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Introduction

In this paper we study the stability of stationary solutions of parabolic variational
inequalities in Hilbert spaces. It is well known that in the case of semilinear
parabolic equations the spectrum of “linearized” operator determines the
Lyapunov stability of an equilibrium (e.g. [4]). In the case of inequalities this
problem is more complicated: the stability of an equilibrium may “substantially”
change if we linearize the operator in the inequality (see Example 1). Nevertheless, it
is still possible to find some conditions which are independent of the nonlinearity
and which are sufficient for the stability or the instability of the equilibrium,
respectively. Moreover, these conditions are under some additional assumptions
also necessary.

To point out the main results, let us consider the following problem, to
which our theory can be applied: let Q<R be a smooth bounded domain, let

L be a second-order elliptic operator of the form Lu:= — a;; (x) with

0
ox;
a;€ L*(Q), a;;(x) ;€2 >alé?, a>0, and let F(u):=f(x,u, Vu), wheref—f(x u,p):
QxR xR¥-R is measurable in x and C! in u and p, f(-,0,0)e L2(Q), —f is

bounded and

l (x u,p)' <a(x)+C(lul’ +|pP’¥) for some ae L¥(Q), y <2/(N 2)
(if N>2)and C > 0. Let K be a closed convex set in the Sobolev space HE (2) and let
e K be a stationary solution of the inequality

u(t)ek

<%+Lu+F(u),v~“>§0 YoeK a.e. in (0,T) ©)

) u0)=u, ,
1.e.
(La+F(a),v—ﬁ)=§< 5 o a(gx D 4 1 e,d, Vi) (o — a))dx>0 Voek .
2 i
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Au:=Lu+F'(d)u
K:=K—i={v—a; vek}

Fy:=Li+F(@)
4= liminf AW
uek (v, u)
lull -0

Then the condition 4,>0 is sufficient for the asymptotic stability of the
stationary solution u, =4 of the inequality (0) in the topology of H}(Q) (more
precisely see Theorem 1).

In order to see that the condition A; <0 may be sufficient for the instability
result, suppose, moreover, that K is a cone with its vertex at zero, F,=0 and 4 is
symmetric (i.€. @;;=a;; and fis independent of p) and denote by ¢(4) the spectrum
of the operator 4 and by og(A4) the set of all (real) eigenvalues of the inequality

uekK: (Au—Aiu,v—u)=20 Vvek , 1)

i.e. ox(4):={AeRR; the inequality (1) has a nontrivial solution}.
Then we have

. (Au, u) i .
A;= min =minogy(4)=minc(4) .
- K(4)Zmin o (4)
ullal=1

Let u; be any nontrivial solution of (1) with 4=, and let 6 >0. Then the function
u(t)=d+d6e *u, is a solution of the linearized inequality

u()ek

<%+L”+F(®+F’(ﬁ)(u—ﬁ),v~u)20 VoeK a.e. in (0,7)

u(@)y=ua+aoy, ,

which implies that the condition A; <0 guarantees the instability of the solution
u, =1 for the linearized inequality. If, moreover,

. Au,u

A;= min (Au, u)

ueK—us (uau)
u+0

then Theorem 2 implies the instability result also for the nonlinear inequality (0)
(in the topology of L*(Q)).

Anapplication of these results to a more concrete problem is given in Example 3.
Example 2 shows that the condition Re(ox(4) Ua(4)) >0 is not sufficient for the
stability in the nonsymmetric case and in Example 1 it is shown that the condition
dheag(A4),A<0, is, in general, not sufficient for the instability result.

