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Dubrovin Valuation Rings and Henselization

Adrian R. Wadsworth* **
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1. Introduction: Dubrovin Valuation Rings

Valuation theory is increasingly being recognized as a useful tool in studying
the arithmetic of finite dimensional division algebras. However, there are some
serious obstacles in noncommutative valuation theory that have limited its
application. Notably, a valuation on the center F of a division ring D (with
[D:F] < o0) need not extend to a valuation on D (though when it does extend, the
extension is unique). In addition, even if one starts working with division rings, one
is led inevitably to consider also matrices over division rings, which arise with
tensor products or scalar extensions. But there is not yet a reasonable notion of
valuation for matrix rings.

N.I. Dubrovinintroduced afew yearsagoin[D1]and [D2] a generalized notion
of valuation ring which overcomes both of these obstacles. By basing his approach
on the notion of a place in the category of simple Artinian rings, he obtained a
significantly larger class of rings than the classical valuation rings on division rings.
For example, the Dubrovin valuation rings restricting to a discrete valuation ring
V of the center are precisely the maximal orders over V (cf. (1.15) below). Although
there is no actual valuation associated with Dubrovin’s rings, they nonetheless
possess many of the properties of valuation rings, and have excellent extension
properties. In fact, if S is a central simple F-algebra (with [S: F]<oo)and Vis a
valuation ring of the field F, then there is always a Dubrovin valuation ring B of S
with BAF =V, moreover, any two such Dubrovin valuation rings are conjugate in
S, hence isomorphic (cf. Theorem A in Sect. 2). Thus, Dubrovin valuation rings
appear to be very natural objects for studying the internal structure of division
algebras and central simple algebras.

* Supported in part by the National Science Foundation
** Some of the research for this paper was carried out while the author was visiting the Wilhelms-
Westfilische Universitit of Miinster, West Germany and the Université Catholique de Louvain of
Louvain-la-Neuve, Belgium. The author would like to thank the mathematicians at both
universities for their kind hospitality
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While the theory of Dubrovin valuation rings is still quite new, these rings have
already proved useful in working with the classical noncommutative valuation
rings. For example, some of the difficult theorems in [JW] and [M1] on division
algebras over Henselian fields have been generalized in [M2] to results about
Dubrovin valuation rings, and these more general theorems have turned to have
easier and more natural proofs. I would expect many more applications of
Dubrovin valuation rings as the theory is developed further.

We will here prove some theorems on the structure of Dubrovin valuation
rings, and use Henselization techniques to show that they are closely related to the
classical valuation rings on division rings. Among other things, we define a value
group for Dubrovin valuation rings, prove an “Ostrowski theorem” for such rings,
and give various characterizations of Dubrovin valuation rings integral over their
centers. Our main results are all stated in Sect. 2, with the proofs given in
Sects. 3-5.

I wish to thank K. Mathiak and J. Grater for introducing me to Dubrovin valua-
tion rings. I thank Griiter also for showing me his results with Brungs which appear
in[BG2]-these were what convinced me to begininvestigating Dubrovin’srings. In
addition, T would like to thank J.-P. Tignol for some enlightening conversations.
The main results of this paper were announced in [W2].

For the rest of this section, we recall the basic properties of Dubrovin valuation
rings proved by Dubrovin in [D1] and [D2], and give some examples of such
rings. This will provide some introduction to these rings, which may be unfamiliar
to many readers. The properties quoted here will be used extensively later in the
paper.

A few words on notation: If B is any ring, we write

B* for the group of units of B;

Z(B) for the center of B;

J(B) for the Jacobson radical of B;

M (B) for the k x k matrix ring over B.

If S is an algebra over a field F, then [ S: F] denotes the dimension of S over F. The
term “field” always means a commutative field. When there is a clearly defined
monomorphism f from one object into another, we will routinely identify the
domain of f with its image. Thus, canonical injections become inclusions, and
canonical isomorphisms are written as equalities. This will occur particularly
frequently in comparing residue rings and value groups of different valuation
rings.

Dubrovin’s definition in [D1] of a noncommutative valuation ring is based on
the idea of a place in the category of simple Artinian rings. Let S be simple Artinian.
We call a subring B of S a Dubrovin valuation ring (of S) if

(i) B has an ideal I such that B/I is simple Artinian;

(ii) for each se S— B there are b,, b, € B, such that b;s, sb,e B—1.

(Dubrovin called such a ring a noncommutative valuation ring, and the
terminology in [BG2] is S-valuation ring.) Dubrovin showed [D1, Sect.1,
Proposition 3] that the ideal [ is actually the Jacobson radical J(B). Furthermore
[D1, Sect. 1, Theorem 4], Bis a left and right order in S, hence a prime left and right
Goldie ring. In addition, it is easy to check that Z(B)=BnZ(S) and Z(B) is a
valuation ring of the field Z(S). Dubrovin proved the following further significant
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properties of a Dubrovin valuation ring B (cf. [D1, Sect. 1, Theorems 4, 7; Sect. 2,
Theorem 4] and [D2, Sect. 1, Proposition 2; Sect. 2, Theorem 1]):

(1.1) (Bézout) Every finitely generated left (resp. right) ideal of B is principal.

(1.2) (semihereditary) Every finitely generated left (resp. right) ideal of B is
projective as a B-module.

(1.3) B has the “k-chain property”: There is an integer k>0 such that for any
n>kand any ay, ..., a, € B, the left ideal Ba, + ... + Ba, is generated by k of the a..
Likewise for right ideals. (The smallest such k turns out to be the matrix size of
B/J(B).)

(1.4) The two-sided ideals of B are linearly ordered by inclusion, while the left
ideals (resp. right ideals) are in general not linearly ordered. Likewise, the B— B
bimodules of S are linearly ordered.

(1.5) (Morita invariance) If S~ M (D), then B~ M,,(C), where C is a Dubrovin
valuation ring of D. Furthermore, for any natural number k, M,(B) is a Dubrovin
valuation ring of M,(S). If ee B is idempotent (e<0), then eBe is a Dubrovin
valuation ring of eSe.

(1.6) (composition of places) If T is a subring of B with J(B)C T, then T is a
Dubrovin valuation ring of S iff T'/J(B) is a Dubrovin valuation ring of the simple
Artinian ring B/J(B). (This property is particularly useful for building examples of
Dubrovin valuation rings.)

(1.7) (overrings) Let A be any overring of B, i.e., a ring with BCACS. Then, 4 is
a Dubrovin valuation ring of S, J(A) is a prime ideal of B, 4 is the left (and right)
localization of B with respect to the elements of B regular mod J(4), and B/J(A)is a
Dubrovin valuation ring of A/J(A).

(1.8) (localization) Suppose [S: F] < co, where F =Z(S). Let V=BnF. For any
prime ideal Q of B, set P=0QnV. Then P is a prime ideal of ¥, and the central
localization Bp (of B as a V-algebra with respect to V' — P) is an overring of B with
J(Bp)=0Q. Thus, (combining this with (1.7)) there is a one-to-one correspondence
between prime ideals of B, prime ideals of ¥, and overrings of B. (Distinct prime
ideals P of V yield distinct overrings of B, as BpnF=1V,.)

Consider, by way of comparison, the valuation rings R that arise from
valuations on S when § is a division ring. Such a subring R of § is characterized by
the following properties (cf. [S, p. 12]):

(1.9) (i) For every seS*, seRor s 'eR.
(ii) For every se S*, sRs™!=R.

We will call a ring R satisfying properties (1.9) (i) and (ii) an invariant valua-
tion ring of the division ring S. (The name comes from (ii) — invariance under
inner automorphisms.) As is easy and well-known, for such an R the left ideals are
the same as the right ideals and are linearly ordered, J(R) is the unique maximal
ideal of R, and the residue ring R/J(R) is a division ring. Also the associated
valuation on S is completely determined by R: The value group of R is

(1.10) I;=S*/R*,
which is made into a (totally) ordered abelian group by setting s, R*<s,R* iff

$;R2s,R. Then the associated valuation is v: S*— I} given by s—»sR*.) Clearly,
every invariant valuation ring is a Dubrovin valuation ring.
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A Dubrovin valuation ring B of a simple Artinian ring S need not be invariant,
but it has the following features in common with invariant valuation rings. First, B
has a residue ring

(1.11) B=B/J(B),

which is simple Artinian, though not necessarily a division ring. Second, although
there is in general no valuation associated to B, we can still define a value group, as
follows: Set

(1.12) st(B)={seS*:sBs"!=B},

the stabilizer of B under the action of S*. Indeed, st(B) coincides with the
normalizer of B* in S*. Then define the value group I of B by

(1.13) I, =st(B)/B*.

The elements of I are in one-to-one correspondence with the fractional two-sided
ideals of the form sB = Bs for s e st(B). Note that [ is an ordered group with respect
to the ordering given by sB* <tB* iff sB2tB (s, t € st(B)). This is a total ordering, by
property (1.4). Of course, if B is an invariant valuation ring of a division ring, then
I, coincides with the usual value group of B.

Besides invariant valuation rings, we note the following significant examples of
Dubrovin valuation rings.

(1.14) Example. If V is any commutative valuation ring and A4 is any Azumaya
algebra over V, then A4 is a Dubrovin valuation ring. (See (3.4) below or [D2, Sect. 2,
Proposition 1]).

(1.15) Example. Let V be a discrete (rank 1) valuation ring of a field F, and let S be
a simple algebra with Z(S)=F and [S:F]< . Let B be a subring of S with
BnF =Y. Then B is a Dubrovin valuation ring of S iff B is a maximal order of V
in S.

Proof. Dubrovin proved in [D1, Sect. 1, Theorem 4] that B is a Dubrovin
valuation ring of S iff B/J(B)is simple Artinian, every finitely-generated left or right
ideal of B s principal, and B s a left and right order of S. If B is a maximal order of
V in S, then B has all of these properties by [Re, Theorem 18.7, p. 179];s0 Bis a
Dubrovin valuation ring of S. Conversely, suppose B is Dubrovin, and BNnF=V.
Since [S: F] < oo, B is a p.i.-ring. Because V is Noetherian, Formanek’s theorem
[F, Theorem 1] shows Bisa finitely-generated V-module. In addition, BK = S, as B
is prime p.i. (cf. [Rw, Theorem 1.7.9, p. 53]). Thus, B is an order of V in S, and the
overring property (1.7) shows B is a maximal order. []

One may view Dubrovin valuation rings in finite dimensional central simple
algebras as a reasonable generalization to arbitrary commutative valuation base
rings of the notion of maximal orders over discrete valuation rings. The results
stated in the next section are known for maximal orders over discrete valuation
rings; it would be interesting to see how much further the rich theory of maximal
orders can be extended to Dubrovin valuation rings.
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2. Statement of Theorems

In this section we state the main theorems of this paper (the lettered theorems) and
some of their corollaries. The theorems and corollaries will be proved in Sects. 3-5.
The similarities in approach to several of the proofs and the intertwinings of the
arguments dictate that the theorems be proved together rather than sequentially.

A crucial property of Dubrovin valuation rings is that they give essentially
unique extensions of valuation rings of the center:

(2.1) Theorem. Let S be a simple Artinian ring and let F =Z(S), with [S: F] < oo. If
V is any valuation ring of F, then there is a Dubrovin valuation ring B of S with
BnF=V.

