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Symmetries of Mobius Ladders
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Department of Mathematics, Pomona College, Claremont, CA 91711, USA

Introduction

Chemistry has recently motivated the study of graphs embedded in R3, and of
their symmetries as an extension of knot theory. We are interested in the following
question: Given a graph G embedded in R? or $* =IR*U 00, what can be said about
its symmetries just from the topology of the graph itself? More precisely, we shall
let Sym(G) denote the group of homeomorphisms of G, up to isotopy. If G is
embedded in a manifold M, then Sym(M, G) is the group of diffecomorphisms of M
which leave G invariant, up to isotopy respecting G. We are interested in the
general question of how an element of Sym(G) can be represented by an element of
Sym(S3, G), for some embedding of G in S3. Of course, not every graph G can be
embedded in such a way that a given element of Sym(G) can be represented by
some element of Sym(S3, G). In Sect. 1, we will provide an example of a graph G
and a particular element of Sym(G) such that, no matter what the embedding of G
in S3, that element cannot be represented by an element of Sym(S3, G).

In the case where each element of Sym(G) can be represented by an element of
Sym(S3, G), we are interested in which elements of Sym(G) can be represented by
periodic and/or orientation reversing elements of Sym(S3,G). Since not all
periodic elements of Sym(S3, G) restrict to periodic elements of Sym(R3, G), we
consider separately the question of which elements of Sym(G) can be represented
by periodic elements of Sym(R?, G). In Sects. 2 and 3, we completely answer these
questions for one class of graphs. Understanding the symmetries of this particular
class of graphs also has some applications in chemistry, which we explain below.

Itis often important in the field of chemistry to determine whether a molecule is
distinct from its mirror image. A molecule which can convert itself to its mirror
image is said to be chemically achiral, whereas one which cannot is chemically
chiral. The existence of such a molecular deformation depends on a variety of
physical conditions, and thus cannot be completely characterized mathematically.
Instead, we abstract the molecule as a graph in space, and ask whether this
embedded graph can be deformed in space to its mirror image. A graph which can
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be deformed to its mirror image is topologically achiral, while one which cannot be
deformed to its mirror image is topologically chiral [Wa]. (The property of
topological achirality for graphs is analogous to the property of amphicheirality
for knots.) A molecule whose associated graph is topologically chiral will
necessarily be chemically chiral, hence this concept is of some use to chemists.

One particular molecular graph which is of interest is the “molecular M&bius
ladder”, which was first synthesized by Walba et al. [WRH]. This is a molecule
shaped like a ladder with three rungs which was made to join itself end-to-end with
one half twist (see Fig. 1). The sides of the ladder represent a molecular chain while
the rungs represent double bonds; hence in the associated molecular graph we
distinguish between the edges making up the sides and those making up the rungs.
The synthesis of this molecule was a significant achievement in chemistry because
of its topologically interesting molecular structure. Walba had conjectured that
this molecule was chemically chiral [Wa], however chemical achirality could not
be completely ruled out until Simon [Si] proved that its associated embedded
molecular graph was topologically chiral.

Fig. 1

More generally, let M, denote the graph illustrated in Fig. 2, with n = 3, where
the rungs of the ladder are «, ..., , and the sides of the ladder together form the
loop K. Observe that the graph M, is just the bipartite graph (3, 3) which is one of
Kuratowski’s non-planar graphs. For all n>3, M, contains this non-planar graph
and hence is itself non-planar.

Fig. 2

What Simon showed is that for the embedding of M, illustrated in Fig. 2, for
any n= 3, there is no orientation reversing diffcomorphism h of S with A(M,)=M,,
and h(K)= K. The chemical motivation for the requirement that h(K)=K is that
the loop K represents a molecular chain, which is chemically different from the
rungs which represent molecular bonds. We note however, that Simon [Si] has
also shown that if n > 4 then every automorphism of M, leaves K setwise invariant.
Thus if we restrict our attention to M&bius ladders with at least four rungs, then
h(K)= K will follow whenever h(M,)= M,. So only in the case where n=3 does the
hypothesis that h(K)=K make any difference.

