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0. Introduction

Sims (1973) proved the existence and uniqueness of the sporadic group Ly predicted
by Lyons (1972) through the computer-aided construction of a presentation which,
unfortunately, is rather cumbersome and does not lead to an insight into the
structure of the group.

Meanwhile, much more information on Ly has become available.

Kantor (1981) found a Tits geometry for Ly which is “almost” a building. Meyer
et al. (1985) gave the absolute minimal representation of Ly (111-dimensional over
IF;) which had been conjectured by Meyer and Neutsch (1984) and, independently,
by Woldar (1987). Later, Wilson [1984, 1985] compiled the list of all maximal
subgroups in Ly. His investigation uses the minimal representation explicitly, while
the verification of the latter depends on Sims’ presentation. For that reason, it
would be of great interest to have a simpler existence and uniqueness proof.

Inspired by Kantor’s results, we were led to the idea of giving a symmetric
presentation of a group I" by making use of the beautiful geometry of Ly.

Our relations are shown to be fulfilled by certain generators (“‘roots”) of the
Lyons group, and most probably they define Ly itself.

The construction is carried out in a fashion nearly identical to the methods of
Chevalley theory employed to study the Tits buildings of the groups of Lie type
(G,(5) <Ly should be considered as a prototype). The geometric spirit of our
presentation renders this possible. It is a first step towards an understanding of the
Lyons group.

1. Relations in a Group of Ly Type

We say a group A is of Ly type if it has the following properties:
(1) A is simple;
(2) A contains an involution z with C,(z2)=2 A A4,;.
Lyons [1972] shows that a group fulfilling (1) and (2) is of order

|Ly|=28.37.5°.7.11.31.37.67 (1.1)
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and that it contains a unique conjugacy class of subgroups =G, (5). Let A, be one of
them and B a Borel subgroup of A, i.e. a 5-Sylow normalizer.

Then B is also a Borel group in 4.

Furthermore, let 7= 4? be a (maximal) torus in B, N, and N its normalizers in A,
and A, respectively, and W, =N,/T and W= N/T the corresponding Weyl groups.

From the theory of Chevalley groups, cf. e.g. Carter (1972), we deduce

WoxD,,=8;%x S, (1.2)
while Kantor [1981] shows
WS, xS, . (1.3)

A proper subgroup of A or A, which contains a Borel group will be called parabolic.

Kantor [1981] has shown that A contains exactly three conjugacy classes of
maximal parabolic groups. They can be associated with the points P, lines L and
planes F of a Tits geometry with the Buekenhout diagram

Ommmmmmeeee [ TEP. L o
5 5 5
P L F 1.4)
1+4 3
GZ(S) 5 .486 5 .SL3(5)

Two objects (points, lines or planes) are called incident with each other if their
intersection (as groups) is parabolic.

The apartment 4 (T') associated with T'is the set of all objects fixed by 7. A(T) is
a subgeometry with Buekenhout diagram

SRR 0mmmmnZen o o (1.5)
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Here the 0-, 1-, 2-simplices correspond to the 12 points, 36 lines, 24 planes of the
apartment, respectively.

The Weyl group W=S, x S; acts as S, on the numbers {1,2, 3,4} and as S; on
the letters {a, b, c}.

In analogy to Chevalley theory we now define the root groups associated with 77
as the groups X obeying the conditions:

1) X=(Fs, +)=5;

Q) TENWX).

It follows from the known structure of C,,(5B) (Lyons (1972)) that all root
groups must be generated by 54-elements.

Since Cp,(54)=5""*: (2 A A¢) does not contain a Klein four group, C(X)=4.

The A-normalizer of a 5A4-group is a line. Thus there is a natural bijection
between the root groups and the lines in A(7T).

The extension of T with the commutator subgroup

W'=A, x A, (1.6)

of W splits, so there is a unique element k of order 3 in N which corresponds to the
Weyl element (abc) and centralizes 7. In fact (Lyons [1972]),

C,(N=TxK 1.7)
with
K={(k) (1.8)

Furthermore, there is a set of 16 complements of 7 in the unique 7': 4, fixing the
letters a, b, c. These groups are evidently conjugate under 7, so we may elect an
arbitrary one of them and denote it by Q.