Theorem A. With S, F as in Theorem 2.1, if B and B, are two Dubrovin valuation
rings of S with BAF =ByNF, then there is a ue S* with uBu™'= B,

Theorem 2.1 was proved by Dubrovin in [D2, Sect. 3, Theorem 2], with a more
understandable proof given in [BG2, Theorem 3.8]. Theorem A was proved for
BN F offinite rank by Brungs and Griter in [BG2, Theorem 5.4]; the proof we give
below will have no such restriction.

Our main theorem, Theorem B below, describes what happens to a Dubrovin
valuation ring with passage to the Henselization of the valuation on the center. To
place this in context, we recall the corresponding situation for invariant valuation
rings. It has long been known (cf. [S, Theorem 9, p. 53]) that if V' is a Henselian
valuation ring of a field F, then inside any F-division algebra D with [D: F]< o
there is a unique invariant valuation ring R extending V (i.e., RnF = V). However,
if V is not Henselian, then V has at most one extension to an invariant valuation
ring of D, but possibly no extension at all (cf. [W1, Corollary] or [Er2,
Corollary 17). Now, every field with valuation ring (F, V) has an essentially unique
Henselization (F*, V'*). Recently, Morandi has shown that the Henselization can be
used to determine whether V extends to D:

(2.2) Theorem. Let D be a division ring, let F = Z(D)with [D: F]< o0, and let V be a
valuation ring of F. Let (F", V") be the Henselization of (F, V). Then,
(i) V extends to an invariant valuation ring R of D iff D®g F" is a division ring.
(ii) Suppose D®;F"is a division ring. Let R" be the (unique ) extension of V* to
an invariant valuation ring of D®gF". Then R=R*ND, Iy =TI, and R=R".

Theorem 2.2 is proved in [M1, Theorem 2]*. When D®j F" is not a division
ring there is still a Dubrovin valuation ring B of D extending V; our main theorem
provides an analogue to Theorem 2.2 for B.

Before stating Theorem B we must set up some more notation. For the rest of
this section fix a Dubrovin valuation ring B of a simple Artinian ring S, and let
F=Z(S)and vV =BnNF, a valuation ring of F. We always assume that [S: F] < cc.
Let (F* V*) be the Henselization of the valued field (F, V). In addition to the

* Part (i) of this theorem is asserted in [ Er2], but Ershov’s proof has a gap I do not know how to fill
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terminology B, st(B), I, introduced in (1.11)—(1.13) we write
ng for the natural projection: B—B= B/J(B);
tp=matrix size of B (i.e., BM, (E), where E is a division ring);
ng=matrix size of S®; F*;
sp=ng/ty (Which we will see is always an integer).

For any F-algebra C, Aut,C denotes the group of F-automorphisms of C. But
if C is a field, we also write %(C/F) for the Galois group Aut,C.

With B as above, note that for any sest(B), conjugation by s is a
V-automorphism of B, so it induces a P-automorphism of B. That is, there is a well-
defined homomorphism

og:st(B)—Auty B given by ¢p(s)(B)=sbs !,

where b= ,(b), for b € B. Every automorphism of B maps Z(B) onto Z(B). Further,
if se B*- F* then @g(s) is the identity on Z(B). Thus, as st(B)/(B* - F*)=T /I, ¢g
induces a homomorphism

0: Iy/T,—9(Z(B)V).

For any V-algebra A and any prime ideal P of V, we write 4, for the localization
of A at P;s0 Ap=AQy V.

We can now give our main theorem. Let B be a Dubrovin valuation ring and let
S, F, V, F* V" be as described above, with [S:F]< oo, and write

SQpF"=M, (D",

where D" is a division ring. Since V" is Henselian, there is a unique invariant
valuation ring R of D" with RANF"=TV",

Theorem B. (i) B=M, (R) where R(=R/J(R)) is a division ring.
(i) Ig=1TIg.
(iti) Using the isomorphism Z(B)~Z(R) induced by (i) above, we have a
commutative diagram:
Iy —=> L/l
b | ol .
YZ(B)(V) —=> 4(Z(R)/V")
Corollary B. With the notation as above, the maps 0y and ¢y are surjective and Z(B)
is a normal (but not necessarily separable ) extension field of V of finite degree. If

Z(B) is separable over V, then it is actually abelian Galois over V. I is an abelian
group and I3/I;, is finite.

Theorem B allows us to extend the “Ostrowski theorem” to Dubrovin
valuation rings: For B, S, F, V as above, define the defect of B by

8(B)=[S:FI[B: V]|I}: Iyl (ny/tp)*).

Theorem C. For B and R as in Theorem B, 6(B)=8(R). Consequently, 6(B)=1 if
char(V)=0, and 8(B)=p* for some integer a=0 if char(V)=p=+0.
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Note that if B is an invariant valuation ring ng=tz=1 (cf. Theorem 2.2), so
Theorem C reduces to the Ostrowski theorem for such valuation rings proved for
V Henselian by Draxl [Dr, Theorem 2] and in general by Morandi [M1,
Theorem 3].

In order to prove Theorems A and B and also to clarify the relation between
the integer invariants ng and t; we must consider other Henselizations — at the
localizations of V. Let { P;};., be the (linearly ordered) set of nonzero prime ideals of
V.For eachiel, let (F;, V}) be the Henselization of (F, V; ), and let S®; F; =~ M, (D,),
where D; is a division ring. So each m; <[S: F]. Note that for i, se I, if P;C P, then
Vp, is a refinement of V5, so we may view F;C F (cf. the discussion of Henselization
in the next section); hence m;|m,. Thus, if me {m;:ieI} there is a prime ideal P;
maximal such that m;=m. (For,letI,,={ieI.m;=m}. Thenset P;j= () P, which

iely,

is a prime ideal as the P; are linearly ordered. Since F; is the direct limit of the F;,
iel,, wehave m;=m.| We call such a P; a jump prime ideal of V with respect to S.

So, P; is a jump prime ideal iff for each P2 P;, m>m; W write j(V;S) for the
number of jump prime ideals, and call this the jump rank of V (re S). The jump rank
is a convenient invariant for induction arguments, since it is always finite, even
when the usual rank (=Krull dimension) of V is infinite. Since the prime ideals of
our Dubrovin valuation ring B correspond to the primes of V, we say Q is a jump
prime ideal of B if QnV is a jump prime ideal of VreS.

Now, let A be any ring with BCACS. Then we know (cf. (1.7)) that A is a
Dubrovin valuation ring of § and is a localization of B. Let W=ANF, a
localization of V. We set ¥V =V/J(W), which is a valuation ring of the field
W =W/J(W). Now, Z(A) is a field extension of W of finite degree (see below). Set

(23)  ¢5 4=the number of extensions of ¥ to valuation rings of Z(4).

Theorem D. With B, S, F as above,let O, Q0,5 ... S Q) be a finite set of prime ideals
of V which includes all the jump primes of V reS. Set {;={y, , . Then,
nB=th2[3.../k.
The next theorem and its corollary are crucial for the inductive proofs of
Theorems A, B, and D.

The(lrem E. With B, S, F as above, let A be aring with BCALS, and let W= ANF.
Set B=B/J(A), which is a Dubrovin valuation ring of A. Then,
(i) There is an exact sequence

(I3, 1) 0— I3 I3—T,~>9(Z(A)/W)/H-0,
where H = {te %(Z(A)/W): «(BnZ(A))=BnZ(A)}.

(i) tp=tp s
(iil) ng=ng(ny/t)lp, 4> i€, Sp=5854Cp 4-

Corollary E. With B, S, F, A, B as in Theorem E, let Q be a prime ideal of B with
Q22J(A). If Q/J(A) is a jump prime ideal of B, then Q is a jump prime ideal of B.
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The converse to Corollary E is not true in general: One can construct examples
in which @ is a jump prime ideal of B even though Q/J(4)is not a jump prime ideal
of B.

The invariant t; of a Dubrovin valuation ring B is bounded above by n, and
below by the matrix size of S. The rings achieving the extreme values of 5 are
particularly interesting:

Theorem F. The following are equivalent:
(i) tB=nB.
(i) B is integral over V.
(iii) Every principal two-sided ideal of B is principal as a left ideal and as a right
ideal of B.
(iv) Every two-sided ideal of B is generated by elements of st(B).
(v) For all rings A, E with BCECACS, £ ,=1.
(vi) B®, V" is a Dubrovin valuation ring of S®gF".
(vii) There is a Dubrovin valuation ring B" of S®zF" with B*nS=B and
BinFi=V"

(Yet another condition, (vi'), equivalent to those in Theorem F will be given at
the beginning of Sect. 4.)

The equivalence of conditions (iii) and (iv) to the others in Theorem F is due to
Morandi [ M2], who has also found further interesting properties and characteriza-
tions of Dubrovin valuation rings integral over their centers. Note that condition
(iv) says that the two-sided ideals of B are classified by the value group of B, just as
for a commutative valuation ring. So this holds iff B is integral over Z(B). Observe
also that whenever V has rank 1 the conditions of Theorem F all hold, as
Theorem D shows tz=ny.

Theorem G. Suppose (in addition to the standing hypotheses) that S is a division
ring. Then the following are equivalent:
(i) tg=1.
(ii) For each seS* seBor s 'eB.
(iii) B has only finitely many different conjugates in S.
(iv) The set T of elements of S integral over V is a ring. (In fact,
T= (\ sBs™ .
SES*
When these equivalent conditions hold, the number of conjugates of B is

exactly ng.

The rings described in Theorem G, which satisfy condition (i) of (1.9) but not
(ii), have been studied extensively by Mathiak, Gréter, and others (cf. [Ma]). We
call them total valuation rings. Mathiak has defined a value group for a total
valuation ring B as S* / () sB*s™ . Griter has proved [G, Theorem 3.4] that our

seS*
value group Iy is isomorphic to the center of Mathiak’s value group. Of the
conditions in Theorem G, (ii)=>(iv) and (ii)=-(iii) were proved by Brungs and
Griter in [BG1, Theorems 1, 3], who also showed in [BG1, Theorem 1] that the
number of conjugates of B satisfying (ii) is bounded by |/[S:F]. The easy
equivalence (i)<>(ii) appears in [BG2, Lemma 2.2].
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The following corollary is immediate from Theorems 2.2, F, and G:

Corollary G. Suppose (in addition to the standing hypotheses) that S is a division
ring. Then the following are equivalent:
(i) ng=1.
(ii) B is an invariant valuation ring.
(iii) B is a total valuation ring and B is integral over V.

3. Preliminaries

In this section we give preliminary results to prepare for the proofs of the theorems
stated in Sect. 2. We prove some special cases of these theorems, in preparation for
the main argument, which begins in Sect. 4.

The following notation will be fixed throughout this section: B is a Dubrovin
valuation ring of a simple Artinian ring S, F = Z(S), and V' =BnF. We adopt as a
standing hypothesis that [S: F] < oo. Note that (F, V) is a valued field, i.e., F is the
quotient field of the valuation ring V. We will write (F, V)S(F', V') if (F',V") is
another valued field, with FCF' and V'nF=V.

We begin with some general lemmas that prepare the way for a useful result
(Proposition 3.3) on extending Dubrovin valuation rings.

(3.1) Lemma. Suppose (K, Y)is avalued field, T is a K-algebra (containing K ), and
C is a subring of T with CnK=Y. Let NCM be Y-modules. Then,

(@) M is a flat Y-module iff M is torsion-free.

(b) N®yCEM®,C, MEM®y,C, and (N®yC)nM=N.

Proof. (a) This is well-known, and is actually true if Y is an invariant valuation ring
of a division ring K (with [K : Z(K)] < o0) — cf. [JW, Sect. 2].

