E. The fixed point set E€ of T consists of those x € E
which are n-periodic [i.e., a,=0 for all odd k in the Fourier expansion (11)].

‘We will use Theorem 3.2. Note that Lis equivariant and selfadjoint, L(E~ @ E°)
CE~®E° (because Lx=x*—x"), and v is invariant. Recall that ' is compact
and bounded away from zero on bounded subsets of M. By Lemma 4.2, &|,,
satisfies (C*). Let y,(-)=7,(-,E*) and

c;j= inf sup &(x), j=1,..,N,

Ael; xeA

where I;={A€X: ACM,y(A)2j}.If AT}, theny,(4)= 1,50 AnE™ %@ according
to Proposition 2.6. Let xe AnNE* CMNE™. Then, using (13) and (9),
1

2n
D)= X2 5 I¥lEz 57 | H@di=nr

So c;=nr?. Let E; be the N-dimensional subspace of E* corresponding to k=1 in
(11) (that is, E, is spanned by (p,q)=(e;sint, —e;cost), 1<j<N). Let A=M
N(E~ G—)EO@EI) Then A is the boundary ofthe set {x €eE"@E°@®E,:p(x)<1}in
E"®E°®E,, and this set satisfies condition (%) according to Lemma 4.3. It
follows therefore from Proposition 2.8 with Y=E @E° and X,=E, that
y(A)=N. If x=x"+x°+x" € 4, then, by (9),

2n
Ix* |2 <x|2.<R? | H(x)dt=2nR?.
0

Observe that [[x*| .= |x™|| whenever x* € E, [cf. (12), (13)]. Hence

P(x)=31x"I2—3lIx" I’ <3lx" I =%]x" |7.<aR?,

s0 ¢;< 7R

We have shown that c;e [nr?,7R?*] for j=1,..,N. Since ®(x)=3|x"|?
—4x7 %, ®|ys £0, where YG—(E @E®S. Now all hypotheses of Theorem 32
are verified. Assume for the moment that all xe K, 1 <j < N, have minimal period
2n. Then ESnK,, =0 and it follows from Remark 3. 3(ii) that d>| M Dossesses at least
N pairs of critical points. If x, and x, are two distinct points in K, corresponding
to the same brake orbit for (10), then x,(t)=x,(t +«), where cxe(O 27), and the
Fourier expansion (11) shows that « =m. So x, = T, x,. Therefore there exist at least
N distinct brake orbits.

It remains to show that if xe K, 1 <j< N, then indeed x has minimal period

. .2 ..
2z. Our argument is close to that in [6, Lemma 6]. Suppose x is ?ng—perlodlc, m=1.

Then, using (10) and the fact that H'(x)- x =2H(x),

0=+ [ (=I5 dt= 21 T H()-xdi=) | Hodt=211.  (18)
2% 2% 0
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Let x(t)= X + %(t), where x € E° and X has mean value zero. Then, by the Wirtinger

. . 1
inequality || X[, < - | X ;2 and (10),

2z

1 2n . 1 Lo~ 1 . ~
O(x)= 5 [ (~Jk-x)de= [ (~J%-DdeS 5 185171

1 2n

1
2 — ’ 2
Ixz-= m g |AH(x)|*dt .

< o %z =

= 2m 2m

Since |H'(x)| = g VxeS (see e.g. [2, Proof of Theorem 4.10]),

4n)?
5

P(x)=
mg

Combining this with (18), 1= 4$mp? and ®(x) = nmg?. Since ¢; £ nR?, it follows from
the hypothesis R? <2¢? that

wmo? £ d(x) < mR? <2mp?.

Hence m<2. The minimal period of x is therefore 2n. []

4.4. Remarks. (i) If we remove the assumption that R? <2¢? in Theorem 4.1, then
®|,, will still have a critical value in [nr?, zR?]. So there exists at least one brake
orbit of (HS) on S, and we recover the main result of [14].

(ii) Using [6, Lemma 6] it is easy to see that the hypothesis R* <2¢? may be

replaced by R?<|/2ro.