The proofs of Theorems 1 and 2, which are the main results of this paper, are
based on the existence and regularity results of Brézis [1,2].
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Main Results

We shall suppose that ¥ and H are real Hilbert spaces with norms ||| and |-,
respectively, and V< Hc V', where the inclusions are dense and compact. By (-, *)
we denote the duality between V' and ¥ and also the scalar product in H. We shall
study the inequality

u()ek

(%+Au+N(u)+Fo,v—u>§0 YoeK aein O.7) @

u@y=u, ,
where

K is a closed convex set in V, 0e K,
A:V-V'is a continuous linear map, A=4, +4,,
Ay :V—V'is symmetric and coercive
(i.e. (4;u,v)=(A,v,u) and (4,v,v) 2 a|v|? for some a>0 and any u, ve V),
A, V—H is continuous (i.e. |4,0| S C, ||v|| for some C; >0 and any ve V),
N:V—-V"is a nonlinear map of the form N=N,;+N,,
N, is a gradient of a C! convex functional @:V—R, ¢(0)=0, &'(0)=0,
@"(0)=0,
N, : V- H is a continuous map satisfying
IN, (1) — N, (v)| £ C, |u—v|| for any u,ve B and some C,>0,
(Ny(u), u) = —(||u]) |u|? for any ue B,
where ¢(¢1)—0 as t—>0+ and B is a given neighbourhood of zero in ¥,
Fye V', (Fy,v) =0 for any ve Kk,
U e k.

By a (strong) solution of (2) we mean a function ue C([0,T],K) such that
u:(0, T)— H is differentiable a.e. and fulfils (2). The main result of this paper is the
following

Theorem 1. Let
. Au+F,,
joi= limint et o
ueKk, |[u]| 0 |u|

Then the solution u,=0 of (2) is asymptotically stable in the topology of V, i.e. for
every >0 there exists 6> 0 such that for any uye K with |uy| < there exists an
unique solution u of (2) on [0, + o0) and fulfils Hu(t)” <eforany t 20. Moreover, for
any n>0 we have

du

= €20, 00), H)n L2 (1, 00), )

and for any A < A;, A =20 there exist constants C=C(A, A) >0 and d=06(4, &) > 0 such
that |uy| <& implies
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(D <e *up| for any 120

|u@®)] £ Ce™*(Juy|| +)/(Fo,up)e™ ™) for any 120

du
'E (€]

1 -
_S_C(l+7>e"’"(||u0”+]/(Fo,uo)e“”") fora.e. t20 .

t
If there exists g, € H such that (A uy+ Ny (up) + Fy —go, v — o) 20 for any ve K, then

%EL‘”((O, ), H) nL*((0, 00), V) .

If, moreover, N, =0, Foe Vand (I+ pA,) ™ (K) <= K for any u> 0, then A,u(t) € H for
any t=0 and

|4, u(0)] < Ce™ *(|lug|| + 14, ol max (1 —2,0) +1/(Fy, ug) e ™) +]/2(A; Fo, u(t))

SCle™ M dyuol+e 2| Fy|) forany 120,
where x~ :=max(—x, 0).

Proof. By C we shall denote various constants, which may depend on the given
constants «, C, C,, ||4; | L.y, 4, A and the function ¢, but do not depend on u,
and F,. Without loss of generality we may suppose that B=V (otherwise we
redefine N, outside B) and ¢ is strictly increasing and continuous.

Let uye K, ||up| <6<1. Put

D, (v):=P(v)+5 (4,0,0) +|(Fp,0)| ,
A,(0):=Av+N,@)+F, ,
AW):=Av+N@)+F, .

Then 4 : V- V' is pseudomonotone, (4 (v), v) 2% ||v[|* — C|of* for any ve K, thus the
results of Brézis [1, Corollaire II.1, Remarque II1.5] imply the existence of a weak
solution of (2), i.e. for any T'> 0 there exists @ e L*((0, T), K)nC([0, T], H) such
that #(0)=u, and

T - 1
j <—Lji—l;+A(ﬁ), U_ﬁ>e—2Ctdt§ —i ‘U(O)“‘uolz VUGLZ((O, T)a K) )
V]

dv

—eL?>((0, T,V .

e (0.1 V)

Put f(t): = — A,4(¢) — N, (#(?). Then f'e L*((0, T), H) and again the results of Brézis
[1, Théoréme I1.8, the proof of Corollaire 11.2] and [2, Proposition 5, Lemme 6]
imply that there exists a unique ue€ C([0, T'], H) such that

u(0)=u, )

(%ﬂ,(u)-—ﬁv—u)zo VoeK ae.in (O.T) .



