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Classification of Supersingular Abelian Varieties

Ke-Zheng Li
Nankai Institute of Mathematics, Tianjin, People’s Republic of China

0. Introduction

Let k be an algebraically closed field of characteristic p>0. An abelian variety X
over k is called supersingular if H.,(X/W) has Newton slopes all equal to 3, or
equivalently, if there is an isogeny ¢: E?— X, where E is a supersingular elliptic
curve, and g =dim(X). (This comes from a series of work by Eichler, Oort, Deligne,
Shioda and Ogus. See [22, p. 113], [21, p. 35], [23, p. 586], [19, p. 59]). Oda and
Qort [18] have studied the classification problem of supersingular abelian
varieties in the case when a(X)=1 at the crystal level, where a(X)
=dim, Hom(a,, X) [18, p. 595]. The other cases are relatively special but much
more complicated.

In this paper we first study the classification problem of all cases at the crystal
level (Sect. 1). This solves a problem left open by Oda and Oort [18]. Then, in
Sect. 2, we study the fine moduli problem. Two kinds of additional structures are
given to the families of supersingular abelian varieties so that they have fine
moduli. The proofs are constructive.

In Sect. 3, we study what appears to be a difficult question: How can we recover
a family of supersingular abelian varieties from its crystalline cohomology? This is
solved by virtue of the so-called “a-sheaf”.

In Sect.4 we deal with the problem of how, for an arbitrary family of
supersingular abelian varieties, we can modify it so that it has one of the additional
structures of Sect. 2 (and hence is induced by a morphism to the fine moduli). For
one of the structures, namely the “level structure”, this is solved by Ogus.

Finally, we study the coarse moduli problem in Sect. 5. We prove that for any
set of integer invariants, there is a coarse moduli space of supersingular abelian
varieties having that set of integer invariants. As an example, we calculate the
number of points in Oda-Oort’s space which correspond to one isomorphism class
of abelian varieties.

This paper contains the main part of the dissertation work directed by Professor Arthur Ogus, as
well as some unpublished results of Ogus.

I wish to thank Professor Robin Hartshorne for much good advice. Also I wish to thank
Professor Ken Ribet and Professor Lucien LeCam for their review of the dissertation.
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1. Supersingular Dieudonné Crystals

We use the notation of [18].

Let W= W(k) be the Witt ring of k, and 4= WI[F, V] be the associative ring
satisfying the following defining relations:

i) FV=VF=p;

ii) Fa=a’F, Va=a® 'V for all ae W, where o is the absolute Frobenius map.

Definition. A Dieudonné crystal is a left A-module which is free of finite rank as a
W-module.

Let A, ; =A/A(F—V). A finite direct sum of (say g copies of) 4, , is called a
superspecial Dieudonné crystal (of genusg). A Dieudonné crystal M is called
supersingular (of genus g) if it is isomorphic to an A-submodule of a superspecial
Dieudonné crystal (of genus g) of finite colength. A trace map [19, Sect. 6] of M is
an isomorphism tr: A??M — W[ —g] of Dieudonné crystals, where W[ —g] is free
of rank 1 over W generated by some element x such that Fx= Vx=p?x.

Clearly the isogeny ¢ in Sect. 0 induces a supersingular Dieudonné crystal
structure on H!,(X/W), and it has a canonical trace map coming from
N¥HL (X/W)~HZ(X/W).If g>1, H.;(X/W)is superspecial iff X ~ E? for any
supersingular elliptic curve E (cf. [23 p. 586]). In this case we also say that X is
superspecial. Ogus proved the following Torelli theorem [19, Theorem 6.2].

Theorem. If g>1, then the functor (HL,,, tr) defines a bijection

supersingular abelian varieties supersingular Dieudonné crystals
of dimension g over k . of genus g together with a trace map
—
isomorphisms isomorphisms

Jfurthermore, for any two supersingular abelian varieties X, Y of dimension g, there is
a canonical isomorphism

Hom(Y, X)®z4,>Hom, ((Heo(X/W), Heyi Y/W)).

The following lemmas are purely elementary, and the proofs are left to the
reader.

Lemma 1.1. Suppose that M is a supersingular Dieudonné crystal, and N CM is an
A-submodule such that N +(F,V)M =M. Then N=M.