Qis generated by 4 elements w; (1 £i <4) which correspond to the 120°-rotations
with centres in the points whose names contain the number i.

Each w; is uniquely determined by the choice of Q2 and the corresponding Weyl
permutation, namely

0, —(234); w,~143); w,—»(124); ©,~(132) in W . (1.9

The group
{wi, k>=QX K= A, x A, (1.10)

(one of just 16 complements of Tin N'=T: W'=~4?: (4, x A;)) is represented as a
regular permutation group on the root groups X, .

This allows us to specify a set of 36 generators (“roots”) for each of the 36 X, .

We are free to take any generator for one of them, e.g. X(1q,2b). Call it
x(1a,2b). Then apply Q2 x K to this root to define the remaining ones. A complete
system of 36 root elements generated in this way will be called a standard (root)
system.

Without restriction of generality we may assume that the Chevalley relations of
G, (5) hold in the form described below (the exact exponents depend on the choice of
x(1a,2b), but this clearly does not matter, because all allowed possibilities are
equivalent and lead to the same group):
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It will be convenient to define an orientation of the lines in 4 according to the
rules

a-b, b-oc, c—a. (1.11)

Now we consider a point P in 4.

The 6 lines incident with P form a complete set of long roots for the stabilizer
A(P) of P, isomorphic to the Chevalley group G, (5), while the short roots are given
by the sides of the (small) hexagon with centre P spanned by the long roots.

We denote the long and short roots by L; and K; (ie IF), respectively, in the
following manner:

where L; points from P to P, for i=1,2,4 (squares in IF,) and from P; to P for
i=3,5,6 (non-squares).

The 12 roots in Fig. 2 follow each other in the same order as they do in the
standard G, root system.

Then the nontrivial Chevalley relations are

(L, Ly )=L5; , (1.12)
(K, K3i]=13; (1.13)

[K;, Ky 1=L3, K3 L2, , (1.14)
[Ki Laj)=L5:K3; Lg; Ko, (1.15)
[L;, Ky;1=Ks; Ly, K} L3, (1.16)

combined with the information that for all ie{1,2,4} the mappings

1.
l, K_i=»} 1', (1.17)

and

(1.18)

are isomorphisms from (X;, K_;> and {L;, L_,> onto SL,(5).
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It should be noted that our relations differ slightly from those described, e.g., in
Humphreys [1975]. This is due to our more symmetric choice of the roots which is
more convenient in the context of the Lyons group.

For later reference, we construct an explicit G,(5) root system in the 7-
dimensional minimal representation over IF, as the full automorphism group of the
“septime” algebra with generators e; (i € IF,) and the skew-symmetric product given
by

€1 €i+2;=C14j (i€1F7;j€{1,2,4}) . (1.19)

Up to conjugacy in G,(5), our matrices are uniquely determined:

(I 1. 1. ...
1. 1..21. 13 1
o131 R RO S22t ..

L=l .. 1.. .|, L=...142.|, L=..41..3, (120

2.1 .1 311 1
12 4.3 .1 ... 1
a3t 1 4.2. .1
1. ... 1. ... 1. ...
1. ... 1..43. 11 3
o113 . R TR 413 ...
Le=|. . .1 .|, Le=|. .. 124 |, Ly=[..21..1, (121
4.1.3 1,31 1
2. .1 2. TS I IV 1
211 . 1 L2 .41
1 2 1.1...2 1 12
3 1..42. 11 3
L1113, 4.3.. .4 412

K={34.4.. .|, K=|...121.|, K=|..31..4, (122
4.1.2 S31 .. 34
2. .11 3.4.1. 3 44

341 3.4. 4 2.1 1

11.3 1.1...3 1 13
43 1 12 . 14 3
o143, 4.3 .. .1 112, ..