Linearized Stability for Variational Inequalities 261
Moreover u: [0, T]— H is absolutely continuous and differentiable a.e.,

du
dt

ueC([0,T], K)

dul 12 /T 1/2
a df) é(b[ |f|2dt) +)/ D1 (uo)

eL*((0,7), H), (f
0

@

dul?

dt

t—®, (u(r)) isabsolutely continuous and ' ar

+% P, (u(t))=<f, @> a.e.

Since both u and @ are weak solutions of the inequality (3) (cf. [1, Remarque I1.11],
the uniqueness result of [1, Théoréme I1.3, Remarque I1.5] implies u=4#.
By putting v=0 in (3) we get

<%+ A, u)go a.e.in (0,7) . )

Let 4€(0, 4,) be fixed. Then there exists & >0 such that

A+
2

(Au+ Fo,u) 2

[u? for any ueKk, |jul<e¢ .

(Au, u)g; [u|*—Clul*  for any ueV ,

(N@), )= —(|u])|u|]* for any ueV .

By choosing #: =(4; —4)/(4 max (4;, C)) we obtain

(Au+F0,u);"—2OC [u|? +AluP+n(Fy,u) for any uek, |u] <e .
By using (5) and putting f:=na/4 we get
1d , 2 ) .
5 7 1P+ Al +B|u|]? +n(Fy,u)<0  a.e.in (0,T,) , (6)

where Tj:=sup{z; |u(1)| Smin(p (), &) for any t€[0,¢]}>0 if  is small
enough. The inequality (6) implies

u(0)| S e (6a)
[ ul2dr < CQu(t)P —u(t)P) < ClugPe2 (6b)
§ (B wydt = CQu(t)E —u(t)P)S Cligf2e =24 (60)

31

for any ¢,1,,t,€[0, T;]. Now it follows from (4) and (6b) that
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2
)dt

1: h
<00+ WPl B+ [

du

dt

() S @, (o) =8, )+ { ((f 37>—
0

S C(||up > + (Fo ) + ltg?) < x(min (@ * (B/2), £,/2))* (6d)

for any 1€ [0, T;] provided ¢ is sufficiently small. Hence T,=T.
By putting v:=u(t+#4) in (3) we obtain

(% () + Au(t) + NGu()) + Fo, M)éo wein (O.T=h)

Similarly,

)%

= (t+h)+ Au(t + 1)+ N@u(t +h)) +F,, - 0

du u(t)—u(t+h)
dt

a.e.in (0,T—h) .

By adding the last two inequalities we get
((%) (t)+Au,,(t)+(Nou),,(t),u,,(t))§0 a.e.in (0,7—h) ,
h
where w,(£):=w( +h) —w(t))/h. We have

(Auy, uy) gg H“h”2 _Cluh|2

(N o) Z —C, [uy]| - a2 —% ]2 = Clup?

therefore,
%%m,,lu; lunl2 = CliP <0 ace.in (0, T—h) . )
Consequently,
[y (1)) < |1y (1)} €271 (7a)
j “u,,1|2dzgc<lu,,(z1)12 —luy (2,)2 +:f |u,,|2dz> (Tb)

for any ¢,,¢,€[0, T —h].
The last inequality, together with (4), implies that u:(0, T)—V is (locally)

absolutely continuous, %eLfoc((O, T), V) and

ty du 2
j'__

ollat
for a.e. 1, €(0,T) and any t,e(¢;, T).

2 2
dzgc(‘%’ () dt) (7¢)

2 (du
+tj; Et'
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Choose A=0, C, =1 and suppose there exists ¢} €(0, T') such that

[u@)]| 2 10C, exp (—Ar3) (||uo | +/ (Fo. up) exp (— A13)) .