Simon’s results naturally led to the question of topological chirality for other
embeddings of the graph M, That is, is it possible to reembed M, in S in such a
way that there is an orientation reversing diffeomorphism h of S* with h(M,)=M,,
and W(K)= K ? For n>4, this is just the question of whether there is any element of
Sym(M,) which can be represented by an orientation reversing element of
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Sym(S3, M,). We answer this particular question by showing that, for any n>3
which is odd, no matter how M, is embedded there is no such A. On the other hand,
for any n which is even there is an embedding of M, in S and an orientation
reversing diffeomorphism h of §* with h(M,)= M, and h(K)= K. In addition, we
provide a general analysis of how elements of Sym(M,) can be represented by
elements of Sym(S3, M,) and Sym(R3, M,). In particular, the group Sym(M,,) is
generated by those rotations and reflections of K which leave the set of rungs
invariant. Each element of Sym(M,) can be realized by a periodic orientation
preserving element of Sym(S3, M,), as will be illustrated in Figs. 5, 9, and 10.
Theorem 4 together with Figs. 6 and 3, analyzes which symmetries of M, can be
realized by periodic orientation preserving elements of Sym(R3, M,). The question
of which elements of Sym(M,) can be represented by orientation reversing
elements of Sym(S3, M,) is answered by Theorem 2 together with Fig. 4. For
periodic orientation reversing elements of Sym(S*, M,) and Sym(IR3, M,) the
question is answered by Theorem 3 and Lemma 2. Finally, in Sect. 4, we make
some observations about topological chirality for a slightly larger class of graphs
which includes the graphs M,,

1. An Element of Sym(G) which Cannot be Represented
by an Element of Sym(S?, G)

We are interested in whether there is a graph G such that some element of Sym(G)
cannot be realized by any element of Sym(S3, G), no matter how G is embedded in
S3. The following theorem shows that K ¢ (the complete graph on six vertices) is an
example of such a graph.

Theorem 1. For any embedding of K in S*, and any labelling of the vertices of K¢
by the numbers one through six, there is no element of Sym(S>, K ¢) which induces the
permutation (1234) on the vertices of K.

Proof. Choose some labelling of the vertices of K¢ by the numbers one through
six. Any unordered set of three such numbers will determine a loop consisting of
the three vertices with those numbers together with the edges between them.
However, since K, only has six vertices, this set also determines a disjoint
complementary loop. So we shall let each set of three such numbers represent a
pair of disjoint loops. Since each pair of loops can be represented in two different
ways by complementary sets of numbers, there are ten pairs of such loops in K.

We consider the orbits of these pairs of loops under the permutation (1234).
Being careful not to list the same pair in two different ways, we see that the
collection of orbits of loop pairs is {123,234, 341,412, {125,235,345,415), and
{135,245. The observation we wish to make here is that the set of all loop pairs is
partitioned into orbits which each contain an even number of elements.

Now suppose that the graph K is embedded in S in such a way that there is a
diffeomorphism h: S®—S3 with h(K)= K, and h induces the permutation (1234)
on the vertices of K¢. For each pair of disjoint loops 4 and B in K, let w(A4, B)
denote the mod2 linking number of 4 and B in S>. Since & is a diffeomorphism,
(A, B)=w(h(A), h(B)). Thus all the pairs in a given orbit will have the same mod 2
linking number. Define /.= ¥ w(4, B), where the summation is in Z, over all pairs
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of disjoint loops in K. Since every orbit has an even number of pairs in it, A=0.
However, Conway and Gordon have proved in [CG] that for any embedding of
K, in $3, A=1. Thus there could not have been such a diffeomorphism h. []

2. Orientation Reversing Symmetries of Mdbius Ladders

Any graph which is homeomorphic, as a 1-complex, to the graph in Fig. 2, is a
Mébius ladder as defined originally by Harary and Guy [HG]. More formally,

Definition. For n=3 we define a Mébius ladder M, to be any graph which is
homeomorphic to a 2n-gon K together with disjoint chords ay,...,a, joining
opposite pairs of vertices. We will refer to K as the loop of M, and the chords
Oy, ..., 0, as the rungs of M.

Lemma 1. Let M, be a Mébius ladder which is embedded in S® with loop K and rungs
Uy, ..., 0, Suppose h:S*—S3 is an orientation reversing diffeomorphism with
h(M,)=M, and h(K)=K. Then there are at most two rungs «; such that h(o;)=o;.