(b) Since C is a torsion-free, hence flat -module we may identify N ®, C with
its image in M ®y;C. We have the exact sequence

Tor!(M,C/Y)>M®, Y>M®,C.

Since CnK =Y, C/Y is a torsion-free, so flat, Y-module; hence Tor!(M, C/Y)=0.
This shows the map M=M®,; Y >M®,C is injective. Now set N; =(N®,C)
NM2N. Then N,/N is the kernel of

M/N =(M/N)®y Y >(M/N)®y C=(M®y C)/(N®y C).
Since Tor!(M/N, C/Y)=0, we have N, =N, as desired. []
(3.2) Lemma. For any Dubrovin valuation ring B, st(B)n(B— J(B))= B*.

Proof. The inclusion 2 is clear. For the reverse inclusion, take s € st(B)n(B — J(B)).
Then BsB = B as the ideals of B are linearly ordered and B/J(B) is simple. But BsB
=Bs=sB as sest(B). Hence, se B*. []

Let B be our Dubrovin valuation ring of S, and let B’ be a Dubrovin valuation
ring of a simple Artinian ring S, where SCS’. We say that B’ is a compatible
extension of B if BnS=B, J(B)SJ(B'), and st(B)Cst(B’). When this occurs,
J(B')nB=J(B),as J(B) is the maximal ideal of B, and we view BC B’ via the natural
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inclusion. Furthermore, clearly st(B')nS=st(B) and B'*nst(B)= B*; thus, the
obvious homomorphism I;— I} is injective and order-preserving, and we view
I;CI;. We say that B’ is an immediate compatible extension of B if B' is a
compatible extension of B with B'=B and I =1}

(3.3) Proposition. With B, S, F, V as above, let K be a field with KCF and
[F:K]<oo, and let Y=VnK. Let T be a simple K algebra with [T:K]< c0.
Suppose T contains a ring C2Y which is a free Y-module of rank [T:K]. Set
C=C/J(Y)C. Suppose S®yT and B®yC are simple rings. Then B®,C is a
Dubrovin valuation ring of S®x T and is a compatible extension of B. Moreover,
B®yC=B®;C and Ipg,c=1I}.

Proof.Let B=B®yCand §'=S®; T=S®,C. Wehave B CS".Let {a,,...,a,} bea
base of C as afree Y-module. Then {a,, ..., a,} is also an F-base of T. Takeany ye S".
Then y has a unique representation

y=35®a

with s;€S; note that ye B’ iff each s;€ B. Let ¢: B®y C— B®jy C be the canonical
epimorphism, mapping Y s;®«; to Y 5;®4; fors; € B. Let J =ker(g). Since &3, ..., &, is
a V-base of C, y e J iff each 5;=0, iff each s; € J(B). By hypothesis B'/J is simple, and
is Artinian since it is a finitely-generated B-module.

To verify that B’ is Dubrovin, take any y=Ys;,®o;€S —B'". That is, some
s;€ S—B. Now, as B is Dubrovin, ¥ s;B=rB for some reS—R (cf. (1.1)). Write
s;=rb; with b;e B and r=Y s;c; with c;e B. We have

1=25®0,=0r1)(Lb;®x).

Since B is Dubrovin there is a d € R, such that dre B—J(B). Then d®1€ B’ and
(d®1)y=Y drb,®u;. Note that not all drb,e J(B), as otherwise dr =7y drb,c;€ J(B),
contradicting the choice of d. Hence, (d®1)ye B'—J. By a symmetric argument
there is a d' ®ae B’ with y(d'®1)e B'—J. Thus, B’ is a Dubrovin valuation ring
with J(B')=J and B ~im(¢)=B®;C.

Note that CnK =Y as Cis integral over Y. Hence by (3.1b), B'nS = B. Since the
inclusions J(B)C J(B') and st(B) Cst(B') are clear, B’ is a compatible extension of B.

To show I =TI} it suffices to verify st(B')=st(B)- B'*. For this, take any
yest(B) and write y=(r®1) (). b;®a;) just as before. Then each b;e B. Suppose
every b;eJ(B). Then as r=Yrb,c; with c;e B, we have 0=r(1 -} b;,). Since
1—-Yb,c;e1+J(B)CB*, we have r=0, so y=0, a contradiction. Hence, some
b; ¢ J(B); thus we have expressed y=(r®1)e, where e=) b;®u; € B'—J(B'), and
reS* as ye §'*. Take any be B. Then (b®1)ce B', so B’ contains

b®ey ' =r@Ne(b®1)(r ' ®1)=Yrbbr '®u;.
So, rb;pr '€ B, for all be B and all i. Hence,
B2Yrb,Br~'=(Ys;Br '=rBr !.

Because rBr~!nF =BnF, this inclusion implies by (1.8) that rBr~'=B. Hence,
rest(B). Thus, e=(r®1) 'y est(B)n(B'—J(B)); by Lemma 3.2, ¢ € B'*. Therefore,
y=(r®1)cest(B)- B'*, as desired. [J

-1
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The first two corollaries are known ([D2, Sect. 2, Proposition 1] and (1.5)
above) except for the value group formulas.

(3.4) Corollary. Let C be any Azumaya algebra over any commutative valuation ring
V. Then C is a Dubrovin valuation ring of its ring of quotients and Iz=1I;.

Proof. Proposition 3.3 applies with B=V and K=F. []

(3.5) Corollary. For a Dubrovin valuation ring B and any n, M(B) is a Dubrovin
valuation ring with M, (B)=M (B) and Iy 5 = I}.

Proof. Apply. Proposition 3.3 with C=M (V). [

(3.6) Corollary. With the notation defined before (3.1) let K be a subfield of F with
[F:K]<oo, and let Y=V K. Let (K, Y)C(N, U) with N algebraic over K, and N
and F linearly disjoint over K. Suppose,

(i) for each field L with KSLCN and [L:K]< oo, [UnL:Y]=[L:K];

(ii) Z(B) and U are linearly disjoint over Y.
Then B®yU is a Dubrovin valuation ring of S®gN which is a compatible
extension of B, with BQ yU=BQ®3U and I3g ;=I5

Proof. Take any field L with KSLC N and [L: K] < oo, and let C=UnL. Since C
has maximal residue degree over ¥, C is a free Y-module and the ramification index
must be 1; hence J(C)=J(Y)- C. Consequently, C/J(Y)- C is the field C=C/J(C).
Hypothesis (ii) assures that Z(B) and C are linearly disjoint over Y, so Z(B)®yCisa
field and B®; U = BQj3/(Z(B)®y C) is simple. Likewise, S® Lis simple, as L and
F =Z(S) are linearly disjoint over K. Thus, Proposition 3.3 applies to B®y C. The
desired properties of B®)y U follow by easy direct limit arguments, as U is the direct
limit of the C’s. [

For arbitrary valued fields (F, V) the Henselization of V plays much the same
rdle as the completion plays for rank 1 valuation rings. We recall now the facts we
need about Henselization. (For background on Henselian valuation rings, see e.g.
[R1], [R2], or [E].)

A Henselization of a valued field (F, V) is a valued field (F*, V") such that
(F,V)S(F* V", V" is Henselian, and for any Henselian valued field (F’, V’) with
(F,V)C(F', V') there is a unique F-homomorphism f: F*—F’ such that f~ (V")
=V" Every valued field (F,V) has a Henselization which is unique up to
F-isomorphism (cf. [E, p. 131]). We use the notation (F*, V*)=(F, V)¥ to indicate
that (F", V") is a Henselization of (F, V). It is known [E, (17.11), (17.19)] that F*is
separable over F and V" is an immediate extension of ¥, i.e., V"=V and I},.=1;.

Now, supposee (F*, V*) = (F, V)¥, and let K be an algebraic extension field of F
and Y an extension of V to K. Then (cf. [E, (17.16), (17.13)]),

there is a compositum K - F* of K and F* over F such that
(K-F" Y')=(K, Y)¥, where Y' is the unique extension of V" to

3.7 K - F'. Moreover, there is a 1-1 correspondence between the
extensions of V to K and the equivalence classes of composites
of K and F* over F.
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(The references mentioned in [E] cover only K/F separable in (3.7). But the
generalization to K/F algebraic is easy.) Two extreme cases of (3.7) will arise
frequently: As F* is separable over F, K is linearly disjoint to F* over F iff V has a
unique extension to K. On the other hand, if [K:F]<oo, and V has [K:F]
different extensions to K, then there is an embedding (K, Y)S(F”, V*). For, the
composites of K over F are the indecomposable summands of K®; F*. In this case
there are [K : F] summands, so each is F*.

We will exploit heavily the relationship between Henselizations of comparable
valuation rings of the same field. Let (F, V) be a valued field, let P 4=(0) be a prime
ideal of V, and let W=V,. Let (F,, W,)=(F, W) and (F,,V,)=(F, V). Let W,
=V,p, 1.€., the localization of V, at P. This W, is the valuation ring of F, with
V, S W, and W,n F = W, Since V, is Henselian, so is W, (cf. [R1, p. 210, Proposition
97). Therefore, by the universal mapping property for the Henselization, we may
view (F,, W,)S(F,, W,). Let V, = V,nF, CW,; let V=V/J(W), a valuation ring of
W =W/J(W), and likewise let ¥,=V,/J(W)CW, i=1,2. Observe that when we
identify W, = W, then V; = V. Now view (F,, W,) as an extension of (F,, W;). The key
fact we will use is:

(F,,W,)is ~the (unique) unramified extension of (F, W,) such
that (IVZs VZ) =(W17 Vl)H‘

This can be verified using the universal mapping property for Henselization (as in
the proof of [M1, Theorem 2]) or by an argument using decomposition groups.
That (F,, W,) is unramified over (F,, W,) means W, is separable over W, and that
for each field K, F;CKCF, with [K:F,]<o, [W,nK: W, ]=[K:F,].

Certain special cases of the theorems and corollaries in Sect. 2 are needed in
order to prove the theorems in general. We now give those partial results:

(3.8)

(3.9) Proposition. (a) If Theorem B holds for a Dubrovin valuation ring B, then
Corollary B and Theorem C hold for B.

(b) Theorem E (i) holds for the ring B if Theorem B holds for the ring A and
Theorem A holds for B in A.

(c) Theorem E (ii) holds.

(d) Theorem E (iii) holds for the ring B if Theorem B holds for the ring A.

(e) Corollary E holds for the ring B if Theorem B holds for the ring A.

(f) Implications (vi)=>(vii) and (vii)=>(ii) of Theorem F hold for any Dubrovin
valuation ring B.

Before proving Proposition 3.9, we recall a result we need of Brungs and
Griter [BG2, Lemma 4.1]. (This is a special case of Theorem A).

(3.10) Lemma. Let D be a division ring with [D : Z(D)] < o, and let B be a Dubrovin
valuation ring of D, and R an invariant valuation ring of D. If BnZ(D)=RnZ(D),
then B=R.

Proof of Proposition 3.9. (a) The properties in Corollary B are all known for any
invariant valuation ring of a finite-dimensional division algebra (cf. [JW,
Proposition 1.7], or for the Henselian case, see [DK, p.96] or [Erl,
Proposition 1]). Since these properties hold for the R in Theorem B, the theorem
assures that they also hold for B. (Note that the surjectivity of 65 implies the
surjectivity of ¢, since the Skolem-Noether Theorem shows AutgzBCim(¢p).)
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The fact that I is abelian also follows from Dubrovin’s analysis of the ideals in a
Dubrovin valuation ring [D2, Sect. 2, Proposition 4]. As for Theorem C, assum-
ing Theorem B we have

d(B)=[S: FI/[B: V]|I: I (ng/ts)?)
=nz[D": F*]/(t3(R: Vh-] [Tx: Tynl (ng/tp)?)
=d4(R),

as ng=tg=1. The Ostrowski theorem holds for §(B) since it holds for §(R) by [Dr,
Theorem 2].