We may suppose

t¥=min {te(0, T);

|210C, exp (— At ([luo|| +]/(Fo, uo) exp (— A1)}
and we put
t¥:=min{ze(0,13); |u(®)| 2 C,exp(—At)(|u| —|—l/(F0,uo) exp (— A1)
for any te[t,12]} .
Since (6d) implies [ju(r)|| < C(|Ju, | +‘/(FTuO-)) for every ¢, we have 123 (if C, is
sufficiently large). By using (6b) we get

Cy ”“0“2

15 3
C|u0|2e—2,{t’i‘gj’ “qudt;j Cie-ZAt"uOHZdtz (e—Z/It’{ _6-211:3) (8)
t t}

hence e~ 2*1 < (1 +{)e~2*%, where { < C/(CZ — C). Consequently, for any y > 0 fixed
we have

. 11
if C,=C,(y, 4, 1) is sufficiently large. Now
luG)]|=Cye™ (o] +e™ 4T/ (Fy, u)) SIC,e™H( TR (Foup))
so that
—Ar} 2 2 du
(C, Y/ Fouo))) < [ue3) —u(e)|* (3 7
(10)
Choose tf e[t} —2, ¢t —1] such that
(Fo, u(ty ))< f (Fo, u)dt (11a)
-
and choose f, €[tg, t] such that
151 ul?
11b
| =l - (11b)
Then (10, 9, 7c, 11b, 4, 6b, 11a, 6¢, 9) 1mp1y
2 13
™ ¥4 (uy| + 42/ (Fy, up)))* < dr=Cy f

3
<Cy (53 |f1Pdt + D, (u(t&*)))

<63 [ P bl + o)
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SCy(luple™2*3+(10C e ™3 ([luo || + e~ 481/ (Fy, up)))?
+ Iuolze—ZA(t’§~2))
S Cp(Cre™ 4 (||uo|| + e~/ (Fy, u5)))
where the constant C does not depend on y and C,,. Hence choosing y < 1/C we get
[u@®)] £10C e *(|Juo| +e |/ (Fy, up)) (12)
for any ¢ (the constant C,, does not depend on 7).

In order to prove the estimate for |—- “ let us prove the following inequality

(Fo, u(0)) S Ce™ 2 (|lup||* + ™24 (Fy, up)) - (13)
By using (4) we get
(Fo, u(@) =@, (u(ty)) < @, (u(2)) — P, (u(ty))

t t
SPIPA=C | |ulPde< ClugPe™2
to to

for any ¢, <¢, thus
(Fo, u(D) £ (Fo, u(to)) + Ce™240((Jug |2 + =24 (Fo, up)) - (14)

Now the inequality (13) is obvious for £<1. If #>1, then there exists z,e (1 —1, 1)
such that

t
(Fo,u(t) = | (Fu()dt<Clugf e
t—1
(we have used (6¢)), which, together with (14), proves (13).
By using (4, 6b, 12, 13) we obtain further

du

iF

31

dt<C<j ”u||2dt+||u(t1)Hz+(F0,u(t1)))

< Cem 2 (g 2+ 7244 (B, ) - (15)

Choose >0 such that % (¢) exists and put t,=max (¢/2,¢—1). Then there exists

t, €[ty,t] such that

—2 At

Ce
dt<
t—1t,

dul?
dt

1

0
= (“uonz"'e_ZAto(Fo,uo))
—lo

L

to
-2t

L G
“min(1,1)

1)

(o> + 724 (Fy., o))
by (15). According to (7a) we get

du du
- < C(t—ty)| "7 <
dt(t) =e dt (tl) =C

(1+V1?>"”'<lluou+e‘A'1/(Fo,uo». (16)
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Now let goe H, (A up+N;(ug)+Fy—go,v—uy)=0 for any veK. Then it
follows from [2] (Proposition 5 used for the functional @(u)= yx(u)+ P, (1)
— &, (uy) +(gy, uy—u), where xx is the indicatrix function of the set K)

du
dt

T

f

0

2 T T
a<4 | |f+g0|2dt§C(Tlg0|2+ i ||u”2dt> ,
0 (1]

which, together with (7a, 12), implies
du

7 S C(gol+ [[uo|| +1/(Fy up)) a.e.in (0,00) . (17)

By using (7c, 16, 17) we get %ELZ (0, 0), V).
Finally, let N,=0, F,eV and (I+ud,)"'(K)<K for any u>0. Since

d .
%e L*((0, ), V), we have J{e L2((0, co), H). The results of [1, Lemme 11.4] imply
that 4, u(f) e H for any t =0 and the function u : [0, co)— H is differentiable from the

right everywhere. Moreover,

(d;tu (t)+A1u(t),A1u(t))§(f(t)—FO,Alu(t)) forany (>0 . (18)

It follows from (7a), (16) and (17) that

a+ .
T;f ()| £ Ce (o + g0l max (1 —1,0)+ |/ (Fy, up) ™)

By using (18) we get

2 ) d+u 2

A u(@F SC(IfOP +|=2= ()] | =2(4; Fo, ()
+ 2

éC(llu(Z)llz+ % 0] )—2(A1Fo,u<t»

S Ce 24 ([lug||® + |4, uo max (1 — 1, 0) + (Fy, up)e 2™
—2(A; Fy,u(1))
S Cle™M|Ayug|+e M2 || Fy|)? .