Proof. Let X denote the double branched cover of S3, branched over K. Let
K,,...,K, be the preimages of a,, ..., «, respectively. For each i, let k; denote the
simple closed curve consisting of a; together with some component of K —a;. Let F;
be a Seifert surface for k;; and let S; denote the preimage of F; in X. Observe that for
each i, K; is the boundary of S;.

It is not hard to show that H,(X) is finite (see [Ro]); and so, by Poincare
duality, H,(X) is trivial. Thus if S and S’ are both surfaces bounded by K; then the
algebraic intersection number of K; with S must equal the algebraic intersection
number of K ; with §’. Hence we can define Ik (K, K ;) as the algebraic intersection of
K; with the surface S;.

Let p be the algebraic intersection number of Int(«;) with F; — K. Since o; meets
F,nK at one point, then Ik(K; K;)= +(2p+1), depending on orientations. In
particular, for all i#j, we have lk(K;, K;)#0. Now suppose h(a;)=a; for i=1,2,3.
Since S® has a unique double branched cover over K, any homeomorphism of
(83, K) will lift to X. So let g: X — X be one lift of h. Then g is orientation reversing
and g(K,)=K,; for i=1,2,3. Give K, K,, K5 orientations, then suppose that g
preserves the orientation of K ;. Since g is orientation reversing and Ik (K, K,)+0
and lk(K ;, K3)+0, it must be that g reverses the orientations of both K, and K.
But this is impossible because 1k(K ,, K3)+0. We obtain a similar contradiction if
we suppose that g reverses the orientation of K,. Thus we could not have had
hoy)=o; for i=1,2,3. [

Theorem 2. Let M, be a MJbius ladder which is embedded in S* with loop K, where n
is an odd number. Then there is no diffeomorphism h:S3—S> which is orientation
reversing with h((M,)=M, and h(K)=K.

Proof. Suppose there were such an h. First we shall consider the case where h
reverses the orientation of K. In this case h performs a permutation of order two on
the rungs. Since the number of rungs, n, is odd there must be some rung which h
maps to itself. By the definition of a Mobius ladder n=3, so we can assume the
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rungs have been labelled in such a way that h(x;)=a,, h(a,) =0, and h(x,) =a,. As
in Lemma 1, let X be the double branched cover of §* with branch set K;and let g
be one lift of h and, for each i, let K; be the preimage of «;. Then g(K,)=K,,
g(K,)=K,, and g(K,)=K,. As in the proof of Lemma 1, the algebraic linking
number is well defined and 1k(K,, K,)+0, Ik(K, K,)+0, and Ik(K ,, K,) 0. Since
g is orientation reversing and 1k(K,, K,)+0, we can assume without loss of
generality that g(K,)=—K, and g(K,)= + K,. Now suppose that g(K,)= + K.
Then g(K,)= — K, implies that Ik(K,, K,)=1k(K, K,). But g(K,)= + K, implies
that k(K ,, K,)= —1k(K, K,). Since these linking numbers are non-zero, this is
impossible. Supposing that g(K,)= — K, yields a similar contradiction. Thus no
such A could exist with h(K)= —K.

Now we consider the case where h preserves the orientation of K. We can
assume that the rungs «, ..., , have been labelled consecutively. In this case there
exists a number p, such that h rotates each «; to «;, ,. Since n is odd, there is some
odd number ¢, such that h%(a;)=o; forall i=1, ..., n. But h?is orientation reversing
and n=3, hence this contradicts Lemma 1. [

<

Fig. 3

In Fig. 3, we illustrate an example of an embedded M6bius ladder M, with four
rungs, which has an orientation reversing diffeomorphism h:S3*—S* with
h(M,)=M, and h(K)=K. In this example the map h can be seen as the
composition of a reflection through the plane containing the loop K followed by a
rotation of 90~ about an axis perpendicular to that plane. Thus h preserves the
orientation of K, and h has order equal to four. For any n which is even we can
draw a similar example of a M6bius ladder M, with loop K lying in a plane, such
that there is an orientation reversing diffcomorphism h:S®—S$* which is the
composition of a reflection though the plane containing K followed by a rotation
of 90° about an axis perpendicular to that plane with i(M,)=M, and h(K)=K.
Thus, for any n which is even there is a Mobius ladder M, and an orientation
reversing diffeomorphism h: $*—S* with i(M,)= M,, h(K)= + K, and his of order
four.