Ko={21.4.. .|, Ke=|. . . 124 .|, K=[..31..1 . (123

1.1.2 L4 .31 . 4 31
2..14 3. 1. 2 14

311 2.1 4 2.4. .1

Conjugation with  x K merely permutes the roots (without exponents). Because of
this fact, all standard systems are equivalent and lead to the same set of relations.
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The lines in 4(T) form 3 parallel classes of 12 lines each. Every parallel class
splits into 2 connected components called (great) circles.

A special line pair is a pair (L, L") of lines which are contained in a great circle
and either have one point in common (“long” pair) or are mutual antipodes
(“short” pair). The reason for this notation is that short and long special pairs form
opposite pairs of short and long roots, respectively, in a certain G,(5) subgroup.

Since two opposite long root groups in G, (5) have the same centralizer in 7, this
must also be true for all 6 lines in a great circle.

The centralizer in the point Pe A(T) of an arbitrary T-involution z contains 4
roots in each parallel class. Thus the group {II» generated by a parallel class IT is a
subgroup of H=C,(z)=2 A A4y,.

Let H=H[{z)=A,,.

As all subgroups isomorphic to 4* are conjugate in H we may assume without
restriction that

T'=T/{z>=<(1234)(5678), (1234) (8765)> . (1.24)

In H or H exactly 12 groups = 5 exist which are normalized by 7 or T Except for a
permutation of the letters {1, 2,3,4,5,6,7,8,9, X, F } normalizing 7 only the
following correspondence between the roots and the permutations in H is allowed
by the Chevalley relations for the points:

0 -~(ES867)-- 0 --(98576)-- o
'o:--(94132)--:0:--(X1423)—-:o:--(El»132)--:o.
o:—-(X5867)--:o:-—(E8576)—-:o:-—(95867)--:0:--()(8576)——:o
'o:--(91423)--:0:--(x4132)--:o:--(E1423)--:o'

"0 -~ (E5867)-- 0 --(98576)-- 0

Fig. 3

It is obvious that these roots generate 2 A A, .
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2. Definition and Simple Geometric Properties of the Group I'

The results of Sect. 1 lead us to the definition of a group I' as follows:

I is generated by 36 elements x;, bijectively associated with the lines L in 4
(Fig. 1). The defining relations of I" are

(1) C(P)-relations for every point P in 4;

(2) S(IT)-relations for each parallel class IT in A.

Here C(P) is the set of Chevalley relations of G, (5) (cf. Sect. 1) while S(IT) is an
arbitrary system of defining relations for 2 A 4, . Best suited for our purpose are the
Schur relations:

=1 (1<i<9) @.1)
1=z (1<ij<9; i) , 22)
21 2.3)

where the generator t; corresponds to the permutation ((XE).
We are now able to translate between the two sets of generators of 2 A 4;,
(here x(P, Q) is the root element which belongs to the line connecting the points P

and Q):
to=x(3c,4a) x(4b,3c)"! -x(3a,4b) - x(4a,3b)7!

-x(3a,4b) x(4b,3¢c)-x(3¢c,4a)"1 , 2.9
t,=x(3a,4b) ' -ty-x(3a,4b) , t,=x(3a,4b)* -1y x(3a,4b)"* , (2.5)
t;=x(3a,4b) ty-x(3a,4b)"' , t,=x(3a,4b)"%-ty-x(3a,4b)* , (2.6)
ts=x(1a,2b)"" -ty x(1a,2b) , tg=x(1a,2b)*-ty-x(1a,2b)7% , Q2.7
t=x(1a,26) 1y x(14,2b)"" ,  ty=x(1a,2b)"> 1y x(1a,2b)? . 2.8)

The reverse transformations are:

xBa,db)y=ta 17 byt oty . x(1a,2b)=tg s ittty ts g

2.9
x(4b,3¢) =ty tyt; 1ty 5 1, xQ@b1c)=ts tg-ts -t tc,  (2.10)
xBeda)=t1 1t 000, x(1e,2a) =t  tg-tg ' t,0t5 , (2.11)
x(4a3b)y=ty ;5 g, XQa1b) =ty gt ts ity ittty g

