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In a recent paper Korevaar [5] used the Alexandrov reflection principle to show
that closed embedded hypersurfaces in R"*!, IH"*! or the upper hemisphere of
§"*! are umbilic spheres provided a certain function f of the principal curvatures
A=(Ay, 45, ..., 4,) is constant. He only had to assume that f is positive on the
positive cone ¥ ={4|4;>0 Vi} and that f is elliptic on the component I" of
{4] f(4)>0} which contains €. Here f is said to be elliptic if 0f/04;>0 for all i,
1<i<n. This generalization of earlier sphere theorems (see [9] and [10] for
references) cannot be extended to hypersurface immersions in view of recent
counterexamples, [11].

However, assuming additional curvature conditions Walter derived in [10]
global results for hypersurface immersions in a space N"*!(c) of constant
curvature ¢, which have a constant higher mean curvature function H,. Here H, is
the r-th symmetric function of the principal curvatures. It was shown that such
hypersurfaces are of constant mean curvature H,, provided they have non-
negative sectional curvature and non-negative principal curvatures. As a conse-
quence they have to be isoparametric with at most two distinct principal
curvatures and can therefore be completely classified.

Here we show that it is not necessary to assume all principal curvatures to be
non-negative. Moreover we extend Walter’s result to general symmetric functions
f=f(%). Let M" be a smooth, connected and compact manifold without boundary.
Then we have the following result.

1. Theorem. Let F: M"—N"*(c) be a smooth isometric hypersurface immersion of
M" into a Riemannian manifold of constant curvature c, such that the sectional
curvature of M" is non-negative. Assume that f=f()) is a smooth symmetric
function of A=(4,,2,,...,4,) satisfying the following conditions

1) f(4)>0 whenever Lc¥.

ii) On the component I'(f) of {A|f(1)>0} containing €, f is elliptic (i.e.
0f/82;>0 Vi) and concave (i.e. [0*f]<0).

If f(A)=const>0 for each principal curvature vector A=A(p), pe M", and if
Mpo)eI'(f) for some point p, € M", then the mean curvature H, of M" is constant
and hence M" is isoparametric with at most two distinct principal curvatures.
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Remarks. i) We only have to show that the mean curvature H, is constant: Nomizu
and Smyth established in [8] that then F(M") has parallel second fundamental
form. This in turn implies that F is isoparametric with at most two distinct
principal curvatures by a result of Lawson, [6].

ii) The condition that A(p,) e I'(f) for at least one point p,e M is automati-
cally satisfied if F(M") is contained in R"*!, IH"*! or in the upper hemisphere of
S"*!. More generally it is sufficient that F(M") lies in the domain of a strictly
convex function, compare [10, Remark 5B.].

iii) It is shown in [4] that f = (H,)'” satisfies our conditions for all v, 1 <r<n.
Other examples including the harmonic means functions f(1)=(i;'+41;!
+...4, 1)~ can be found in [7, Chap.2].

For the proof of Theorem 1 we need an inequality for concave symmetric
functions in the plane.

2. Lemma. Let f=f(x,y) be a symmetric function on R? which is concave on an
open convex and symmetric subset G. Then the inequality

(%{C‘— (XO, yO)_ % (XO’yO)) (xo_yo)é()

holds for every (xq,yo)€G.

Proof. Consider the straight line y(t) orthogonal to the diagonal {x=y} through
(x0» o), parametrized by
W) =2(xo+yo—2t, X0+ yo +21).

Since f is concave and symmetric in x and y, f|, has a maximum at ¢t=0, is
nonincreasing in ¢ for t 20 and nondecreasing in ¢ for t <0. As

d _of of
G/ O0= 5601~ 5 60,
this implies the desired inequality.