We will also illustrate a Mobius ladder M, and an orientation reversing
difffomorphism h:S*—S* with h(M,)= M, and h(K)= — K; however, in order to
explain the way we have drawn our example, we first prove the following lemma.

Lemma 2. Let M, be a Mébius ladder which is embedded in R3. Let h: R3—R3 be
an orientation reversing diffeomorphism with (M ,)= M, and h(K)= K. Then h is not
of finite order.
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Proof. Suppose h is of finite order. Then h|K is also of finite order and h reverses
the orientation of K. Thus, # fixes two antipodal points, x and y, of K. The points x
and y separate K into arcs A and B, with h(4)= B and h(B)= A. Since h leaves the
collection of rungs setwise invariant, it follows from the definition of a Mdbius
ladder that each rung o; has one endpoint in A and the other endpoint in B. By
Smith Theory [Sm], the fixed point set of an orientation reversing finite order
diffeomorphism of IR* is either one point or a plane. In this case, the fixed point set
of h must contain the points x and y, so the fixed point set of h must be a plane P.
Now PnK ={x, y}, hence the arc 4 is contained in one component of R — P, and
the arc B is contained in the other component of IR* — P. Since P separates IR3,
each rung o; must intersect P. But this means that h fixes a point of each rung «,,
which implies that h(«;) = «; for all i. By the definition of Mébius ladder n> 3, hence
this contradicts Lemma 1. [J

Suppose that M, is an example of a Mébius ladder which is embedded in S3
(i.e. R®Uoo) in such a way that there is an orientation reversing diffeomorphism
h:S3-S83 with h(M,)=M, and h(K)=—K, and without loss of generality,
h(co)=00. Then by the proof of Lemma 2, one of the fixed points of h|K must
actually be the point at infinity. Thus if we want to illustrate an example where
h(K)= —K and h can be seen easily as the composition of a reflection and a
rotation, then we must draw M, so that the point at infinity is on K.

In Fig. 4, we illustrate a Mobius ladder M, which is embedded in S° in such a
way that the ends of the loop K meet at the point at infinity. We define an
orientation reversing diffeomorphism h: S®—S$* which reflects S3 through the
origin. That is, h is the composition of a reflection through the plane drawn in the
Fig. 4, followed by a rotation of 180° about K. Thus, (M )= M, and (K)= — K,
and h has order two. For any n which is even we can embed M, in S in a similar
way, so that there is an orientation reversing diffeomorphism h:$3—S3 with
h(M,)=M,, and i(K)= —K, and h has order two. By moving K slightly at the
point at infinity we obtain an embedding of M, in IR?, and an orientation reversing
difffomorphism g:S*—S* with g(M,)=M,, and g(K)= — K. However, by Lem-
ma 2 no such g could be of finite order.
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These examples suggest that we might be able to say something more about
finite order diffeomorphisms of Mbius ladders which are embedded in S3. By
Smith theory [Sm] we know that any finite order orientation reversing dif-
feomorphism of S3 has either two points or a 2-sphere as its fixed point set; and any
finite order orientation preserving difffomorphism has either the empty set or a
simple closed curve as its fixed point set. Let M, be a Mdbius ladder which is
embedded in S3.

Lemma 3. Let h:S>—S3 be an orientation reversing diffeomorphism which is of
finite order, with h(M,)= M, and h(K)= K. Then the fixed point set of h consists of
two points.

Proof. By Smith Theory [Sm] if the fixed point set of h is not two points then it is a
2-sphere F. So we can pick the point x at infinity to be any fixed point of & which is
not on M,. Then h restricts to an orientation reversing periodic diffeomorphism
g:IR3-R3 with g(M,) = M, and g(K)= K, and with fixed point set a plane P. Since
P separates IR® into two components and g is orientation reversing, g must switch
the two components of IR* — P. But since g(K)=XK the intersection of P and K
must be non-empty. Hence g(K)= —K; which contradicts Lemma 2. Thus the
fixed point set of 4 could not be a 2-sphere. []

Now we prove Theorem 3, which shows that Figs. 3 and 4 provide examples of
the only possible orders for orientation reversing finite order difftomorphisms of
Mébius ladders embedded in S°.