(2.12)
x@Bb,4c)=ty-t; -t 151, x(1b,2¢) =t,t5 tg 1 tg- 171, (2.13)
x(@c,3a)y=t; 1,15 1,1, XQec,la)=tg' 5t  tgtg . (2.14)

By the main result of Meyer et al. [1985] the Lyons group possesses a 111-
dimensional irreducible representation over IFs. In this we can easily identify 36
elements which generate Ly and satisfy all relations defining T

Hence we have

Lemma 1. (a) The Lyons group is a homomorphic image of T';
(b) I' has a 111-dimensional nontrivial representation over FFs.
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Let us now consider the following subconfigurations of 4 in Fig. 1:

/0{--—;0\ 0----; {—--- O~===- O====- o
LN I\ \/ F\\ /
Oi---; i---'l-o 0§~L-70 ;--‘-;O
NN \/ \/
[ TR o O=cmmm Ommmen o o
a b [
Fig. 4a—c

The subgroups of I' generated by the lines in Fig. 4a—c (respectively) are called
r(p); r(L); I'(F).

For any set {0, ¢, ...} of objects we define I'(0, ¢0', ...) as the intersection of the
groups I'(0), I'(0),...

With the above notation we have

Theorem 1. (a) I'(P)~G,(5);
(b) I'(L)=5'"**:(2 A A4g);
(c) I'(F)=53-SL;(5).

Theorem 2. The lines in the following configurations (omitting the dotted lines):

[o]
O-m=-= o
o
// \\
(C) O-meme o
\
\/
o
0-=-=-- [ o
d  o..... o
0n-mms0sm-=-0
O-==== 0-=--= o
() om--omo
o—---:o:-—--o

(f) great circle
(g) parallel class
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generate groups which are isomorphic to:

(@ 5;

(b) 5%

(C) 51 +4;

(d) 2A4;

) 5x@2nadg);
) 2n4,4;

(8) 2AAi;.

Proof of Theorems 1 and 2. (1a) Due to the C(P)-relations, I'(P) is a homomorphic
image of G, (5) (using a theorem of Steinberg, cf. Carter (1972), Theorem 12.1.1), so
I'(P)is 2G,(5) or ~1.

Inthelatter case aroot group in I'(P) and hence also in I' (P”) for a neighbouring
point P’ of P would be trivial, so I'(P')=1, too. This leads to I'=1, contradicting
Lemma 1.

(2g) Because of the S(IT)-relations, <IT) is a homomorphicimage of 2 A 4,,, s0
is @2 A A, Aq; or 1. Only the first possibility is in conformity with (1a), since a long
special line pair generates SL,(5) =2 A As. The remaining statements in Theorem 2
now follow immediately from (1a) and (2g).

(1b) Since (2¢) and (2d) hold, we need only show that 5'*# is normalized by
2 A Ag. This follows from (1a), applied to the two points incident with L.

(1c) Analogously to (1b), we conclude with the help of (2b) that the three lines
incident with F generate a normal subgroup I'o(F)=5* of I'(F).

The images in I'(F)/Ty(F) of the root subgroups in I'(F) fulfill all of the
Chevalley relations for the group SL,(5) (which is defined by these relations) if we
map them as follows:

0 --38-- 0 --A-- 0 o o
\ I\ / \ /
C | F\ b Cc b
\ \/ /
0 —=-== o === 0O --a-- 0 --A-- o0
\ /
c B B c
\/ ! \
[§] o o
Fig. 5§

SL;(5) is simple, and according to (2¢) not all of the images can be trivial; thus
I'(F)=5*-SL,(5). This extension does not split, since I'(F) contains a 5-Sylow
subgroup of G, (5) and therefore elements of order 25. This establishes Theorems 1
and 2.