Let M= Ax 1®Ax2® .@Ax,bea superspecial Dieudonneé crystal of genus g,
where Ax;~A4, ,, ie., the anmhllator of x; is A(F— V)(1<z< g)- To give an
endomorphlsm of M (as an A-module) is equlvalent to giving x, ..., X, €M such
that (F—V)x;=0 for all i, 1<i<g. Let xe M. Then we can umquely wnte

x=(a1 +b1F)x1+(A2+b2F)XZ+...+(a9+bgF)xg,
where a,,...,a, by,...,b,e W. Hence (F—V)x=0 if and only if

0=(F—V)x= 3 (plof—bf ") +(af —af )F)x;,
i=o

ie, bJ=b{ ', a{=a ', or a,b,e W(F,.) (1<i<g).
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Let H=W(F ;) [F1/(F*—p, Fa—a°F,ae W(IF;)). Then it is easy to check that
H is a generalized quaternion algebra [7, Sect. 2.4] over W(IF,). Furthermore,
there is an anti-automorphism ¢ : H— H given by ¢(a+ bF)=a’® — bF. This gives a
“norm” map | : H—W(F,) by

la+bF|=(a+bF)p(a+bF)=aa’—pbb°.
Clearly |aff|=|a| - |B| for o, fe H.
Lemma 1.2. The map | : H—W(IF)) is surjective.

Now M dgker(F —V:M—M) can be viewed as an H-module:
J\7I=Hx1®Hx2(-B...@ng.

Clearly M ~WQ y,.,M. Hence we say that M is the “skeleton” of M.
Let v be the p-adic valuation map on K(IF,.) [the quotient field of W(IF.)].
Then it is clear that v(la+ bF|)=min(2v(a), 2v(b)+ 1) for a,be K(IF,.). If

o,feHR® W(F,,z)K(]FpZ) >

then clearly «f~' e H if and only if v(|«|)= v(|8|). From this one can easily deduce
that any H-submodule of a free H-module is again free, using an argument similar
to that for modules over a DVR.

If M,,M, are two superspecial A-submodules of M, then clearly the
corresponding skeletons M, M, are H-submodules of M. Hence

M, +M,~(M, +M2)®W(1sz)W and M,nM, (M AM)@we, W

are superspecial because M, and M, are free H-modules. Furthermore, if M, and
M, are of genus g, then M, and M, are of rank g over H, and so is M, "M . Hence
M ,nM, is of genus g also. Therefore we get (cf. [12, Theorem 3. 1])

Lemma 1.3. The sum and intersection of two superspecial subcrystals of M are again
superspecial. If M is an arbitrary subcrystal of M of finite colength, then there is a
smallest superspecial subcrystal S'(M) containing M. Furthermore, there is a largest
superspecial subcrystal (of genusg) S,(M) contained in M.

Note that S'(M) and So(M) do not depend on M. They have minimality and
maximality respectively in M ® K, where K is the quotient field of W(k).

For a g x g non-singular matrix over H, we can still define its “determinant”
as in [7, Sect.2.1]. There the “determinant” of a non-singular matrix
is an element of H—(0)/C, where C is the commutator subgroup of H*. In
our case, || clearly factors through H —(0)/C. Hence we can define “determinant” to
be an element in W(IE,), i.e., it is O if the rows are linearly dependent, and for a non-
singular matrix, if the “determinant” in the sense of [7] is aC, « € H —(0), then we
define our determinant to be |a].

For a matrix T=(a;;+ b;;F) over H corresponding to an endomorphism of M,
we can rewrite it as a W-linear transformation with respect to the basis
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X1, Fx 1y ..y X, Fx, of M over W(F,.) as follows

ay; by ... ay, by,
pbi, ai, ... pbi, aj,
T=| : : : :
a, by gy by
pby, a5 ... pby, ag,

It is not hard to check that the determinant of T is just equal to det(T). Note

that H is isomorphic to the algebra of the matrices of the form ( aa ba>,
a,be W(IF ). pb’ a

A matrix over H is invertible if and only if its determinant is not in pW(IF,). An
automorphism of M preserves a given trace map if and only if the corresponding
maprix over H has determinant 1. In fact,

tro A29(T)=|T| tr: A9M—->W[—g].

Lemma 1.4. Let ay,...,a,ck. Then the following are equivalent.
i) ay,...,a, are linearly independent over IF ,;

2 2
ab al
.- def. 4 4
(i1) D(ay,..,a)=| af .. ay | #0.
pZ'g—-Z pl‘g-I

)

In fact, D(yy, ...,y,)=(—1)p9 "1/ 1<H< it dis i1+ 4.
Lisg
Aty s Ag€lFp2

In the following, we will denote by a the image of ae W under W—W/pW~k.
Lemma 1.5. Let
v=(a, +b,F)x;+...+(a,+b,F)x,e M .