(b) We have Dubrovin valuation rings B, 4 with BCACS and BCA. The
assumptions are that Theorem B holds for A and that any Dubrovin valuation
ring of 4 contracting to BnZ(A4) in Z(A) is conjugate to B. Note that Corollary B
holds for 4 by (a) above. The maps ¢ 4, n,, 0, are the ones defined in Sect. 2 (but
now for A). Let W=ANF, and let Y =BnZ(A), a valuation ring of Z(A).

Observe that st(B)Cst(A) as A is a central localization of B by (1.8). Note that if
sest(A), then s e st(B) iff ¢,(s) (B)=B. This holds since B=n '(B). The inclusion
st(B) o st(A4) induces a homomorphism o: I;— I, with image A* - st(B)/A*. We

claim that
A* st(B)={sest(4): @ (s)(Y)=Y}.

For, the inclusion ¢ is clear. To see 2 take any se st(A) such that ¢ 4(s)(Y)=Y. By
Theorem A, B and ¢ 4(s)(B) are conjugate in 4, so there is an ae A* with ¢ ,(a) (B)
=0 (s)(B). Then a'sest(B) as ¢ (a~'s)(B)=B. Hence, s=a(a"'s)e A*-st(B),
establishing the claim.

Now, the map 6,: I,/T;, —%(Z(A)/W) is surjective by Corollary B. The claim
just proved shows the image of A*-st(B) in I,/I; is 6;'(H), where
H={te%(Z(A)/W):«(Y)=Y}. This yields the exactness of the diagram of
Theorem E (i) at T, and at 9(Z(A)/W)/H.

The kernel of « is (st(B)nA*)/B*. Now, the restriction of 7, to A* is a group
epimorphism: 4*— A* with kernel 1+ J(4)CS1+J(B)< B*. Clearly = ,(st(B)nA*)
=st(B) and 7 ,(B*)= B*. Hence, via 7 ,, ker(x) = st(B)/B* = I}, showing the diagram
is exact at I'; and I} 5 This proves Theorem E (i).

(c) With B, A, B as in Theorem E, note that t;=t3 as B=B. Also, tg=ty
because Bis t, x t , matrices over some Dubrovin valuation ring, by (1.5) applied
to Bin A.

(d) With B, A, B, W as in Theorem E, let ¥ = V/J(W)=BAW, a valuation ring
of W. Let Z(A),., denote the separable closure of W in Z(A), which by Corollary B
is abelian Galois over W. (Corollary B holds for 4 by (a) above since we are
assuming Theorem B holds for A.) Let L'C Z(A),., be the decomposition field of
Br\Z(A)sep over V, ie., the fixed field of

{1€Y(Z(A)sep/ W): (BNZ(A),.p)= B NZ(A)yep} -
Because Z(A) is normal over W,

[L: W]=the number of extensions of ¥ to Z(A),,
=the number of extensions of ¥V to Z(A4)

=g 4-
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Because Z(A4) and L are normal over W and BAL extends uniquely to Z(A), each
extension of ¥ to L extends uniquely to Z(A). So, there are #5_, extensions of ¥ to
L.Setl={(y 4

Let (F,, W;)= (F, W)H, and write S®F, =M, (Dl), where D, is an F,-central
division ring. After identifying W= W, let V, = Ty 1(V), a valuation ring of F, with
VinF=V. Let A4, be the invariant valuation ring of D, such that 4, nF,=W,,
which exists as W1 is Henselian. By Theorem B for 4, A=M, (4,). We identify
Z(A)) with Z(A).

Because W, is Henselian there is an “inertial lift” L of L in D, (cf. [JW, proof of
Theorem 2.97); that is, Lis a field, F, S LCD,, with L separable over F, such that
[L:F,]=[L:W]=/, and, setting W, =A,nL, W, =L in Z(4;). Let D, =C, (L),
the centralizer of Lin D,, and let A, = A,nD,, an invariant valuation ring of D;.
Since W, lies in Z(4,) and is separable over W, [JW, Lemma 1.8(a)] shows that A,
=A4,. Let V,=BnW,, and let ¥, =n;;!(V,), a valuation ring of L with V,nF,=V,.

Let (F,, V,)=(F, V)" and let W, =V, ,, (the localization of ¥, such that W,nF
= W). As noted before (3.8) we may view (F, W,) S(F,, W,) with V,nF, =V,.Let ¥,
=V,/J(W), i=1,2. Then (3.8) says (F,, W,) is the unramified extension of (F, V)
such that (W, I72)=(Wl, V,)". Because V] has [L: F,] extensions to W, =L, ¥, has
[L:F,] extensions to L. So, by (3.7), as (F,, V,)=(F, V)%, we may view
(L, VDE(F,, Va)

Set A3=A,®y, W,, a subring of S3=D; ®,F,. To show A4; is a Dubrovin
valuation ring of S,, we invoke Corollary 3.6 with B=A, (which is invariant,
hence Dubrovin), K=F=L, Y=W,, and (N, U)=(F,, W,). Condition (i) of (3.6)
holds as (F,, W,) is unramified over (L, W;). Also (W, V,)=(W,, V})¥, since

(W, V) S(W, V) S (W3, Vo) = (W, V).

Because V; extends uniquely from W to Z(d4;) (recalling W, = L and Z(A,)=Z(4,)
—Z(A)) by (3.7) Z(A,) and W, are linearly disjoint over W,. Thus, by Corollary 3.6
A, is a Dubrovin valuation rmg of S, with A3 =4, Qw7 W,.

Let S, M(D,), where D, is a division ring with Z(D3)=Z(S;)=F,. Then by
the Morita property (1.5) A= M (A4%), where A} is a Dubrovin valuation ring of
D, with A3nF,=A;nF,=W,. Because W, is Henselian, there is an invariant
valuation ring of D, extending W,; by (3.10) that invariant ring is A3. Hence A3 is a
division ring, showing that k is the matrix size of 4. .

To compute ny we need a Henselization of Z(A) with respect to BnZ(A). Since
(BAZ(A)NL =V, and (L, V,)! =(W,,V;), by (3.7) the field Z(A)®p; W, is the
desired Henselization. Because A~ M, (4)),

np=t, - matrix size of 4, ®yz(Z(A)®w; W,)
=t, matrix size of 4; (as A,=4,)
=t k.
But we also have
S®pF,=[(S®rF1)®F, LI®LF,

=M, (D,®r L)®LF,
=M, AD.®.F,)
=M, a(D3).
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Hence, ng=n k=n,/y ,ny/t,, proving Theorem E (iii).

(e) With the notation of Corollary E, let E= By, Then E is a Dubrovin
valuation ring of § with BCECA (cf. (1.8)), and B=B/J(A)CE=E/J(A) are
Dubrovin valuation rings of A with J(E)=Q/J(A). Since we are assuming
Theorem B holds for 4, we have just shown Theorem E (iii) holds. By applying this
theorem for B in A and again for E in A, we obtain

311 ng/ng=(ny/ng) (5, 4/Cs, 4)-

Observe that £, ,=¢; ,since V=V /J(W), as a refinement of T =(ENF)/J(W), has
at least as many extensions to Z(A) as does 7. In addition, ngy>n; since the
Henselization of F with respect to ENF lies in the Henselization with respect to V.
Likewise, nz =ng. Thus, if ng=ny, then ng=nz and /5 =/ ,

We prove the contrapositive of Corollary E. Suppose Q is not a jump prime
ideal of B. Then there is a prime ideal Q' of B, Q'2Q, such that if E'=B. .y,
ng =ng. We have BCE'CEC A. Formula (3.11) and the subsequent remarks are
still valid with E’ replacing B. Thus, ng =n; implies ngz =n. Since E'2E this
implies that J(E) is not a jump prime ideal of B, as desired.

(f) For (vi)=>(vii) of Theorem F, suppose B®, V'*is a Dubrovin valuation ring
of S®; F", where (F", V")=(F, V). Set B*= B®, V'". Note that SQ; F'=S®, V".
Then, B*nS= B by (3.1)(b),so B"nF = BnF = V. Hence, B"~F"*is a ring containing
V* which contracts to V in F. Thus, B"nF"= V", yielding (vii) of Theorem F.

(vii) = (ii) Suppose there is a Dubrovin valuation ring B* of S® .F" with
B"~S=B and B"nF"=V" Write S® .F"=M,(D"), where D" is a division ring
and n=ny. Let R be the invariant valuation ring of D" with RnF"=V*, Then B"
~MR) by (1.5) and (3.10). Because R is integral over V* (e.g., by [W1,
Corollary]), R is locally finite, by Shirshov’s theorem on integral p.i.-rings [Rw,
pp. 206-207]. Hence, B"~M,(R) is locally finite, so integral over V*. For any
Be B let f be the minimal (monic) polynomial of  over F* and let g be any
monic polynomial in V*[X] with g(8)=0. For any root y of f in any extension
field of F*, g(y)=0, so y is integral over V" Thus, the coefficients of f, as
polynomials in the }’s are also integral over V*. Hence, fe V*[X] as V" is
integrally closed. Now, take any b e B. The minimal polynomial of b over F is the
same as its minimal polynomial (viewing b€ S® zF"*) over F*. Because BC B", this
polynomial has coefficients in V*~F = V. Therefore, b is integral over ¥, proving
(ii) of Theorem F. The proof of Proposition 3.9 is now complete. []

The next two lemmas will be used in proving that B®, V" is a Dubrovin
valuation ring when B is integral over V.

(3.12) Lemma. With B, S, F, V as defined before (3.1), let K be a subfield of F,
Y=VnK, and let (K,Y)S(K',Y’). If S®xK' is simple Artinian and B®yY' is a
Dubrovin valuation ring of S®xK’, then BRy Y' is a compatible extension of B.
Furthermore, if B®y Y is simple, then B®yY = B®y Y, and if also J(Y)- Y' =J(Y'),
then J(B®yY)=J(B)®, Y.

Proof. Let B =B®, Y’, viewed as a subring of S®xK'=S®y Y'. By (3.1), we have
B'nS=B. Also, J(B)CJ(B)®y Y'CJ(B),as J(B)®y Y'is a proper ideal of B’ by (3.1),
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while the linear ordering of ideals of B’ (1.4) assures that J(B') is the unique
maximal ideal of B'. Clearly, st(B)Cst(B’). So B’ is a compatible extension of B.
Consider the epimorphismy: B’ —»B®, Y = B®; Y. If im() is simple, then ker(y) is
the unique maximal ideal of B’, which is J(B'), and B= B'/J(B')=im(y). If further
J(Y)-Y'=J(Y'), then B®,Y =B®;Y'; so J(B)=ker(y)=JB)®,Y', as
desired. [

Hereis the setup for the nextlemma: Let BC 4 be Dubrovin valuation rings of a
s1mp1e Artinian ring S. Let F =Z(S) (w1th [S:F]< ), V=BnF, W=ANF, and
B=B/J(A), a Dubrovin valuation ring of 4. Let K be a subfield of F with
[F:K]<w andlet U=VnK, X=WnK, and U=U/J(X). Let (K, U")=(K, U)¥
and (K,,X,)=(K,X)?, and set X' =X - U’, a valuation ring of K’ with X'nK = X.
As noted in (3.8) we may view (K,, X,)S(K’, X’). Set U' = U’/J(X"). Note that by
(3.8) (X, 0)=(X, D).