Theorem 3. Let M, be a Mébius ladder which is embedded in S* with loop K.
Suppose that h:S3—S? is an orientation reversing diffeomorphism with h(M,)=M,,
and h(K)=K, and the order of h is some finite number p. If h(K)= —K then p=2,
and if (K)= +K then p=4.

Proof. First suppose that h(K)= — K. Then h? fixes K pointwise. Hence h? also
fixes each rung «; pointwise. But h? is orientation preserving, so by Smith theory
[Sm], if A2 is not the identity map then the fixed point set of h? is either the empty
set or a simple closed curve. Hence h? is the identity map.

Now suppose that i(K)= + K. Then h performs a cyclic permutation of the
rungs o;. By Lemma 3, the fixed point set of 4 is two points. Suppose p=2, then
h(a;) =o; for all i. Hence h fixes a point of each o;. Since n > 3, this is a contradiction.
Thus p#2, so the map g=Ah? is not the identity. Since the fixed point set of g
contains the fixed point set of h, by Smith Theory [Sm] the fixed point set of g must
be a simple closed curve J. The order of h must be even, since h is orientation
reversing. Thus r=p/2 is an integer, and the map f =/’ has order two. Since f(K)
=+ K we can use the same argument as above to show that f cannot be
orientation reversing. So f is orientation preserving, and hence r must be even.
Thus, in fact, f =g?*. This implies that the fixed point set of f contains the fixed
point set of g. Since f is orientation preserving the fixed point set of f cannot
contain more than a simple closed curve. Thus the fixed point set of f is J, so J
intersects each rung a; Now this implies that g fixes a point of each «;. Hence
g(o;) =, for all i, and so the order of g is two. Therefore the order of h is four. [J

Observe that, up to conjugacy, there is only one order 4 element of Sym(M,)
which preserves the orientation of K. Also, for n odd, there is only one conjugacy
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class of Sym(M,) of order two which reverses the orientation of K. For n even,
there are two conjugacy classes of Sym(M,) of order two which reverse the
orientation of K, one of which leaves no rung invariant and one of which leaves
two rungs invariant. However, this latter symmetry actually fixes one of the
invariant rungs pointwise. Hence if this symmetry were realizable by a finite order
difffomorphism h:S$*—S3, it would contradict Lemma 3. Thus Theorem 3
completes our analysis of how elements of Sym(M,) can be represented by
orientation reversing elements of Sym(S3, M,) and Sym(R3, M,).

3. Orientation Preserving Symmetries of Mdobius Ladders

We consider how elements of Sym(M,) can be represented by orientation
preserving elements of Sym(S3 M,) and Sym(R3 M,). All those elements of
Sym(M,) which are induced by rotations of K can be represented by periodic
orientation preserving elements of Sym(S3 M,). In Fig. 5 we illustrate such an
example with n=3. In order to facilitate our explanation of the diffeomorphism h,
we have drawn a central axis A which is perpendicular to the plane containing the
loop K. The action of h can be seen as the composition of a rotation by 120° about
the axis A4 followed by a rotation by 120° about the loop K. An analogous example

works for any n.
A

Fig. 5

In contrast, for IR® we have the following theorem.

Theorem 4. Let M, be a Mobius ladder which is embedded in R? with loop K. Let
h:R3>R3 be an orientation preserving finite order diffeomorphism with
hM,)=M,, and h(K)=K. If the order of h is even, then the order of h is two.

Proof. Let r be the order of & and let J be the fixed point set of 4. By Smith Theory
[Sm], the fixed point set of an orientation preserving finite order diffeomorphism
of R3 is a line. Thus for all i <r the fixed point set of &' is also J. We consider the
cases where J intersects K and where J is disjoint from K separately. First, suppose
J intersects K. Then the intersection of J and K is two points, and h reverses the
orientation of K. In this case, h? fixes K pointwise in addition to J. Therefore h* is
the identity.