Then M=S'(Av) if and only if D(ay,...,4,)%0. And in this case, Fi'M
—(F,Vy v

Lemma 1.6. Let M be an arbitrary supersingular Dieudonné crystal. Then there
exists ve M — FS' (M) such that S'(Av)=S'(M).

For an arbitrary M, let
SM)={veM®,K|(F, V¥ 'vCcM}, oM)=(F, V¥ 'M.
By Lemma 1.5 and 1.6, there exists ve S(M) such that
(F,Vy lv=F"1S(S(M))CM.

Hence S'(S(M))C S(M), i.e., S(M) is superspecial.
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Corollary 1.7. The relations F4~'S(M)=Sy(M), Fé~'S'(M)=Sy(M) hold.
We will call S(M) the level structure of M, and S'(M) the colevel structure of M.

Remark 1.8. The dual W-module M =Homy (M, W) has a natural A-module
structure. Namely, if me M, fe MY, then (Ff)(m)=f(Vm)®, (Vf)(m)=f(Fm)*"'
[17, p. 83]. It is clear that S(M)" =Sy(M "), S'(M)" =So(M "), as W-submodules
of Homy (M, K).

Let M'=MANF'S(M). Then F: M'—>M"*! induces a map

F:M1=M'/Ml+l—>Mi+l=Mi+1/Mi+2.

Similarly ¥ induces a map V:M‘—M'*!, 1t is clear that F (resp. V) is injective
because it is induced by a bijection from FS(M)/F'*'S(M) to
Fi+1S(M)/F* 28 (M).

Lemma 1.9. For a given i, InF +ImV: M'>M'* " and hence dim, M’ < dim, M** ",
unless dim, M'=g.

Corollary 1.10. If M = Av, then S(M)=S'(M).

Conversely, if M is not generated by one vector, then S(M) = S'(M). This is clear
because dim, M?~%=g in this case, hence M9~ %L Sy(M) is already superspecial.
We will use the following notation:

si=dim(MNF - 1S(M/MAFS(M)) (1<i<g),

t;=dim,((F, VM AF'S(M)/(F, VYMAF*1S(M)) (1<i<g—1),
s;=dim(MAF " IS(M)/MAF'S(M)) (1<i<g),

t,=dimy(F " 'MAV IMAFIS(M)JF~ ' MAV IMAFS(M))  (1<i<g—1).

Clearly s, t}, s;, t; are integer invariants satisfying the following inequalities and
equalities:
i) 1<5/<5044, S;=g, and §;<s;,; unless s;=g;
i) $;SHESSi4ys
ii) §;<8;.4, S,=g, and s;<s;,; unless 5;,,=0;
iv) 5t <s,+1,
v) SL(M)+S (M ) g;

vi) a(M)= Z Si— Z ti, where a(M)=dim,(M/(F, V)M) [18, p. 598], and so
on.

A sequence of integers (s, ..., s,) =s will be called an index if 0< s, < ... <5, =g,
and s;<s;,, unless s;, ; =0.

Proposition 1.11. For any supersingular Diedudonné crystal M, there is a canonical
filtration M'=MAnF'M (0<i<g—1), where M =S'(M)=Ax,®.. -@Ax, is super-
special. Then M' = M'/M**! can be viewed as a k-vector subspace of F'M /F i*IM.F
(resp. V) induces an injective o-linear (resp. o~ '-linear ) homomorphism M'—M** !,
and there is ve M—FM such that M =S'(Av). Conversely, given a superspec;al
crystal M=Ax1(-D...(-BAx1, and a k-linear subspace M* of F'M/F*'M for each i
(0<i<g—1) such that (F,V)M'CM'*', and such that M° contains a vector
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@y, ..., d,) satisfying D(@,...,a,)+0, there is a unique supersingular Dieudonné
crystal MSCM such that S’(M) M and MM'*'=M' as k-subspaces of
F'M/F*1M.

2. Flag Type Level Structures

We first fix some notation on group schemes. For the basic facts of group schemes,
see [4-6] or [14].