We now define for an arbitrary (long or short) special line pair L, L’ the groups
T}, and Q. as follows:

Let T}, . be the common normalizer of the root groups L and L' and let Q,,. be
the set normalizer of {L, L'} in <L,L'>=SL,(5).
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Furthermore, for each great circle K and each parallel system IT we introduce the
abbreviations

Tx={Ty, :L,L special line pair in K) , (2.15)
Qx=<Q, : L, L' special line pair in K} , (2.16)
Ty=<{T :L,L special line pair in IT) , 2.17)
Qp=<Qy. L, L special line pair in IT) , (2.18)
as well as
T={T, :L,L special line pair) , (2.19)
Q={Q;. :L,L" special line pair) (2.20)

and for any point P:
T(P)={T,. :L, L’ special line pair in I'(P)) . (2.21)

Of course, T(P) is the torus in I'(P) =G, (5) belonging to our apartment. We next
show

Theorem 3. (a) For a special line pair L, L' in the circle K we have T;;. =Ty x4;
(b) for every parallel class I1: Tpy~4x2,
(c) for all points P: T(P)=T=42

Proof. (a) and (b) follow from an easy calculation in {JT)> =2 A 4,,. Trivially, we
have T(P)< T. With (a) we deduce for every great circle K with an arbitrary but
fixed P that Ty < T(P). Since {Ty)=T, we get (c).

Theorem 4. (a) For all special line pairs L,L':Q;; =N (T )=Qs, the
quaternion group of order 8; the intersection of T with Q;.1s Ty ;

(b) T is a normal subgroup of Q;

(c) eachelement q of Q permutes the lines of A, inducing an automorphism of A as
a simplicial complex ;

(d) the image of this action is the full automorphism group Sy x S5 of A.

Proof. The first part of (a) is immediate since {L, L'> = SL, (5). The second part can
be verified in I'(P) for an appropriate point P.

In this I'(P) we also see that Q, ;. normalizes T(P) =T, thus the same holds true
for Q={Q,.>. Furthermore, each T},. is contained in Q,,., hence in Q; so
T={T;,.> is a subgroup of Q. This proves (b).

Let g be an element of Q, ;.. If g is contained in T7,, < T, (c) holds trivially. If g is
in Q;;\T;.., q induces a permutation of the groups of order 5 which are nor-
malized by T in each of the groups I' (P) and {IT) where P is any point with L, L’
< I'(P)and II the parallel system containing L and L’. But all these groups of order
5 are root groups.

From the C(P’)-relations for appropriate points P’ we find that the 16
remaining roots are also permuted. Inspection of the permutations generated by Q
easily leads to (c) and (d).
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3. Some Geometric Subgroups of I'

Let IT be a parallel class and P a point in 4. The group H={IT) is =2 A A4, by
Theorem 2.g. We denote the unique involution in Z(H) by z.
We now prove

Theorem 5. The intersection of H and I'(P) is Crpy(2)=(1/2) .2 A (S5 x S5).

Proof. Since all pairs (11, P) are equivalent under Q (Theorem 4.d), we may restrict

ourselves to the case P=1a and II =parallel system of Fig. 3. Then H and I'(P)

obviously contain the 4 roots x(la,2b), x(2c,1a), x(3b,4c), x(4b,3c) which

generate a group SL,(5)v SL,(5)=2A(4sxAs) of index 2 in Cpp)(2)
2

>(1/2) .2 A(S5 x Ss). This group is enlarged by T— T'< H and T < I"(P) because of
Theorem 3.c - to the full centralizer of z in I'(P). As z is in the centre of H, the
intersection of H and I'(P) is a subgroup of Cp,(2); hence the proposition.

We want to consider several groups which are defined symmetrically with
respect to the apartment A(T).

Let
U=I(la1b,1c), U,=I(2a,2b,2¢), 3.1
U,=I'(3a,3b,3¢) , U,=TI(4a,4b,4c¢) , 3.2)
and
U=(U;,U,, U5, U, . (3.3)

It will be convenient to have a systematic notation for the circles, parallel systems
and corresponding 2 A 4, ,-subgroups in I':

We denote the circle containing the points with numbers i and j by K;; and the
parallel system consisting of K;; and K}, by IT;; ;. The corresponding T-involution
will be called z;; ,;, and we set H;; ;=11 ;-

Hence the torus elements z,, 34, 213 24, Z14.23 ar€ canonically associated with the
double transpositions in the symmetric group S,, while the circles K, ,, K;5, K4,
K3, K4, K5, belong to the transpositions of S,.