Now suppose that J is disjoint from K. Then h preserves the orientation of K,
and hence cyclically permutes the rungs «;. By hypothesis r is assumed to be even,
so p=r/2is an integer. Now, h? is a rotation of K of order two, and hence h?(x;) = o,
for all i. Thus h? fixes a point of each rung «;,. So J intersects every rung. But this
implies that h fixes a point of each rung, and so h? fixes every rung pointwise. Thus
again, h? fixes K pointwise in addition to J. So, in fact, r=2. [
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For every n, up to conjugacy, Sym(M,) has precisely one element of order two
which respects the orientation of K. We see as follows that for every n there is an
embedding of M, in R3 such that this element can be realized by an orientation
preserving element of Sym(R? M,) of order two. Let M; be the Mbius ladder
illustrated in Fig. 5. Let g:IR*—>IR? be a rotation by 180° about the central axis
which is perpendicular to the plane containing the loop K. Then g(M;)= M,
¢(K)= +K, the fixed point set of g is the central axis, and the order of g is two.
Observe that for any n we can construct an analogous example.

Now we provide an example to show that we can have any odd order
orientation preserving symmetry of a Mobius ladder in R3. Figure 6 illustrates a
Mobius ladder M5 which is invariant under a rotation of order three about a
central axis. Observe that the same rotation will work for any number of rungs
which is a multiple of three. Also, for any odd number r, let K be the boundary of a
band with r half twists, then for any n> 0, we can construct an analogous Mobius
ladder M,, with loop K, and M,, will be invariant under a rotation of order r.

Fig. 6

Note that in an example which is constructed as in Fig. 6, the loop K will be
knotted. This will not always be the case for every embedding of a Mdbius ladder
in R3 with an odd order symmetry. For example, the embedding of M illustrated
in Fig. 7 is invariant under a rotation of order three about a central axis. However,
in Theorem 5 we will prove that, for n odd, if M, is embedded in R so that it has an
odd order symmetry, then at least one of three “special” cyclesin M, is knotted. We
begin by introducing two special cycles, in addition to K, which are contained in
M

ne

Fig. 7

Suppose that nis odd. Then K contains 2n edges, and its vertices occur at the
endpoints of the rungs a,,...,a, Label the edges of K consecutively by
ay,by,a,b,,...,a,b, Let R=a,u...ua,ua,U...uq, and let B=a,uU...Uq,
ub U ... Ub,. Figure 8 illustrates the R and B for the Mébius ladder in Fig. 7.

Y%

Fig. 8
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By our construction it is clear that R is a collection of one or more simple closed
curves. We see that R is precisely one simple closed curve as follows. Observe that
each edge of K is connected by a rung to the n+ 1™ subsequent edge. In particular,
since n is odd, n=2k+ 1. Hence, n+1=2(k+1). Now, since the edges of K are
labelled alternately by a’s and b’s, the n+ 1™ subsequent edge after a; is a;, 4
(counting the indices modulo n). Therefore for each i, a; and a,, . , are in the same
component of R. Now since n and k + 1 are relatively prime, it follows that R has
only one component. Thus, when 7 is odd R is one simple closed curve. Similarly
for n odd, B is one simple closed curve.

Before we state our theorem concerning the curves R and B, we prove the
following lemma.

Lemma 4. Let L be an unknotted simple closed curve in S3. Let h: S*—S® be a finite
order orientation preserving diffeomorphism such that h(L)= L, and the fixed point
set of h is a simple closed curve A, which is disjoint from L. Then lk(L, A)=1.

Proof. Let Q denote the complement in S* of an open tubular neighborhood of L
which is invariant ander h. Since L is unknotted Q is a solid torus. By the
Equivariant Dehn’s Lemma [MY] there is an embedded meridional disk D in Q
with h(D)=D or h(D)nD=0. Suppose DNA=0, then 3D is trivial in 7,(S>— A).
Hence L is trivial in 7,(S®— A). But this is impossible since h(L)= L. Thus A
intersects D in n>0 points. Now since A is fixed pointwise by h, we must have
h(D)=D. Thus h|D is a periodic difftomorphism of a disk with n fixed points. So
n=1. Therefore Ik(L, 4)=1. [

Theorem 5. Let n=>3 be odd, and let M,, be a Mobius ladder which is embedded in
R3. Suppose there is a diffeomorphism h: R*—IR3 with h(M,)=M, and h(K)=K.
Suppose further that h is orientation preserving with odd order. Then at least one of
the simple closed curves R, B, or K is knotted.