It remains to prove the uniqueness of our solution. Let u,, u, be two (weak)
solutions of the inequality (2). It follows from the preceeding considerations that u, ,
u, are also strong solutions, |u,(7)|| <& for any 120, i=1,2,

du.
(%+Aui+N(ui)+F0,v—ui)gO for any veK a.e.in (0,7) .

Choosing v=u,_; in this inequality and adding the resulting inequalities we get

<d (uy —uy)

a + A, —uy)+ N(uy) —N(y), uy —u2>§0 a.e.in (0,7) ,
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which implies (cf. the deriving of (7))

1d .
2 dt |y ’“2|2§C|u1 _“2|2 ae.in (0,7) .

Now u, (0)=u,(0) implies u; =u,. 0O

Theorem 2. Let, in addition to our general assumptions, K be a cone with its vertex at
zero, Fy=0, [N, (v)|=C “v||2for anyve B. Let u; e K, |u,|=1, be an eigenvector of the
inequality (1) with an eigenvalue A, <0 (i.e. (Auy — A uy, v —u,)=0 for any ve K)
and let

Ay, )2 4P for any yeK—u;:={v—u, ;veK} . (A1)

Then the zero solution of (2) is unstable in the toplology of H, more precisely, there
exists ¢ > 0 such that for any 6 >0 the solution u of (2) with uy=9u, exists on [0, Tj]
and [u(Ty)| Ze.

Proof. Similarly as in the proof of Theorem 1 we get the existence of a strong
solution of (2) (with N, redefined outside B). Moreover, there exist g,, C> 0 such
that {ue V; |u| <&} =B and

t t
i “uuwzgcQ i+ g
° (: for any t<T,,, , (19)
ol = (f wrare )
(]
where T, :=inf{t;|[u(t)| 2&}>0 if [uo| is small enough (cf. the derivation

of (6, 6d)).
Choose ¢ <¢gy, 0>0 and let u,=du, . By putting v=0 and v=_2u in (2) we get

du
—— =0
(dt+Au+N(u),u> ,
so that
% < —A [ul+Cllul]> ae. in {re(0, T,,0);u(?)+0} . (20)

Choose fe(0,1) fixed and suppose [u(s)|<(1+p)w(s)| for s<t=<T,,., where
w(s)=0u, e ** is the solution of the linearized inequality. By using (20, 19) we
obtain

t
@O Se™  fuo| +[ e 41479 C u(s)|*ds
0
t t s
~se e f o as—i,C ] ([ ol Jemee-oa
0 0 \0

t t s
gée"“’+C<§ lu(s))zds+|u012)+C [e 2= (j |u(‘c)|2dr+|u0|2)ds
0 0

(0]

<@+ CwoP <145 Jwe)
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whenever |w(?)|<p/C,, i.e. < T(,:=—/1L log Eég (where C, is some fixed
1 (1]

constant). Therefore,
@OISA+PWw(@)|  for any r<min(Ty, Tpy - @1
By putting y:=u—w we get

du
== <
(dt +Au+N(u),y)=0 s
dw
(?17+AW,}7>
dy

- <
(d,+Ay+N(u),y>=0 ,

v

0,

hence

which implies
d .
Z VIS —4bI+Cluf?  ae in {re(0, Th) () +0}
t
YOI e O C |u(@)|2ds W] for any 1<min(Ty, Tnp) o (22)
0

@z =pw(@)|  for any t<min (7}, T, -
We have by (19) and (21)
lu|| S C(|up]| +e™*1)  for t<min(Ty, Ty »

thus

Sl +3e79 =l + ) <
0
if B<C, (58%~ ||u0[|) and t<min (7}, T,,,), which implies T; < T,,.,. By (22)
Tz -pw )z
0

which proves our assertion. [

Remark 1. Theorem 2 holds also if we replace the assumption | N, (v)| < C||v||* by the
assumption | N,(®)|,-<C o] - lol.