Let us now investigate the groups U;(1<i<4) and U:

Theorem 6. (a) U, ~2U,=U, = U, xU;(3);
b) U'=U; U/Z(U)=U,(3) =04 (3); Z(U)<4 x 3%

Proof. We define

a=x(4b,3¢)*x(3b,4¢)* = (132) in H, ., , 3.4
b=x(4b,3¢)'x(3b,4c)* = (143) in Hy;,, , (3.5
c=x(db,2¢)' x(2b,4c)® = (124) in Hyzsa » (3.6)
r=x(1a,26)'x(2a, 16 = (568) in Hiyyay » G.7)

I'(la), I'(1b), I'(lc) contain the 2AAs-groups <x(3b,4c),x(@b,3c)>,
(x(3c,4a),x(dc,3a)), {(x(3a,4b),x(4a,3b)> of H,,;,, acting on the sets
{1,2,3,4,X}, {1,2,3,4, E}, {1,2,3,4,9}, respectively.

Their intersection, the 2 A A,-group on {1,2, 3,4}, is thus contained in
I'la,1b,1¢c)=U,.
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Obviously, analogous results for H,;,, and H,,,; hold. Hence, by (3.4),
(3.5), (3.6),

Ca,b,e><U,=I'(1a,1b,1¢)<T'(1a) . (3.8)
In I'(1a) we easily verify — see (1.20),...,(1.23) — that
aA=b3=c3=1, (3.9)
aba=bab , aca=cac , bcb=cbc , (3.10)
a’c lab=c tabc¢! ; b lbi=cTlbéc! . 3.11)

These relations form a presentation of the finite simple group U, (3), cf. Aschbacher
and Hall [1973].
Since {a, b, ¢ is nontrivial, we deduce

Us;(3)=<a,b,e)y= U, SI'(la)=G,(5) . (3.12)

By inspection of the maximal subgroups of G, (5) we are left with three candidates

for U;, namely <a,b,c)=U;(3), Nry,(Ka,b,c))=G,(2) and I'(1a)=G,(5)
(Conway et al. [1985]).

But, by Theorem 5, Cy,(z;;34) is the intersection of U, and H,, ,,, hence

Cy,(21234)=(a,b, T)=4S5,.
G,(2) and G,(5) do not contain involution centralizers of this form, so

U,={a,b,c>=U;(3) . (3.13)

Since U, , U,, Us, U, are conjugate to each other under Q, (a) follows. Furthermore,
r and ¢ are both contained in I'(3a) where we immediately establish the relations

P=1, rer=crc (3.14)
while in H,, 3, =2 A 4,, the elements a and b evidently commute with r:
ra=ar , rb=br . (3.15)

By a result of Aschbacher and Hall [1973] the relations (3.9, 3.10, 3.11, 3.14, 3.15)
form a presentation of the full Schur cover of the finite simple group U, (3) = O¢ (3),
so with the abbreviation

U,=<a,b,c,ry (3.16)
we get (because U,(3) is simple and U, +1)
Us=Us , Uo/Z(Uy)=U,(3) (3.17)

and Z(U,) is a factor of the Schur multiplier 12 x 3~4 x 3% of U, (3). To complete
the proof of our theorem it remains to show that U,=U. First we have
a,b,ceU;sUand reU;2U, so U< U.

The reverse inequality amounts to U;< U, for all i€ {1,2,3,4}. Clearly this is
true for U, ={a,b,c).

The intersection of U; and U; contains the torus 7 as well as c. Since
{¢, Ty =4S, is maximal in U; and centralizes z,, ,,, while re U; does not, we get

Uy={c,T,ry<U, . (3.18)
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Let now i=2 or 4. The intersections of U; with U, and Uj are different maximal
subgroups (x4S,) of U, ~ U, (3) and therefore they together generate U;. Since they
are contained in {(U,, U;> < U, this completes the proof of the required equality

U=<a,b,c,r> (3.19)

at the same time establishing the theorem.
Having chosen a suitable unitary basis, the matrices in SU, (3) corresponding to
the elements a, b, ¢, r are found to be