Let S be a scheme of finite type over k. Let n: G—S be a group scheme with
multiplication m: G xsG— G, zero section o0:S—G and inverse 1: G—G, all being
morphisms over S. We will always assume that = is separated, hence o is a closed
immersion. Let .# be the ideal sheaf of o. Let wgs=0*.4#. Then canonically
Qb s~ m*wgs, and

Lie(G/S)~ %ms(wG/Sa O5)~ wc\;//s s

where Lie(G/S) is the sheaf of (left) invariant derivations.

We say G- S is an abelian scheme if 7 is flat and proper with geometrically
integral fibers. It is called supersingular if each of its closed fibers over S is a
supersingular abelian variety.

For convenience, we will use the following notation. For any scheme 7: X — S,
and any base change o: T— S, denote X x,T=X x4T in order to emphasize ¢. In
particular, if 6 = F", where F: S—S is the Frobenius map, we write X*?”=X x_S.

If 7 is flat, finite and commutative, then we can define its Cartier dual GV (see
[14,111.14]). The relative Frobenius map F ;5 : G—G™® is the unique morphism such
that pr, o Fgs is the absolute Frobenius map of G, where pr, is the first projection
of G =G xS. The Verschiebung map Vg,5: GP'—G is defined by the dual of

Fgus:G"—(GY)P~(GP)".
We have [6, p. 29]

Lemma 201- The relations FG/S ° VG/S =p . idG(p), Vg/s o FG/S =p . ldG hold.
Lemma 2.2 [14, p. 138]. There is a canonical isomorphism of sheaves of Os-modules
Homs(G, G,5)>Lie(G"/S).

The left hand side is isomorphic to the subsheaf of Og of sections ¢ such that
m*(t)=t®1+1®t, 0*(t)=0, which will be called the a-sheaf of G.

Let X—S be a scheme of finite type. By a G-action on X we mean an
S-morphism g: G x X — X such that

i) @o(mxgidy)=ge(idg x50): G xsG x5 X > X

ii) go(o xgidy)=idy: X > X, via X =S x¢X.

The action g is called free if (¢, pr,): G xsX - X xX is a closed immersion.
Furthermore, g is called affine if there exists an open affine covering {U,,ie I} of S,
and an open affine covering {V;,jeJ;} of f~!'(U) for each iel, such that
o(G xsV;)=V;; for every pair iel, je J,.
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Lemma 2.3 [14, p. 111]. Suppose that G—S is flat and finite and that ¢ is affine.
Then g has a scheme-theoretic quotient 7: X —Y (i.e., T is the universal morphism
suchthat to9g=1opr,:GxgX—Y), where T is finite and Y is of finite type over S.
Furthermore, if ¢ is free, then T is flat, and the quotient commutes with base change
of S.

Let %5 be the category of group schemes over S whose morphisms are
homomorphisms. Then § is a beginning and ending object of ¥5. The kernel and
cokernel are defined in the categorical sense. The kernel always exists:
ker(f: G- G@G’) is the pullback of f and 04:5S—G’. And Lemma 2.3 gives

Corollary 2.4. Suppose H is a finite, flat, closed subgroup scheme of a commutative
group scheme G of finite type over S. If the action of H on G viamis affine, then there
exists a quotient group scheme G/H.

Example. Suppose f: G—G'is anisogeny (i.e., surjective and quasi-finite) of abelian
schemes. Then for any flat subgroup scheme H of ker(f), the action of H on G is
affine. Indeed, by [8, p. 136], f is finite and flat, and H fixes f ~!(U) for any open
affine UCG'.

Definition. A finite, flat group scheme G— S is called an a-group over S if Fg;5=0,
VG/S = O.
The following fact is well known, and the proof is left to the reader.

Lemma 2.5. If G is an a-group over S, then locally over S, G is isomorphic to

S x <ozp X X o, ), where o, >~ Speck[t]/(t?) with the group scheme structure given by
m*t)=t®1+1®t, 1*(t)= —t, 0*(t)=0.

The above n, if it is a constant, is called the a-rank of G. It is equal to
ranky (wgs) (Note that for any flat a-group G, wgs is flat). Furthermore,
ranky (n,Og)=p". Lemma 2.5 also shows that wgs is canonically isomorphic to
the a-sheaf of G. Therefore we obtain

Corollavry 2.6. There is an anti-equivalence of categories
((flat coherent sheaves of Og-modules))—((x-groups over S))
the a-sheaf of G—G
& — Spec(Sym(F)/F 7))

compatible with the functor ¥, where F'Pis the ideal of Sym (%) generated by the p*
powers of the sections of . (If f is a section of F, then m*(f)=f®1+1®f)

Remark 2.7. Suppose G is a finite commutative group scheme over S such that
Fg;5=0. Then wgs is flat iff G—S is flat. In this case, the canonical map from the
a-sheaf of G¥ to wgvs is surjective.