Examples

Example 1. Let
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Then o(4)={-3, —1}, ox(4)={—1,1/2}, nevertheless the zero solution is

stable.

Proof. Let us choose ¢>0 (¢<1). We shall show that the solution u(¢) of (0) with

Uy= (g), d sufficiently small, satisfies ||u(¢)| <e for any £ =0, which, together with

the geometry of K and of the trajectory of u(f), implies our assertion (see Fig. 1).

Uz
K
u(T)
Ug A
0 Ui
Fig. 1

To prove this let us study the solution v(¢) of the corresponding equation
b, =30, +0}
132 = _501 +Uz (23)
v,(0=0, 0,(0)=0,
where (Ul)=d—v
6,) dt
Since ¥,(1)>0, v,(£)>0 for any ¢>0, we have v=u on [0,T], where
T=inf {t;v,(¢) Zv,(¢)}. Thus it is sufficient to prove T'< oo and ||v(7)|| L& for r<T,

since u(z) decays exponentially to zero for ¢ >T.
Since v; 20, we have v, <v,, hence

vy (D) S0 (24)
Now

t t 5
v (=] ST (s5)ds <5 [ e ds e’ £3
Y 0
if t<1 and § is sufficiently small. Consequently, &,(¢)=0 and v,(r) = for 1 <1,
which implies
1
v (D 2[ B(s)ds =67 .
0

Therefore,
v, (=822 forany =1 . (25)

Now (24) and (25) give us the following estimate for T'

T<T*, where 8237 D=geT" .
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Finally,
(DS 0,(1) L' < eT < JeT" =632 V&

for any t < T, which proves our assertion. [

Remark 2. In [3, 5] there are given some general assumptions, under which
stationary solutions of certain reaction-diffusion systems loose their “linearized
stability” when we add unilateral conditions to the system. In an abstract setting we
have Reo(4)>0, 64(4)n{1;4<0} %0 and, moreover, the results of [3, 5] imply
that there exists A€ o (A), <0, which is also a bifurcation point of the stationary
“nonlinear” inequality

(Au+Nw)—Ju,v—u)=0 Vvek (26)

(for any “‘suitable” N). Example 1 is not counterexample for the linearization
principle in this case, since in this example

(1) we do not have Rea(4)>0

(i) A= —1 is not a bifurcation point for the inequality (26).

Example 2. Let V=H=R>, K= {ueR*;u,=0}, F,=0, N=0,

-1 =2 16
A= 2 -1 0
-2 0 9

Then o(4)={1,3+2i} and 6,(4) =40, since any Leoy(4) is an eigenvalue of the
operator B:=PA(K (where P:R3>-K is the orthogonal projection) and ¢ (B)
={—1+2i}. The inequality (2) is equivalent to the equation

du

—+Bu=0
dt+u y

hence the zero solution is unstable.

Example 3. Let Q=(0,m1)cR!, V=H}(Q), H=L*(Q), F,=0, Au= —u"+Ju,
K={ueV;u(n/2)<0, u(n/3)20}, N@)=f(u), where feC'(R,R),
f(0)=£"(0)=0.

Then u, =0 is a stable solution of the equation

du

dl+Au+N(u)=O

u(0)=uy,

provided 1> —1 and it is unstable if A < —1. Similarly, u, =0 is a stable solution of
the inequality (2) if A> —9/4 and it is unstable if 1< —9/4.

The stability result follows from Theorem 1, the instability result from the proof
of Theorem 2. Note that the assumption (A1) is not satisfied, nevertheless, by
putting uy = du, , where u,(x) = —sin(3x/2) for x<2n/3 and u,(x)=0 for x=2n/3,
and by using the notation from the proof of Theorem 2 we get (4y, y) = A,|y|* for
Y=u—w, since u(t)(2xn/3)=0 for t<Tj.
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