Proof. Let p be the order of h. Since K has 2n edges and p is odd, p must divide n.
Thus h(R)=R and h(B)= B. Also because p is odd, no individual rung is invariant
under h. The fixed point set of an orientation preserving finite order diffeomor-
phism of IR® must be an embedded line by Smith Theory [Sm]. Extend h to a map
g: 53— 53 by mapping the point at infinity to itself. Now the fixed point set of g isa
simple closed curve 4 which is disjoint from each of K, R, and B. So we can
consider the mod2 algebraic linking number of A with each of these cycles. Let @,
w,, and w; be the mod2 algebraic linking numbers of A with R, B, and K
respectively.

Suppose that all three loops R, B, and K are unknotted. Then, by Lemma 4,
», =m, =w;=1. However, by our construction of R and B, in H,(S*—A4,Z,) we
have [R]+[B]=[K]. So,asasumin Z,, w, + w, = ;. This contradiction implies
that one of R, B, or K must be knotted. [J

Now we shall consider the diffeomorphisms which are induced by reflections of
K. In contrast with the elements induced by rotations of K, all of those elements of
Sym(M,) which are induced by reflections of K can be realized by periodic
orientation preserving elements of Sym(IR>, M,). In Fig. 9 we illustrate a Mobius
ladder M, embedded in R?in such a way that there is an orientation preserving
diffeomorphism g: R®—R3 with g(M ) = M, and g(K)= — K. The diffeomorphism
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Fig. 9

g:IR*->R3 is obtained by rotating by 180° about the axis A which is indicated in
the Fig. 9. This diffeomorphism has order two, has fixed point set an embedded
line, and g(M,)= M, and g(K)= — K. For any even n we can construct an example
which is analogous to this M,. For any n which is odd we can construct a similar
example but where the axis contains one of the rungs. This is illustrated for M, in
Fig. 10. Therefore for any n, there is a Mdbius ladder M, which is embedded in R3
with an order two diffeomorphism g:IR*—IR? with fixed point set an embedded
line, where g(M,)=M, and g(K)= —K.

Fig. 10

4. Symmetries of Wheels

In order to try to generalize our results about chirality for Mobius ladders to a
larger class of graphs, we introduce the following definitions.

Definition. A wheel is a graph consisting of a loop K and rungs a;, ..., a,, where K
is a simple closed curve and the «; are disjoint arcs with their endpoints at distinct
points of K.

Definition. Let G be a wheel with loop K and rungs o, ..., a,. Let B be the set of all
rungs f; with the property that the two components of K— f; contain equal
numbers of endpoints of «,,...,«, If B contains r>0 rungs, then we define the
Mébius hub N, of G to be the loop K together with all the rungs f; in B.

Observe that the Mdbius hub of a Mobius ladder is the Mobius ladder itself.
Lemma 5. Ler G be a wheel with Mobius hub N,. If r = 3, then N, is a Mébius ladder.

Proof. Let B be one of the rungs of N,, and let C, and C, be the components of
K — f, where K denotes the loop of G. Suppose that N, is not a M6bius ladder, then
without loss of generality there exists a rung 7 of N, such that y has both endpoints
in C,. Now we can label the components D, and D, of K —y so that D, is contained
in C, and D, contains C,. By the definition of M&bius hub, C, and C, contain the
same number of endpoints of the rungs «;, ..., a, of the wheel G. But since D, is
properly contained in C,, there must be fewer endpoints of a5, ...,a, in D, than
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there are in D,. But this contradicts the fact that y is also one of the rungs of the
Mobius hub N,. Therefore N, must have actually been a Mobius ladder. []

Definition. Let G be a wheel with loop K, and let L, be a subgraph of G containing
the loop K and some rungs y,...,7, Then L, is said to be a maximal Mébius
subgraph if both

1) L, is a Mobius ladder, and

2) If o is a rung of G which is not a rung of L,, then L,u{a} is not a Mébius
ladder.

Observe that since the Mobius hub of a wheel is a Mobius ladder it is contained
in a (possibly non-unique) maximal M&bius subgraph. However, the Mobius hub
of a wheel and a maximal Mobius subgraph of that wheel are, in general, different.
Even assuming that r=3, the Mdbius hub N, of a wheel G is not necessarily a
maximal Md&bius subgraph. For example Fig. 11 illustrates a wheel where the
Moébius hub N, is not a maximal Mébius subgraph. Here, for each f3; in N, the
two components of K — f; each contain six endpoints of rungs of G. The rungs o,
and a, are not in N; because, for i=1 and i =2, one component of K —a; contains
more endpoints than the other component. However, Nyua, and Njua, are
each maximal Mobius subgraphs of G. It is also easy to construct examples of
wheels which have no M6bius hub yet have any number of maximal M§bius sub-
graphs.