For any supersingular abelian variety X of dimension g over k, Sect. 1 tells us
that H,(X/W) has a natural filtration, defining an index s=(s, ..., s;) [and also
t=(ty,...,t,—)], which is a geometric invariant. This inspires us to make the
following definition. We fix a supersingular elliptic curve E because the isomorph-
ism class of E? is independent of the choice of E when g> 1, as we have seen in
Sect. 1.
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Definition. A flag type level structure of index s over S is a supersingular abelian
scheme A—S together with isogenies (of supersingular abelian schemes)
0i:AP—A,_(1<i<g—1) over S such that

i) A,_,=E°xS, Ay=A4;

ii) kerg; is a flat a-group of a-rank s;.

For a noetherian scheme S, let €5=((schemes over S)). We need the following
lemma to construct the moduli spaces of supersingular abelian schemes with level
structure.

Lemma 2.8. Let # be a locally free sheaf of Og-modules of rankr. Let &' be a
coherent Og-submodule of &. Then the functor P:€g—((sets)) defined by

P(t: X—S)={locally free quotient Og-modules & of t*& of rankn}

is represented by a relative Grassmannian G. Furthermore, the following hold.
i) Let Q:¥s—(sets)) be defined by

Q(t: X —8)={locally free quotients h:t*%—» & of rankn such that t*F' Ckerh}

Then Q is represented by a closed subscheme G’ of G.
ii) If & =n,0g, where n:G—S is a finite flat group scheme, then the functor

R:€—(sets)),
(X—8)— {flat closed subgroup schemes of X xsG over X of rankn}

is represented by a closed subscheme Gg of G.
iii) Therefore, if F' defines a closed subgroup scheme G’ of G (not necessarily
flat ), then the functor

R’ : €s5—((sets)),
(X —8) > {flat closed subgroup schemes of X x 3G' over X of rank n}
is represented by G'nGy(=G' xGg).

Proof. [15, p. 32] gives the universality of the (absolute) Grassmannian, and the
relative case comes from abstract nonsense. Then we need to check that Q, R are
determined by algebraic conditions respectively. This is boring but without any
difficulties. The last statement is just abstract nonsense. Q.E.D.

For an (arbitrary) abelian scheme A over S, we can define its Verschiebung map
as follows. Since F 5: A—A® is flat [8, p. 136], - p: A—A is also flat, and since
ker(F 4/s)» ker(- p), there exists a unique V: A”—A such that Vo F=-p. When
S =Speck, this coincides with the usual definition of V, as the dual of F ,, 5, where A"
is the dual of 4 [14, Sect. 13].

Theorem 2.9. Given an index s (see Sect. 1), the functor
T, : (k-schemes)) —((sets)) ,
X > {flag type level structures of index s over X}/isomorphisms

is represented by a projective scheme S, over k.
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Proof. We use inverse induction to construct projective schemes S,_4,...,S,
together with supersingular abelian schemes =;:B;—S; (0<i<g). Take
S,—1=Spec(k), B,_; =E’. Given =;: B;— S let

K, =ker(Fpwys,: BP-BP)), K,= ker(Vg,s,: BP—B),
K=K1('\K2(=Kl XB:.P)KZ)'
Then K is a closed subgroup scheme of a flat group scheme K,. Note that a flat

finite closed subgroup scheme of B is an a-group if and only if it is a subgroup
scheme of K. Now by Lemma 2.8, the functor

R: %5, —((sets)),
(X —S§;) — {flat closed subgroup schemes of X x4 K of a-rank s}

is represented by a relatively projective morphism S;_;—S;, and a flat closed

subgroup scheme G of S;_; xg K of a-rank s;. Then let B,_, =B x5, /G.
Clearly S, =38, is projective over k. We claim that S, represents T,.
Suppose for S—Spec(k), a flag type level structure

{458, 0 AP —4;_, 0= i<g)}

is given. Let o,_,:58—S,_, =Spec(k) be the (unique) trivial morphism. Then

A, 1~B, | Xs,_,S. leen 6;:S—S; such that 4;~B,; xS, by Lemma 2.8 there
exists auniqueo;_:S—85;_ 1such thathSi S= ker(Q A‘ —A;_,)assubgroup
schemes of K x,S. Hence

A 2 AP)G x5, S~B;X,.pS/G x5, ,S~B;Xp,,S/Gxs,_,S
2ng><criS/GXtr,'.lsz(ng)xS(Si-—l) Xai_lS/G Xcr,'
~B;_;X5,_S.