(3.131 Lemma. In the setup just described, assume B is integral over U. If A®y X,
and B®g U’ are both Dubrovin valuation rings, then B®y U’ is a Dubrovin valuation
ring.

Proof. Because B is integral over U, we must have A4 (a central localization of B)
integral over X and B integral over U. Recall [E, (13.3)] that the integral closure of
X in F is the intersection of all the extensions of X to valuation rings of F. So,
because WE A4 is integral over X, W must be the unique extension of X to F. Hence
F®g K, is a field by (3.7). This assures S®, K is a simple Artinian ring. Let S,
=S®xK,A;=A®xX,and B,=B®,U,,where U, =U'nK,.Let P=J(X)L U,
s0 A=B-W=B,. Because A=Ap, X=Up,and X, =U,p, we have 4, =4AR, U,
and likewise J(4)®y X, =J(A)®y U,. Note also that AQx X, =4, since X;=X.
Because we are assuming A, is a Dubrovin valuation ring, Lemma 3.12 (applied to
A, S, F, W, ..)says A,=A4 and J(A4,)=J(A)®xX,=J(A)QyU,<B,. Set U,
=U,/J(X,);s0 U;=Uin A, =A. Then, as J(X)- U, =J(X)- X, =J(X,), we have
B,/J(A,)=B®,U,=B®; U, =B, which is a Dubrovin valuation ring of A;.
Hence, by (1.6) B, is a Dubrovin valuation ring of S;. Set B, =B,/J(4,)=B.
Let A'=4,®x,X" and B'=B,®, U =B®yU'". Since X, 0)=(X,,0,)"

and B,=B is integral over U,= U , the argument used above to see
S, is simple Artinian applies here to see that 4, ®g, X’ is simple Artinian, i.e.
Z(A4) and X’ are linearly disjoint over X;. Then, as (K’, X’) is an unramified
extension of (K, X ), Corollary 3.6 shows A’ is a Dubrovin valuation ring of §’
with 4' =4, ®x; X' Since J(X,)- X'=J(X') we may invoke Lemma 3.12 again,
obtaining J(4)=J(4,)®x, X'=J(4,)®,, U'SB'. Furthermore, since J(X,)- U’
=J(X,)- X'=J(X"), we have B'/J(A)=B,®, U = B®y U, which by hypothe51s
is a Dubrovin valuation ring. Hence, by (1.6) B’ is a Dubrovin valuation ring of §’,
as desired. [

4. The Main Argument

The basic argument for proving the theorems stated in Sect. 2 is an induction on
jump rank. We give that argument in this section, while deferring the rest of the
proofs to Sect. 5. Throughout this section B will be some fixed Dubrovin valuation
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ring of an F-central simple algebra S (with [S: F] < o0), and ¥V = BnF, a valuation
ring of F. A will be some Dubrovin valuation ring with BCALS, and W=ANF.
While B will be fixed, the choice of 4 will vary depending on the context. We
further set B=B/J(A), which is a Dubrovin valuation ring of 4= A/J(A); set
V=V /J(W)=BnW,a valuation ring of W: and set Y = BnZ(A), a valuation ring of
the field Z(A) with YAW =¥, The following diagram indicates the inclusion
relations among these rings:

In order to prove Theorem F (ii) = (vi), it is necessary for the inductive process
to prove the following stronger result:

(4.1) Proposition. Let B be a Dubrovin valuationring of a simple Artinianring S. Let
K be a subfield of Z(S),with[S: K] < co. Let U = BnK, a valuation ring of K, and let
(K', U’) be the Henselization of (K, U). Suppose B is integral over U. Then B®, U’ is
a Dubrovin valuation ring of S®xK', and By U’ is an immediate compatible
extension of B.

We now prove Theorem A, Theorem B, Theorem D, Theorem F (i)=>(vi),
Proposition 4.1, and Theorem G (iii)=>(i). In the proof.of Theorem D, we assume
04 Q,, ..., Q, are precisely the jump prime ideals of V with respect to S.

Proof. The proof is by a primary induction on the dimension [S:F] and a
secondary induction on the jump rank j(V,S) of V with respect to S. Note that if
[S:F]=1, then B=V and everything holds trivially. Thus, we may assume
[S:F]> 1. We break the rest of the proof four parts: I. rank (V) =1; IL. rank(V) > 1,
Jj(¥;8)=1, and V has a minimal nonzero prime ideal; IIL j(¥;S)=1 and V has no
minimal nonzero prime ideal; IV. j(V, S) > 1. The primary induction hypothesis will
be invoked only in part IV. For Theorem F we will actually prove (i) = (vi’), where
(vi') reads:

(vi') B®y V" is a Dubrovin valuation ring of S®gF", and is an immediate
compatible extension of B.

I

Assume rank(V)= 1. The conjugacy theorem (Theorem A) was proved for B in this
case by Brungs and Griiter [BG2, Theorem 5.2]. Let (F, 7’) be the completion of
(F, V) (with respect to the topology of the ideals of V), and let S=S®,F. We
identify S and F with their images in S. Let B be a Dubrovin valuation ring of §
with BAF =7, It is shown in [D2, Sect. 3, Lemma 1] and more convincingly in
[BG2, Lemma 3.4] that BN S is a Dubrovin valuation ring of S contracting to V in
F. By Theorem A, B and BNS are conjugate, so we may assume B=BnS. The
grooxf that BAS is Dubrovin in [D2] or [BG2] shows that J(B)nS=J(B) and
B=B.
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Because rank(V)=1, we can take the Henselization (F*, V'*) of (F, V) to be: F*is
the separable closure of F in F and V"=V ~F"(cf. [E, (17.18)]). Let S* = S®; F"C S,
and let B"=BnS". Since (F, V) is the completion of (F*, V'*), the arguments quoted
in the preceding paragraph show that B” is a Dubrovin valuation ring of §* with
B'n Exh =V" J(B)nS*=J(B"), and B"=B. Hence, B'nS =B, J(B")nS=J(B), and
B=pB"

We next show B*=B- V*. Clearly B- V*"CB". Let {b,, ..., b,,} € B be any F-base
of S. Take any feB" and write =Y b,y; with y,€ F". Since F is dense in F as
rank(V)=1, F is dense in F*. Hence, there exist c;e F with y,—c,e V", 1 <i<m.
Then Y bic;=B—Y b(y;—c;)e B*nS=B. Hence, B=Y b;c;+ Y b,(y;—c)e B- V*. So,
B"=B- V" Since B®y V" embeds in S®, V" by (3.1), this shows B* = B®,, V'*. Thus,
B is integral over V by (3.9) (f), and B* is a compatible extension of B.

To see I =T, i.e. st(B")=st(B) - B"*, take any J e st(B") and write § =Y b;¢; and
0~ 1'=Y by, with the b; as above and ¢;, 4;€ F". There is an ideal I +(0) of V* such
that 2,1 CJ(V"), for each i. Since F is dense in F* we may choose e; € F with g;—e; €1,
each i. Let d=Y b,e;eS. Then,

5 d—8)= Y, Y bibAle;—¢)e B JVNCI(BY).

Hence 1+6~!(d—9d)e1+J(B")CB", so that
d=0[1+6"Yd—0d)] est(B")- B"* NS =st(B"HnS =st(B).

Thus, §=d[1+6~'(d— )] ' est(B)- B**, showing I.=I;. Therefore, B" is an
immediate compatible extension of B; so (vi') of Theorem F holds.

We can now prove Theorem B. We have S"~M,(D") for some F"-central
division ring D", with n=n,. Since V" is Henselian, V" extends to an invariant
valuation ring R of D*. Then M,(R) is a Dubrovin valuation ring of M,(D"). By
Theorem A, B*~ M,(R) by a V*-isomorphism. Thus, B~ B"~ M (R)= M (R), and
hence ty=n=ny Furthermore, I3=1Ip =1, g =1y, using Corollary 3.5. The
middle isomorphism is the identity on I3 and hence can be viewed as an equality
in the divisible hull of I},»=I},. We obtain the commutative diagram of Theorem B
(iii) by combining the corresponding diagrams from B to B* (as B" is immediate
over B) and from R to M,(R) to B". Theorem D holds as ny=t, and there are no #
since k=1.

Now, let U, K and U’, K’ be as in Proposition 4.1, and suppose B is integral
over U. Then V is integral over U, so V is the unique extension of U to F. By (3.7)
F®yK'isafield, and F®, K’ can be identified with F"so that V*nK’'=U’. Then S"
=S®F'=S®K'=S®,U’, and BQy U’ embeds in S* by (3.1). Because rank(U)
=rank(V)=1, F is dense in F’. Hence, the argument above proving B"=B . V*
applies here to show B"=B-U'=B®j, U'". This yields Proposition 4.1.

For Theorem G (iii)=>(i) suppose S is a division ring and tz>1. (So S=*F.)
Recall that in M (D) for any division ring D (except the field with two elements) and
any k=2, the only proper subrings invariant under all inner automorphisms are
central. (For this, see [H, Theorem 3], [K, Satz 3], or for k>2 [Ro, Corollary 1].)
Therefore, as B"CS" of matrix size t,

VS ) (B's ' NSSB'NZ(S)NS=V"nS=V,
seSh*
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so equality holds throughout. Each sB"s~ 1S is a Dubrovin valuation ring of §
contracting to ¥, so a conjugate of B. There must be infinitely many such
conjugates, since for any si,...,s,€S5% elementary localization theory shows

k
< N s:Bs; ‘) -F=S=+F. This completes part L
i=1
Before going to part II, we prove further cases of Proposition 4.1:

4.2) Proposition 4.1 holds if rank(U) is finite or if B is an invariant
valuation ring, or if B~M,B’), where B' is an invariant
valuation ring.

Proof of (4.2). The case rank(U)=1 was settled in part I above. Proposition 4.1
then holds whenever rank(U)< oo by induction on rank(U), with the induction
step provided by Lemma 3.13.

Next, assume that S is a division ring and that B is an invariant valuation ring

2
of S. Let {s,,5,,...,5,} be a base of S as a K-vector space, and let s;5,= Y a5,
k=1

with a;; € K. Let K, be any subfield of K such that all a;; € K, and K, is finitely-
generated over the prime subfield. Let S, be the K,-vector space (and algebra)
spanned by {s,,s,, ..., s,}. Then, K, € Z(S,) as K C Z(S), and S, ®x, K = S; hence, S,
has no zero divisors, and as [Sq:K,]=[S:K]< 0, S is a division ring. Let
B,=BnS,, which is an invariant valuation ring of S; let Uy=UnNKy=B,NK,,
a valuation ring of K,. For any given beB,, let fe K,[X] be the minimal
polynomial of b over K. Then, as § =S5,®x K, f is also the minimal polynomial of
b over K. But because be B is integral over U, which is integrally closed, the
coefficients of f lie in U. Hence f € (UNK,) [X]=U,[X]; thus, B, is integral over
U,. Let (K, Up)=(K,, Up)™. Now, the rank of U, is finite (by, e.g. [B, Sect. 10,
No. 3, Corollary 2]) since the transcendence degree of K, over the prime field is
finite. Hence, by the finite rank case already proved, B,®y, Uy is a Dubrovin
valuation ring of §,®y, K. Because K is the direct limit of such fields K, and B
(resp. U, U’) is the direct limit of the corresponding By, (resp. U, Up), B®y U’ is the
direct limit of the (compatible) Dubrovin valuation rings B,®y,Uj. It follows
easily that B® U’ is a Dubrovin valuation ring (in fact an invariant valuation ring,
in view of Theorem 2.2).