1 00 0 10 0 0
010 0 0 1 0 0
= = 3.20
=10 0 1—i —1+i]° "o 0 1-i 1-i (320)
0 0 1+ 141 0 0 —1—i 1+i
10 0 0 1+i —-1—i 0 0
0 1—i 0 —1+4¢ 1—i 1—-i 0
“loo 1 o | "Tlo 0 10 (3:21)
0 1+i 0 1+i {0 0 0 1
where i is a square root of —1 in IF,.
The matrices in SO4 (3) are given by
1. .. .. 1. .. ..
1. ... S
1122 111t
=l 2t12]0 STl 2121 (3.22)
1212 L2112
.11 L2211
12..11 1. .. ..
11. .1 1. ...
1. .1222
Sl T 120 (3:23)
22..12 1112
21. .11 1211
4. The Lyons Group as a Homomorphic Image of I
We now define elements a,b,¢,d, x in I' by
a=1-x(3b,4c)* - x(4b,3c)* , 4.1)
b=x(3b,4c) , 4.2)
c=x(4b,2¢) , (4.3)
d=x(1a,2b) - x(2¢c,1a)® -x(1a,2b) , 4.9

x=x(3b,4c)-x(4b,3¢)-x(3b,4c) 1" x(4a,3b) - x(3b,4¢c)® - x(4a,3b) (4.5)



298 W. Neutsch and W. Meyer

where t and 1’ are the torus elements
1=x(4b,2¢) x(2b,4c)* - x(4b,2¢)* - x(2b, 4c)?, (4.6)
t'=x(1a,4b)* - x(4c,1a) - x(1a,4b)?* - x(dc, 1a)* . 4.7

We verified by computer that the images d,5,¢,d, % of a,b,c,d,x in the 111-
dimensional representation (cf. Lemma 1) obey all of the relations of Sims [1973],
and hence they generate the Lyons group.

Furthermore,
{a,b,é,dy=G,(5) (4.8)
while
a,b,c,d><T(1a)=G,(5) . (4.9)
Therefore
a,b,c,dy=T(1a) (4.10)

xeQ by Theorem 4.c permutes the 36 root groups and corresponds to the
automorphism (12) (34) - (ac) of the apartment.
{a, b, c,d,x) contains the 12 root groups in I'(1a) and, e.g.,

X(1a,2by*=X(15,2¢) . (4.11)

Because of the Chevalley relations these 13 root groups generate I'. This shows the
validity of

Theorem 7. (a) {a,b,c,d,x>=T;
(b) Ly is a homomorphic image of T

Remark. To prove arelation in any subgroup 4 of I which is isomorphic to its image
A in the representation, it is sufficient to check this relation for the appropriate 111-
dimensional IFs;-matrices.

In particular this holds true for the Sims relations which are expressed in
elements of 4 alone.

We may apply this to the following three subgroups:

A,=I'1a)=G,(5) , 4.12)
AC=H12‘3422/\A11 5 (4.13)
A,=([(LQ2c, 1a)), T>=5"*4:45, . 4.14)

The isomorphisms 4, =~ 4, and 4, 4, have been verified in Theorems 1.a and 2.c,
respectively.

4,4, follows immediately from Theorem 2.e and the fact that all 36 root
groups are normalized by 7.

These arguments suffice to prove the validity of all Sims relations except three.

We believe that the remaining relations also follow from our presentation of I,
but we have not yet been able to show this.

5. Summary

The goal of this paper is to construct a root system for the Lyons group Ly in
analogy to those of the Chevalley groups.



A Root System for the Lyons Group 299

We make ample use of geometric properties of Ly.

We are confident that similar ideas can be applied to other (all ?) sporadic
groups as well, perhaps in the long run leading to an understanding of these peculiar
structures.

Concerning the geometry of the Lyons group itself, more information may be
gained by a careful study of the 111-dimensional minimal representation over IF;.

Some initial results in that direction have been obtained.

We hope to present them — together with a proof of the isomorphism of the
group I' (defined in Sect. 2) with Ly — in the near future.
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