Appendix
We will prove the following

Generalized Borsuk Theorem. Let W be an open bounded neighbourhood of 0 €R™
xR" such that if (x,y)eW, then (x, —y)e W. Let f=(g,h): W—R™"xR" be a
continuous mapping with g(x, — y)=g(x, y), h(x, —y)= —h(x, y) V(x, y) € W, f|,w *+0
and f(x,0)=(x,0) V(x,0)e OW. Then the Brouwer degree deg(f, W,0) is an odd
Integer.

Proof. Our argument is essentially an adaptation of Nirenberg’s proofin [11] (see
also [10] and [21]) to the simpler case of Z,-symmetry.

Given £>0, there exists a C* mapping f, such that |f(x,y)— fi(x, )|
<e V(x, y)e W. We may assume that f, is equivariant by replacing it if necessary
with j;(xa y)z%(ge(x, y)a he(x7 ,V)) +%(ge(x’ '—y)a - he(xs —y)) For 6> 0, let X [09 OO)

—[0,1] be a C* function satisfying x(t)=1if 05t = g and yx(t)=0 if t 2 6. Define

F e ) =x(y) (x, »)+ (1 = (¥ filx, y).
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Itis easy to see that if § = 5(¢) is small enough, | f(x, y) — £ (x, y)| < 2¢ V(x, y) € OW. By
the continuity property of degree,

deg(f, W, 0)=deg(f, W,0) (A1)

whenever ¢ is sufficiently small. Let

- {(x,y)eW:|y|< g}

Since fl,, %0 and f|, is the identity mapping,
deg(f, W,0)=deg(7, ¥,0)+deg(, W—V,0)=1+deg(; W—F.0). (A2

We will show that deg(7, W— ¥,0) is an even integer. Let A=(a;) be an m x n
and B=(b;;) an n x n real matrix. Let (x, )= (X, ..., Xp, V15 .- ,y,,),j' Eyseeos Emo
h,,...,k,) and

g-i(x,y’A,B)=gi(xay)+ Z aijngs 1§l§m,
~l (A3)
hix,y, A, B)=h{x,y)+ L buyy 1sisn.

If A and B are fixed and sufficiently small (in the sense that |a;;| <&, |b; | < 30 for all
i,j and an appropriate g,>0), then, setting f=f, z=(Z1, ..., m A1 ---» F),

deg(f, W—V,0)=deg(f, W—V,0) (A4)

by the continuity property of degree. Assume for the moment that 0 is a regular
value of f1y _p. Then f(x, y)=0 for finitely many (x, y) € W — ¥ and each such (x, y)
gives a contribution of +1 or —1 to the degree. Since y+0 on W—V and f is
equivariant, the zeros of f|, _ come in pairs (x, + ). So deg(f, W — ¥,0) is the sum
of an even number of terms, each equal to +1 or —1, and is therefore an even
integer. Using this and (A.1), (A.2), (A4), it follows that deg(f, W,0) is an odd
integer.

It remains to show that 4 and B may be chosen in such a way that O is a regular
value of f. Let M , and M be the spaces of all sufficiently small m x n and n x n real

matrices. Let _
F:(W-V)xM, xMg—>R"xR"

be the mapping given by F(x, y, 4, B)= f, g(x, y). We claim that the derivative of F

is transversal to the origin (i.e. surjective) whenever F(x, y, 4, B)=0. To see this, let

z=(¢,n)eR™ x R". We need to find %, 7, 4, B such that
(D.F)Xx+(D,F)j+(DF)A+(DgF)B=z, (A.5)

where D.F etc.... are the partial derivatives of F at (x,y,A4,B). A simple
computation using (A.3) shows that (A.5) with x=0 and j=0 is equivalent to the
system of equations

i=1 o (A.6)
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Since y+0in W—T, y; %0 for some j. So (A.6) can be solved for 4 and B. Therefore
(A.5)is satisfied with x =0, y=0and 4, B just found. This proves the claim. Finally,
it follows from the transversality theorem (see e.g. [7, p. 68]) that O is a regular
value of f, 5 for almost all Ae M, and Be My, [J

Acknowledgement. I would like to thank H. O. Walther for bringing the results of Bogle [3] to my
attention.
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