Since we now have Proposition 4.1 for any invariant valuation ring, observe
that it also follows for B= M,(R) where R is an invariant valuation ring. For,
B®y U’ =M, (R®, U') which is Dubrovin by (1.5) as R®, U’ is Dubrovin. This
yields 4.2). O

The following general setup occurs repeatedly in the rest of the proof:

(4.3) Setup. Given B, S, F, V as usual, P will be a specified prime ideal of V, A = Bp,
and W=V,=ANF. Let (F,, W,)=(F, W) and let S, = S®; F,. Set ¥, = V" viewed
in W, =W, and let V,=n,!(¥)), the valuation ring of F, with V,CW, and
VinF=V.Set A, = AQ wW,. It willin every case be known thatn,=t, and that 4,
isa Dubrovin valuation ring of S, which is an immediate compatible extension of 4,
with A, NF, = W,. Set B, = B viewed in 4, = 4, and let B, =n; }(B,), a Dubrovin
valuation ring of S; by (1.6), with B,nF,=V,. Evidently, B, is a compatible
extension of B, with B, =B.



320 A. R. Wadsworth

11

Now suppose rank(V)> 1, but j(V;S)=1. Suppose further that V has a minimal

prime ideal P=+(0). Use this P to form A4, W, F,... as in Setup 4.3 above. The

properties of A, specified in Setup 4.3 are known from part I. Write S; =~ M (D,)

where D, is an F,-central division ring and n=n,=t,. Then by (1.5) B, =~ M (B)),

where B]is a Dubrovin valuation ring of D,. Assume for convenience that a set of

matrix units has been chosen in B, so that B, =M, (B)) (and S, =M,(D,)). Set
| =Bp, which assures 4, =B, p=M,(4)).

Set (F,, V,)=(F, V). (This is the (F", V") of Theorem B.) As noted in Sect. 3, we
may view (F,, V})S(F,, V). Set D,=D,®y, F, and S, =S, ®;, F, = M,(D,). Since
S, 2S®F, the matrix size of S, is ng. But ny=n=nbecause j(V,S)=1. Hence, D,
is a division ring (namely, the D" of Theorem B). We write R for the invariant
valuation ring of D, with RnF,=V,. Then RND, is an invariant valuation ring,
and because (F,, V,)=(F,, V;)#, Morandi’s Theorem 2.2 says R is an immediate
extension of RnD,. Note also that by (3.10) RnD, =Bj, since (RND)nF, =V,
=B)NF,. Set B,=M (R), a Dubrovin valuation ring of S, with B,nF,=RnNF,
=V,; B, is a compatible extension of B; = M,(B}), hence a compatible extension of
B.Inview of Corollary 3.5, B, is actually an immediate compatible extension of B;.
Thus,

B=B=B,=B,=B,=M/R).

Since R is invariant, R is a division ring; hence tz=n=n, This proves (i) of
Theorem B, and also Theorem D as there are no £, since we are assuming the Q; are
only the jump prime ideals of V.

Since Bj is an invariant valuation ring it is integral over BinF; =V, (cf. [W1,
Corollary]). Set B, = B}/J(A})S A;. Then B,nZ(A}) is a valuation ring integral
over V;. So B, nZ(A7)is the unique extension of V; from W to Z(A}),i.e. 4, 4,=1.

We can now prove Theorem A for B: Let B, be another valuation ring of S with
BynF=V=BnF.Let Ay=B,,,s0 that A,nF =W = AnF. Since rank(W)=1, we
saw in part I that 4, and A4 are conjugate. Thus, we may assume that A,=A4. Let
B,=B,/J(4), a Dubrovin valuation ring of 4. Since A=A4,=M,(A4;), [BG2,
Theorem 2.4] or [D1, Sect. 1, Theorem 7] says B, is conjugate to M,(C) for some
Dubrovin valuation ring C ofA Then,as CnW, = BomW V=V and4, ,,=1,
we have CnZ(A}) = B], mZ(A ). So (3.10) yields C= Bl,smce B is invariant. Thus,
B, is conjugate to M,,(B') Bin A. Therefore, as B=n'(B) and Bo=n;'(B,), B
and B, are conjugate in A, proving Theorem A for B.

In the previous paragraph we saw that the conjugacy Theorem A holds for
B=B, in A=A,. Since Theorem B holds for A and for A4, by partl,
Proposition 3.11(b) shows that we have the exact sequences (I, ,) and (I, 4,) of
Theorem E(i). Because B, is a compatible extension of B, there is a map of
complexes (I'y 4)—(Ip, 4,), to which we apply the S-lemma to see I, = Ip. Thus,
Iy=Ty, =TI}, =T as B,=M,(R)(recall Corollary 3.5); this yields (ii) of Theorem B.
Since the equality I = I follows from identifications corresponding to inclusions
BE B, and RS B,, Theorem B (iii) follows at once. Note also we have now shown
that B, is an immediate compatible extension of B. Since B, is immediate
compatible over B, B, is also immediate compatible over B.
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Because B,nS=B and B,nF,=V,, Proposition (3.9) (f) shows B is integral
over V. Since B= B, =~ M,(B,) where B} is an invariant valuation ring, (4.2) shows
B®y V, is a Dubrovin valuation ring. Since we also know A®y W, =4, is a
Dubrovin valuation ring, Lemma 3.13 shows B®,, ¥, is a Dubrovin valuation ring.
Since B®, V,CB, and (B®y V,)nF,=V,=B,nF, it follows from (1.8) that
B®, V,=B,, which is an immediate compatible extension of B, yielding (vi’) of
Theorem F. Likewise, suppose K, U, X, K, X,, K’, U’, U’ are as defined just before
Lemma 3.13, and suppose B is integral over U. Then, A®, X, is Dubrovin by
part I and B®g U’ is Dubrovin by (4.2), so B®, U’ is Dubrovin by (3.13). Thus,
Proposition 4.1 holds.

It remains to prove (iii)=(i) of Theorem G for this B. Suppose S is a division
ring and t, > 1. Now, Bis a Dubrovin valuation ring of 4, and the matrix size of 4 is
ty=ny4=ng=tg>1. Consequently, the argument of partI (invoking [H], etc.)
shows that B has infinitely many conjugates. Each lifts via 7! to a different
conjugate of B. This completes part II.

Before going on to part III, let us verify that Theorem B and Theorem D hold if
Bis an Azumaya algebra over V, For this, let B"= B®,, V" where (F*, V*)=(F, V)4,
and let S* =S®; F*=~ M (D") where n=ngz and D" is a division ring. Then, B" is an
Azumaya algebra over V" (cf. [DI, p. 61]), so by Corollary 3.4, [z= I, = Iyn=Ig.
Also, B*=B®; V"= B, so B" is an immediate compatible extension of B. Now, as
B" is Dubrovin, B"~ M (B"), where B" is a Dubrovin valuation ring of D" with
B¥nF"=V* Because V" is Henselian there is an invariant valuation ring R of D*
with RnF"=V* By (3.10) B¥ = R. Thus, B= B" = M (R) (so n=tg, as R is a division
ring). We have established (i) and (ii) of Theorem B, and (iii) holds trivially since
Z(B)=V as B is Azumaya. Further, if E, A4 are rings with BCECACS, then A4 is
Azumaya since it is a central localization of B (cf. (1.8)). Hence, Z(A4)= ANF, which
assures that 4 ,=1. This yields Theorem D, since ng=n=tp and all the £=1.

I

Suppose now that rank(¥)> 1 and j(V,S)=1, but ¥ has no minimal nonzero prime
ideal. The correspondence between prime ideals of B and V (cf. (1.8)) assures that
0)=NQ as Q ranges over the nonzero prime ideals of B. We now invoke a
variation of the Azumaya algebra argument of [D2, Sect. 3] and [BG?2, Sect. 3]. If
[S: F]1=k?, then B has p.i.-degree k. Then there is a homogeneous polynomial f
with integer coefficients such that f is an identity for all algebras of p.i.-degree <k,
but f(b,,...,b,) %0 for some by, ..., b, € B. So, there is a prime ideal Q of B with
f(by,...,b,)¢ Q. Let P=QnV, and use this P in Setup 4.3 to form 4, W, F, Sl,
etc. Then, J(A)=Q. For b,=n (b, we have f(b,,...,b,)=f(by,...,b,) 0 in A
Therefore, A has p.i.-degree k=p.i.-degree of A. By the Artin- Proccs1 theorem [C,
Theorem 9, p. 465], A is an Azumaya algebra over W. The properties of A,
required for Setup 4.3 follow because A is an Azumaya algebra. With this choice
of 4 nearly all the arguments of part IT carry through without change. The
necessary information about 4 and 4, (which in part II was obtained from part I
results) is contained in the observations above about Azumaya algebras.

The only argument from part II which does not carry over is the proof of the
conjugacy Theorem A for B. For this, let B, be another valuation ring of S with
BonF=V =B,NF. Then, just as with B, there exists a prime ideal P, of V¥, with
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Bo,, Azumaya. Pick a prime ideal P, #=(0) of ¥ with P, C PN P,. Redefine A4 to be
Bp andset Ay=B,, . Then A and 4, are Azumaya algebras over V}, since they are
central localizations of the Azumaya algebras Bp and B, . Because V3, is a
valuation ring the functorial map of Brauer groups Br(V;,)—Br(F) is injective by
[Sa, Lemma 1.2]. Hence, [A,] =[A] in Br(V},). Since projective V» -modules are
free this implies M (4,) = M [(A) for some ¢; hence, by the cancellation theorem for
Azumaya algebras over semilocal rings (cf. [OS, Corollary 1]), A,=~A4 by a
Vp,-algebra isomorphism. This isomorphism extends by central localization to an
F-automorphism of S, which by Skolem-Noether is inner. Consequently, A and 4,
are conjugate. The rest of the argument for conjugacy of B and B, is the same as in
part II. This completes part III.

v

Now assume j(¥,S)>1. We argue by induction on the jump rank (within the
primary inductionon [S: F]). Let 0,0, & ... £ Q, =J(V) be the jump prime ideals
of ¥ with respect to S. For some i, 1 <i<k, let A=B,, and let W=AnF=V,,
Specific choices of i will be made later. Using this A and W define B, ¥, Y, as
described at the beginning of Sect. 4. The jump prime ideals of W re § are clearly
0, 0, ...,Q; 50 j(W,S)=i< j(V, S). Hence, by induction Theorem B holds for the
ring A. Consequently, by Proposition 3.9 (¢), we may invoke Corollary E to see
that j(Y, A)<j(V,S)—i<j(V,S). In addition, Theorem C applies to 4 by (3.9)(a),
yielding [4: Z(A)] < [A: W]Z[S: F]. Consequently, the results we want to prove
about B hold by induction for B as well as for A.

To prove the conjugacy Theorem A for B, let B, be another Dubrovin
valuation ring of S with BynF=V=BnF. Let 4,=B,,, which is a Dubrovin
valuation ring of § with AgnF =W =ANF. Then A and A, are conjugate in S,
since Theorem A holds for 4 by induction. Hence, we may assume Ap=A. Let B,
=B,/J(A) and Y,=B,nZ(A). Then Y and Y, are each valuation rings of Z(A)
extending ¥ in W Now, by (3.9)(a), Corollary B applies for A. Hence, Z(4) is
normal over W, so there is a © € (Z(A4)/W) with ©(Y,) = Y. Since 0 , is surjective (by
Corollary B again) T can be induced by conjugation by some element of st(A). After
conjugating B, by such an element, we may assume Y, =Y. By Theorem A for B,
which holds by induction, B, and B are conjugate in Z(A). Hence, B, and B are
conjugate, completing the proof of Theorem A.