Proof of Theorem 1. Since F is a smooth immersion and f is a smooth symmetric
function of the 4;’s, f as a function of the principal curvature vector A(p),pe M",isa
smooth function on M". Let ¥ denote covariant differentiation on F(M") and let f;
be the derivative of f when considered as a function of the second fundamental
form A= {h;;}. Since f(h;;)is constant on M" by assumption, the Laplace-Beltrami
operator 4 applied to f yields zero. Computing in a local orthonormal frame and
summing over repeated indices we obtain

0=df =V V.f=V.(f;Vuhi})
= fiidhij+ [Vl iV -
Now observe that as in [10, identity 3.16]
Ahy=VVH; + Ryimhm + Riimhmi
where R;;, is the curvature tensor on F(M"). Thus we obtain
0=fVV.H | + f3aVuh:iVhia
+ fi{RyikmBm; + R jmmi) -
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Now write

0;;=R;j; (no sum)

ijij

for the sectional curvatures on M" and rotate at a given point the coordinate
system such that {h;;} is diagonal. Then the last equation reads

2

of of
0_;(91 VVH + Z alalk hu hkk+ Z a/l (o.lk)' lkj'k)‘

The second term on the RHS is non-positive due to the concavity of f. The last

term can be written as
1 af  af
_Z<5i; al)(lk A0y

2%

When restricted to the variables (4,, 4,), f satisfies the conditions of Lemma 2 for
each pair (i, k). Since g, = 0 by assumption, the last expression is less than or equal
to zero. Hence we finally conclude

af
Ty

Our ellipticity assumption on f and the strong maximum principle then yield
H, =const, completing the proof of Theorem 1.

We may now proceed as in [10, Sect. 4] to classify all isoparametric
hypersurfaces with at most two distinct principal curvatures which satisfy our
curvature assumptions. The only difference appears in the case ¢ >0, where we get
a much larger class of examples. The additional examples are generalized Clifford
tori which arise since we are not restricted to hypersurfaces with non-negative
principal curvatures. This partially generalizes the result of Cheng and Yau in [3],
where the special case f=(H,)'/?> was considered.

Using similar notation as in [10], we define the family of hypersurfaces 5, in
R"*1 H"*!(c), and S"*(c) as follows

For ¢>0: 5, is the family of all small umbilic hyperspheres and generalized
Clifford tori in S"*(c).

For ¢=0: s, is the family of all hyperspheres and orthogonal spherical
hypercylinders in R+,

For ¢<0: 5%, is the family of all geodesic distance spheres, horospheres, and
geodesic hypercylinders in H"*!(c).

Furthermore, given a complete space N"* !(c) of constant curvature c, let o(5#)
be the image of the family s#, under the associated universal covering g. Then
proceeding as in [10] we obtain the following consequence of Theorem 1.

ViVH, 20.

3. Corollary. Let F:M"—N"*!(c) be an isometric immersion into a complete
Riemannian manifold of constant sectional curvature c such that the sectional
curvature of M" is non-negative. Let the function f = f(4) be as in Theorem 1 with
Mpo)eI'(f) for some poe M". If f(A)=const>0 on F(M"), then F(M")€ g(.).

In the special case where ¢ >0 and N"*(c)=P"*!(c) is the (n + 1)-dimensional
real projective space, we conclude from [10, Lemma 4.7]:
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4. Corollary. Let F: M"—IP"* !(c) be an isometric immersion into P***(c) and let
f=f(A) be as in Theorem1. If F(M") has non-negative sectional curvature,
Mpo) € I'(f) for some point pye M" and if f(A)=const>0 on F(M"), then F is an

embedding onto a distance sphere of radius <n/2ﬂ or a covering map onto a
Clifford quadric in P"*(c).

Finally we can extend Corollary 4.C in [10] to general functions (1) without
assuming a lower bound on the sectional curvature.

5. Corollary. Let F:M"—N"*!(c) be an isometric hypersurface immersion into a
Riemannian manifold N™* '(c) of constant sectional curvature c and let f = f(A) be as
in Theorem 1. If F(M") has strictly positive sectional curvature, J(p,) € I'(f) for some
point poe M" and if f(A)=const>0on F(M"), then F(M")is umbilic and has constant
curvature.

Proof. This is an immediate consequence of Corollary 3 since positive sectional
curvature rules out all examples with a product structure.
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