Fig. 11

Lemma 6. Let G be a wheel with loop K. Suppose there is a homeomorphism h of the
graph G such that h(K)=K_. If G has Mbius hub N,, then h(N,)=N,; also, if there is
a p such that G contains a unique maximal Mobius subgraph L, with p rungs, then
h(L,)=L,

Proof. Let A={a,,...,a,} denote the set of all rungs of G and let B denote the
subset of 4 consisting of rungs of N,. Since h(K) =K, we must have h(4)= A. By the
definition of the Mobius hub, B is the.set of all rungs f; such that the two
components of K — f; contain equal numbers of endpoints of «y, ..., a,. Since his a
homeomorphism of G, in fact h(B) = B. Thus h(N,) = N.,. Also, since L, is the unique
maximal Mdbius subgraph with p rungs h(L,)=L,. []

Definition. A wheel G with loop K is intrinsically chiral if for any embedding of G
in S there is no orientation reversing diffeomorphism h: $3—S3 with h(G)= G and
WK)=K.

We have shown in Theorem 2 that any M6bius ladder with an odd number of
rungs is intrinsically chiral. This, together with Lemma 4, easily leads us to
Theorem 6.
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Theorem 6. Let G be a wheel, and let p = 3 be an odd number. Suppose that either the
Mobius hub of G has p rungs, or G contains a unique maximal M obius subgraph with
p rungs. Then G is intrinsically chiral.

Proof. Suppose that G is embedded in S in such a way that there is an orientation
reversing diffeomorphism h: $°— S with h(G)=G and h(K)= K. By Lemma 4, if G
has Mdbius hub N, then h(N,))=N,, or if L, is the unique maximal Mdobius
subgraph of G with p rungs, then h(L,)= L, In either case, since p= 3 and p is odd
this contradicts Theorem 2. Therefore, in either case, G is intrinsically chiral. []

This theorem provides us with a way to construct many examples of
intrinsically chiral wheels. However, not all intrinsically chiral wheels satisfy the
hypotheses of this theorem. For example, Lemma 4 can also be used to construct
various other types of intrinsically chiral wheels. An example of this other type is
illustrated in Fig. 12. Here, the wheel G has no Mobius hub; however, it has a
unique maximal Mobius subgraph L, with four rungs. By Lemma 4, any
homeomorphism of h of G with h(K)= K, would also leave L, setwise invariant.
But G=L,Up, thus h(f)=p. Hence also h(e)=a. Now let M5 denote the wheel G
after the rungs « and § have been removed. Then M, is a Mobius ladder with an
odd number of rungs, and (M ;)= M ;. Again this contradicts Theorem 2, so in fact
G is intrinsically chiral.

References

[CG] Conway, J.H.,, Gordon, C.McA.: Knots and links in spatial graphs. J. Graph Theory 7,
445-453 (1983)

[HG] Guy, RK,, Harary, F.: On the Mobius ladders. Can. Math. Bull. 10, 493-496 (1967)

[MY] Meeks, W., Yau, S.-T.: Topology of three dimensional manifolds and the embedding
problems in minimal surface theory. Ann. Math. 112, 441-485 (1980)

[Ro]  Rolfsen, D.: Knots and links. Berkeley: Publish or Perish Press 1976

[Si] Simon, J.: Topological chirality of certain molecules. Topology 25, 229-235 (1986)

[Sm]  Smith, P.A.: Transformations of finite period. II. Ann. Math. 40, 670-711 (1939)

[Wa] Walba, D.: Stereochemical topology. In: R.B. King (ed.): Chemical applications of
topology and graph theory, pp. 17-32. Amsterdam: Elsevier 1983

[WRH] Walba, D., Richards, R., Haltiwanger, R.C.: Total synthesis of the first molecular
MGbius strip. J. Am. Chem. Soc. 104, 3219-3221 (1982)

Received May 29, 1987; in revised form June 13, 1988