We can also settle Proposition 4.1. For, since B is integral over U, A is integral
over X and B integral over U. By induction, Proposition 4.1 holds for A4 and for B,
hence it holds for B by Lemma 3.13.

We next dispose of Theorem G (iii)=>(i). For this, suppose S is a division ring
and t;>1.Ift,=1, then A4 is a division ring with Dubrovin valuation ring B and
tz=tz>1. By induction, B has infinitely many different conjugates. Their inverse
images in A yield infinitely many different conjugates of B. On the other hand, if
t4>1, then by induction A has infinitely many different conjugates. For any se S*,
(sBs~ 1)? =5Bys” '=sA4s™'. Thus, whenever sAs™'#tAt”' we have sBs™!
+tBt™ . So, the infinitely many conjugates of 4 yield infinitely many conjugates of
B, as desired.

Now drop the assumption that S is a division ring. We can quickly settle
Theorem D (assuming the Q; are just the jump primes of V re S). For this choose Q;
(for the construction of A, W, etc.) to be the next to last jump prime Q, _,. Then,
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j(Y, A)<k—(k—1)=1, so that ng=t3 by parts I-III above. Of course also tz=tp.
Note that the jump prime ideals of Wre Sare Q,...,Q; -, and thatthe 4, ..., 4 _,
of Theorem D are the same for 4 as for B, while the 4 for Bis 4 4. Theorem B holds
for A by induction, hence we have Theorem E (iii) for B by (3.9)(d). Thus,

np=np(na/t Mg 4
=tglty... (-1
as desired.

We now prove Theorem B under the assumption that ng=t,. For this, any
choice of Q; may be made (1 <i<k) for defining 4, W, etc. Since Theorem B for 4
and Theorem A for B hold by induction, Proposition 3.9 yields Theorem E for Bin
A. Hence, (with sz=ng/ty) we have

SB=5554%8, 4-

By assumption sg=1, while sz and 5, are positive integers by Theorem D (which
holds by induction), as is 4 4. This forces

nB':tﬁ, nA=tA, and /B,A=1'

The last equation means Y is the unique extension of ¥ to Z(A4). Hence, the exact
sequence (I ,) of Theorem E (i) is actually the short exact sequence

(FB,A) 0-I3—>I—>1,—0.

Now, using Q; for the P, define F,, W,, S, V;, 4,, B,, etc. as in Setup 4.3. Since
n, =t therequired properties of 4, follow from Theorem F (i)=>(vi’), which holds
for A by induction. Also, since j(W¥,,S,;)=1 as W, is Henselian, Theorem B holds
for A, by induction, so by (3.9) Theorem E holds for B, in A4,. The exact sequence
(I3, Al) is actually short exact for the same reason as for (I3, A) (as V, =V in Z(A))
=Z(A)). Furthermore, the compatibility of B in B, assures there is a map of
complexes (I, 4)—(I, 4,), which by the 5-lemma is an isomorphism. Hence,
Iy, =TIy and B, is an immediate compatible extension of B.

Let (F,,V,)=(F,V)!=(F",V". As noted in Sect.3, we may view
(F, V})S(F,, V). Let S2—S®FF2—S ®p, Fy;let W= VZQ, so W,nF,=W,;and
let V, = V,/J(W,)C W,. By (3.8), W, is an unramified extension of W; with (W, V)

(Wl, V,)H. Also, since V; = ¥ has a unique extension to Z(4,), Z(A4,) is 11near1y
disjoint to W, over Wj (cf. (3.7)). Set A, =4, ®y, W, £ S,. By Corollary 3.6, A, is a
Dubrovin valuation ring of S, which is compatible with A, and I,,=T, and 4,
=4, ®w; W,. View A, as A, ®y;(Z(4,)®w; W,). Note that by (3.7) the unique
extension, call it Y, of V, to Z(A,)®w; W,(=Z(A43)) is the Henselization of

B,nZ(A,). Since B, = B, ny=t;, and iy, A)<jv, ), Theorem F (i)=(vi') holds by
lnductlon for B}. Hence, if we set B, = B; ®p, V,, B, is a Dubrovin valuation ring of

A, which is an immediate compatlble extension of B}, with B,nZ(4,)=Y,. Then
n3.}(B,) is a Dubrovin valuation ring of S, contracting to B,nS=Bin S and to V,
in F,. Hence, B is integral over V' by (3.9)(f).

Let B,=B®, V,, a Dubrovin valuation ring of S, by Proposition 4.1 (which
was proved above for B); B, is a compatible extension of B. Since B, Cn !(B,) and
both these Dubrovin valuation rings contract to ¥, in F,, we must have B,
=n 1(B ) (cf. (1.8)). So, BZ—BZ/J(AZ) An analogous argument shows B, ®y V,
=7, !(B,)= B, which yields that B, is a compatible extension of B,. Now, as W,



324 A. R. Wadsworth

and Y, are Henselian, j(W,, S,)= j(Yz, A,)=1, so by induction Theorem B holds for
A, and Theorem A holds for B,. Thus, Proposition (3.9)(b) shows that
Theorem E (i) holds for 32 in A,. The diagram (I, ,,) is a short exact sequence, as
the Henselian valuation ¥, has a unique extension to Z(4,). Moreover, from the
compatibility of B, in B,, there is a map of complexes (I, 4,)—(I3,. 4,), Which is an
isomorphism by the 5-lemma. Hence, I, =TI},. Since B, =B, =B, =B,, B, is an
immediate compatible extension of B,, hence of B. (This yields Theorem F
(i)=>(vi') for B.)

Now, S, = M,(D,), where n=ngz and D, is an F,-central division ring. Since V,
is Henselian, there is an invariant valuation ring of D,, called R in Theorem B, such
that RnF,=V,. Because R is the only Dubrovin valuation ring of D, contracting
to ¥, by (1.5) and (3.10) B, =~ M (R). Thus, B= B, =~ M,(R) where n=ny=tp, and
Iy=Tg, =TIy by Corollary 3.5. This yields (i) and (ii) of Theorem B. Finally, in the

diagram below,
Iy/ly Iy /Ty, I/Ty,
e,l 0y, 0x

Y(Z(B)/V) 5> 4(Z(B,)/V,) 5 Y(Z(R)/ V)

the left square is commutative as B, is compatible with B, and the right square is
commutative as M,(R) is compatible with R and B, =~ M,(R). The commutative
outer rectangle establishes (iii) of Theorem B.

It remains to prove Theorem B in case t;<nz We have shown Theorem D,
which says

nB=thz.../h,

where 7 =g, Bo;. ; Since tp<np some ¢4>1. Choose i, 1<i<k, so that
H=...=(=1, but {‘+1>1 (If£H>1, seti=1 ) For this part of the argument, set
A=Bg, and W=AnF, with the i just selected. We have £y 4274, , 4=Ci11>1,
since I7 has at least as many extensions to Z(A4) as (the coarser valuatlon ring)
Vo,. /J(W). Note also that j(W,S)=i<j(V,S) and by Theorem D for 4,
ng=ty l,...0;=t,

Now define F,, W,, S,, V}, 4,, B,, etc. as in Setup 4.3, using Q; for the P.
Theorem F (i)=(vi’), which holds for 4 by induction, assures that A, has the
required properties. For the same reasons as in the ng=tg case above,
Theorem E (i) applies to Bin A and to B, in A4,, yielding exact (but no longer short
exact) sequences (I 4) and (I, 4,)- Because B, is a compatible extension of B there
is a map of complexes (I, A)—*(I"B1 4, Which is an 1somorphlsm by the 5-lemma
(Recall that V; =¥ and B, . =Bin A, = A) Hence, B, is an immediate compatible
extension of B.

We have S, =M, (D,), where m=n, and D, is a division ring. Then by (1.5),
with appropriate choice ofidempotents, B, = M (B})and S; = M, (D) where B} isa
Dubrovin valuation ring of D ; further, A, =M, (A}) where A} =By, We have
B=B,;=M,(B}), I3=I; =1Iy, by Corollary 3.5, and a commutative diagram
(from the compatibility of B, with B and with B}):

L/l —=—— I /I, —= Iy /Iy,
0s 0O, O5; .
YZ(B)/V) = HZ(B,)/V}) = YZ(B)/V)
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Since [D, : F;]=[S: F]/m? Theorem B holds for B by the primary induction if
m>1. In this case Theorem B follows for B by what we have just seen.

Thus, we may assume m=1, i.e., §; = D,. Because W, is Henselian, there is an
invariant valuation ring of S, contracting to W,; by (3.10) that ring is 4,.

Now, let Z(A),.,, be the separable closure of W in Z(A), and let L C Z(A),., be the
decomposition field of BmZ(A)sep over ¥, so that [L: W]=#¢ ,>1.Just as in the
proof of (3.9)(d), since L is normal over W (as Z(4),., is abelian Galois over W),V
has 4 4 different extensions from W to L, each of which extends uniquely to Z(A).
Identify L with its image in A, =A. Since W, is Henselian there is a field L,
F,CLCS,, whichis an inertial lift of L over W, = W, That is, L is separable over F,
with [L:F,]=[L:W]=¢ 4 and W, =L in A, where W, is the valuation ring
A;NnL. Let S, be the centralizer of L in §;, and let A; =A4,nS;. Then 4, is an
invariant valuation ring of S; with A;=A, by [JW, Lemma 1.8(a)]. Let B,
=B,nS,, B,=B,/J(A,), V,=B.NnL, and V, =V, /J(W,). Then B, is a Dubrovin
valuation ring of S, since B, =m ! (B,). Furthermore, B, is a compatible extension
of B;. We also have [S,:L]<[S,:L]-[L:F,]*=[S:F]. Consequently, by the
primary induction, Theorem B holds for B;. We work back from B, to B.

As in the proof of (3.9)(d), we may view (L, V,)S(F, V)". So, since (L, V)?
=(F, V)" =(F" V*) we have the same R for B as for B, in Theorem B. Thus,

B=B=B,=B,=M(R),
where t =ty =tg, =tz=tp. As to the value groups, consider the diagram
0 —Iy —1I — I, —0
||
0— I — Iy, — Iy, — YZ(4)/W)/H — 0.

The rows of the diagram are the exact sequences (I, ,,) and (I, ,,) given by
Theorem E (i). (This theorem applies to B, in A, and B, in 4, by Proposition 3.9(b),
since Theorem B holds for 4; and A, (as W, and W, are Henselian) and
Theorem A holds for B, = B, = B by induction.) The top row is short exact because
V.=V has a unique extension to Z(4;)=L. In the bottom row

H={te%(Z(A,)/W):(B,nZ(A,)=B\nZ(A,)} =9(Z(4,)/L).

The diagram is commutative because B, is a compatible extension of Bj.
Furthermore, [JW, Lemma 1.8 (a)] shows that I, maps onto 0 (%(Z(A4,)/L) in
Iy /I, Thus, in the diagram above the image of (Iy, —+I,) contains the image of
(Iy,»TI,,). The diagram therefore shows I =Ip . Thus, Iy=I =Ip =I%.
Finally, (iii) of Theorem B follows from the commutativity of the diagram

Ip/Ty > I /Ty, » Iy, [Ty, ——— IR/Tyn
9,,1 0, 0y, 0,

%(Z(B)/V) — %(Z(B,)/V}) — %(Z(BL)/V;) — %(Z(R)/V*)

The first two squares of the diagram are commutative by the compatibility of B,
over B and B, over B;. The right square is commutative by Theorem B (iii) for B;.
This completes the proof of Theorem B, completing part IV of the main proof. []
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We have now fully proved Theorem A and Theorem B. Thus, Corollary B,
Theorem C, Theorem E, and Corollary E follow by Proposition. 3.9. We have
proved Theorem D assuming that the Q; are the jump prime ideals of ¥ re S. This
assumption was needed in part IV only to assure that j(V,, _,S)<j(V;S), allowing
us to apply Theorem B to A= B, _, by induction on jump rank. Since we have
now proved Theorem B in general, the argument in part IV (now by induction on k
instead of jump rank) proves Theorem D as originally stated. We have also proved
Proposition 4.1.

5. Proofs of Theorems F and G Completed

Proof of Theorem G. As we noted after the statement of Theorem G, (i)<>(ii) = (iv)
and (ii)=>(iii) were proved by Brungs and Griter. They also showed in [BG1,
Theorem 4] that if the set of elements of S integral over V is a ring, then V extends
to a total valuation ring B, of S. Since B is conjugate to B, by Theorem A, Bis also
a total valuation ring of S. This yields (iv)=-(ii) of Theorem G, while (iii)=>(i) was
proved in Sect. 4 above.

It remains only to prove the formula for the number of conjugates when (i)}—(iv)
hold. We do this by induction on the jump rank. Let c; be the number of
conjugates of B. Note first that if ny=1, then B is an invariant valuation ring by
Theorem 2.2 and Proposition 3.10; so, cg=1=ngz. Now assume ng>1=tpz Then
j(V;8)>1 by Theorem D. Let P be the smallest jump prime ideal of V're S, and let
A=Bp. With this P and A4 define W, ¥, B, and Y as at the beginning of Sect. 4. Since
JW,8)=1,n,=t,<ty=1by Theorem D and Theorem E(ii). Hence n, =1, so that
A is an invariant valuation ring. Therefore, all the conjugates of B lie in A4, and are
thus determined by their images in 4. That is, cz equals the number of Dubrovin
valuation rings B, of 4 with B,nW = V. For any such B, B,nZ(4) is one of the 4,
extensions of ¥ to Z(A). If B,nZ(A)= Y = BnZ(A), then B; is a conjugate of Bin A4.
The number cj of such conjugates is ng by induction. (Note that j(Y, 4) < j(V, S) by
Corollary E. The hypotheses of Theorem G hold for B as 4 is a division ring since
A is invariant, and tz=tg=1.) Since Z(A) is normal over W by Corollary B (or
[JW, Proposition 1.7]), %(Z(A4)/W) acts transitively on the extensions of ¥ to Z(A).
Each automorphism in %(Z(A4)/W) extends to a W-automorphism of 4 by the
surjectivity of 0, in Corollary B. Hence, each extension of ¥ to Z(A)is the center of
¢z Dubrovin valuation rings of A. Therefore,

Cp=Cp 5, 4=Np g, 4=MNp,
as desired, where the last equality is given by Theorem E (iii). [J

Proof of Theorem F. We have already proved (vi)=>(vii)=> (ii) (in
Proposition 3.9(f)), (ii) = (vi) (in Proposition 4.1), and (i) = (vi') (in Sect. 4). Clearly
(vi’) = (vi). To complete the proof of Theorem F we now show (ii) = (v) = (i) and
(vi') = (iv) = (iii) = (V).

(ii)=(v) Suppose B is integral over ¥, and take any (Dubrovin valuation) rings
E, A with BCECACS. Let T=EnF, W=AnF, T=T/JW)CWCA,
E=E/J(A)C A, and P=J(T)< V. Because Bis integral over V, E = B, is integral over
T = V,. Hence E is integral over T, which is a valuation ring of the field W, Since the
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valuation ring EnZ(A4) is integral over 7, it is the only extension of T to Z(4). Thus,
4, 4= 1, proving (v).

(v)=>(i) This is immediate from Theorem D since by hypothesis all the £=1.

(vi')=(iv) Let B"=B®) V* which we are assuming is a Dubrovin valuation
ring of S®; F". We have S®; F* =~ M,(D") where n=ng and D" is a division ring. Let
R be the invariant valuation ring of D* extending the Henselian valuation ring V*
of F*. After making a convenient choice of matrix units (and copy of D¥), we may
assume B" = M,(R). We first prove (iv) for B". Every ideal I of B" has the form M (I')
where I’ is an ideal of R. Then I’ — {0} is a generating set of I as an ideal of B, and
I'— {0} S D"* =st(R) Cst(BY).

To prove (iv) for B first note that I =TIy since we are assuming B" is an
immediate compatible extension of B. Now, take any ideal I of B. If { 8,} Cst(B")is a
generating set of the ideal I®, V" of B*, write each B;=bu; with b,est(B) and
u;€ B"™*. Let I, be theideal of B generated by {b,}. Then the ideal of B* generated by
I, is I, ®, V" but is also I®, V*. Hence, by Lemma 3.1(b),

=@y V)V =, ®, V"V =1I,,

which proves (iv) for B.

(iv)=(iii) Let I=BbB. By (iv), I is generated as an ideal by some {s;} Cst(B).
Because the ideals of B are linearly ordered by inclusion (cf. (1.4)), we have
I=|) Bs;B. So, there is an s; with be Bs;B. Then I = Bs;B=Bs;=s;B, as s;€st(B),

proving (iii).

(iil)=(v) Take any be B, b+0. We have from (iii) BbB= Bc=dB for some c,
d e B. Since every nonzero two-sided ideal of B contains a regular element, c € S*.
We have ¢cBSdB=Bc, so cBc !CB. Since cBc"'nF=BnF=V, the corre-
spondence (1.8) between overrings of cBc ™! and localizations implies cBc ™! =B.
Hence, cest(B) and BbB= Bc=cB. Likewise, as any nonzero t€ S can be thrown
into B by multiplying by a nonzero element of F, BtB can be generated by an
element of st(B) as a cyclic left and right B-module.

Now consider rings E, A with BCEC ACS. For any t e st(E) we have just seen
there is an sest(B), such that BtB= Bs=sB. Then, as tE = EtE, we have tE=BtE
=BtBE=sBE=sE, yielding t=su with ue E*. Thus, st(E)=st(B)- E*. Likewise,
st(4)=st(B)- A*=st(B)- E*- A*=st(E)- A*. Let E=E/J(A)CA, T=EnF,
W=ANF,and T=T/J(W)=EnW., By Corollary B, Z(4) is normal over W and 8,
maps st(4) onto %(Z(A)/W). Hence, st(4) acts transitively on the set of extensions
of T to~Z(Z). But in this action every element of st(E) - A* sends ENZ(A) to itself.
Thus, EnZ(A) is the only extension of T to Z(A). So, 4 4= 1, proving (v). This
completes the proof of Theorem F. [J

References

[B] Bourbaki, N.: Algébre commutative. Che. 6, valuations. Paris: Hermann 1964

[BG1] Brungs, H.H., Griter, J.: Valuation rings in finite dimensional division algebras. J.
Algebra (to appear)

[BG2] Brungs, H.H., Griter, J.: Extensions of valuation rings in central simple algebras. Trans.
Am. Math. Soc. (to appear)

[C] Cohn, P.M.: Algebra, Vol. 2. London: Wiley 1977



328
[p1]
[DR]
[DK]
[D1]
[D2]
(Bt
[Er2]
{6}
[H]

Dw]
K]

[Ma]

M1]
M2]

[0s]
(Re]
[R1]
[R2]
[Ro]

[Rw]
[Sa]

(8]
[(wil

(w2]

A. R. Wadsworth

Demeyer, F., Ingraham, E.: Separable algebras over commutative rings. (Lectures Notes
in Math,, Vol. 181). Berlin Heidelberg New York: Springer 1971

Draxl, P.: Ostrowski’s theorem for Henselian valued skew fields. J. Reine Angew. Math.
354, 213-218 (1984)

Drax], P, Kneser, M. (eds.): SK; von Schiefkérpern. (Lecture Notes in Math., Vol. 778).
Berlin: Springer 1980

Dubrovin, N.I.: Noncommutative valuation rings. Tr. Mosk. Mat. O.-va., 45, 265-280
(1982). English trans: Trans. Mosc. Math. Soc. 45, 273-287 (1984)

Dubrovin, N.I.: Noncommutative valuation rings in simple finite-dimensional algebras
over a field. Mat. Sb. 123, 496-509 (1984); English trans: Math. USSR Sb. 51, 493-505
(1985)

Endler, O.: Valuation theory. New York: Springer 1972

Ershov, Yu.L.: Henselian valuations of division rings and the group SK,. Mat. Sb. 117,
60-68 (1982); English transl.: Math. USSR Sb. 45, 63-71 (1983)

Ershov, Yu.L.: Valued division rings, pp. 53-55, in Fifth All Union Symposium on the
Theory of Rings, Algebras, and Modules, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat.,
Novosibirsk, 1982 (in Russian)

Formanek, E.: Noetherian PI-Rings. Commun. Algebra 1, 79-86 (1974)

Griter, J.: Valuations on finite-dimensional division algebras and their value groups.
Arch. Math. 51, 128-140 (1988)

Hua, L.K.: A note on the total matrix ring over a non-commutative field. Ann. Soc. Math.
Pol. 25, 188-198 (1952)

Jacob, B, Wadsworth, A.: Division algebras over Henselian fields. J. Algebra (to appear)
Kasch, F.: Invariante Untermoduln des Endomorphismenringes eines Vektorraums.
Arch. Math. 4, 182-190 (1953)

Mathiak, K.: Valuations of skew fields and projective Hjelmslev spaces. (Lecture Notes
in Math., Vol. 1175). Berlin Heidelberg New York: Springer 1986

Morandi, P.: The Henselization of a valued division algebra. J. Algebra (to appear)
Morandi, P.: Valuation rings in division rings and central simple algebras, doctoral
dissertation, Univ. of Calif. at San Diego, 1988

Ojanguren, M., Sridharan, R.: Cancellation of Azumaya algebras. J. Algebra 18, 501-505
(1971)

Reiner, I.: Maximal orders. London: Academic Press 1975

Ribenboim, P.: Théorie des valuations. Montréal: Presses Univ. Montréal 1968
Ribenboim, P.: Equivalent forms of Hensel’s lemma. Expo. Math. 3, 3-24 (1985)
Rosenberg, A.: The Cartan-Brauer-Hua theorem for matrix and local matrix rings. Proc.
Am. Math. Soc. 7, 891-898 (1956)

Rowen, L.H.: Polynomial identities in ring theory. New York: Academic Press 1980
Saltman, D.: The Brauer group and the center of generic matrices. J. Algebra 97, 53-67
(1985)

Schilling, O.F.G.: The theory of valuations. Math. Surveys, No. 4, Am. Math. Soc.,
Providence, R.I, 1950

Wadsworth, A.R.: Extending valuations to finite dimensional division algebras. Proc.
Am. Math. Soc. 98, 20-22 (1986)

Wadsworth, A.R.: Dubrovin valuation rings, pp. 359-374. In Perspectives in ring
theory. F. van Oystaeyen, L. Le Bruyn (eds.). NATO ASI Series, Series C, Vol. 233.
Dordrecht: Kluwer 1988

Received July 6, 1987