-1

Thus Ay~ B, x5,S. To see the uniqueness of the morphism S—S,, note that for
0<i<g, S—S§;is the composite of S-S, and S;— S, and that the above argument
shows the uniqueness of S—; inductively. Q.E.D.

Remark 2.10. For a supersingular abelian scheme A— S, a “level structure” means
an isogeny f:E?xS—A over S such that ker(f)Cker(F?~!). Hence deg(f) is a
power p", and n<g(g—1). It is clear that the functor

T: 6 ((sets)),
S {level structures of degree p" over S}/isomorphisms
is represented by a projective scheme S,,.

3. Approaches via Crystals

Let M be a crystal on S such that pM =0. Then F¥, M is canomcally determined
by Mg, the value of M on the PD-thickening (S, 0) where Fyy, is the Frobenius
map. Indeed, in this case, we need only consider PD-thickenings U ¢, T such that
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pO;=0. Then there is a unique o, making the following diagram commutative:

U—>T

[0
U—>sT

Hence FXM~o§My. Furthermore, given any coherent sheaf & on S, one can
obtain a crystal (via g) on S which is killed by p [16, Sect. 4]. Such a crystal is called
degenerate. Thus we get a right exact functor

{(coherent sheaves on S))—((crystals on S))

denoted by o*, by abuse of notation.

By an (F, V)-crystal on S we will mean a crystal M together with morphisms
Fy:F&¥wM—-M and Vy:M—F§yM such that FyoVy=p-idy, VyoFy
=p-idpg ., um-

Definition. A crystal on S with flat type level structure of index s consists of the
following data.

i) (F,V)-crystals M; (0<i<g), such that

a) M,_,~¢ *M, where 0:S—Spec(k) is the projection and M is defined in
Sect. 1; and

b) M;_,isan(F, V)-subcrystal of F§;M; containing Im(V}, ) and Im(Fy,,, o );

ii) Flat coherent sheaves of Og-modules N; of rank s; together with epimorph-
isms h;:(M,/Im(F y;))s—>N; and isomorphisms n;: F§y,M,/M;_,>0*N,.

For a group scheme G over S, we will denote its Dieudonné module by D(G).
We need to quote [1, Sect. 4.3] as the following lemma.

Lemma 3.1. Let G be a flat group scheme over S. If Fg =0, then canonically
D(G)~0*(wgs). If Vs=0, then canonically D(G)~a*(Lie(G"/S)).

Theorem 3.2. By taking Dieudonné modules, there is a fully faithful functor Dg from
the category of isomorphism classes of flag type level structures of index s over S to
the category of isomorphism classes of crystals with flag type level structures of
index s on S. If o* is faithful, then Dy is a natural equivalence.

Proof. Look at the definition in Sect. 2. Let M; = R (%)) 1;(0 o /W). Then i) in the
above definition is clear. For ii), first note that M ;/Im(F,;)~D(ker(F ,,)). Then
using Lemma 3.1 we see that

(Mi/Im(F . ))s~ F¥ WOxer(F 4,)/8 = D(ker (F 4,) @S

canonically. Also D(ker(F 4))—D(ker(g;)) is canonically induced by
def.
Der(F 4w)/s = Diker(F 4)@/s ™ Pier@i)/s =~ N;='the a-sheaf of ker(g;).

Now assume that o* is faithful. We use induction to define a quasi-inverse of
Dg. Given the data in the definition of crystals with flag type level structure,
suppose we have constructed 4;—S. Let K’ =ker(F ,,s), Ky =ker(F 4s) ~ K| P,
K,=ker(V,,;), and K=K,;nK, Then ii gives an eplmorphlsm
h;: (M /Im(F,))s ~wg, s—»N;. Furthermore, Vi, s induces V¢ s: g, s— Wk, 5, and
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coker (V¢ 5) ~ wk/s. Since o* is faithful, b) implies that h;o V¢, 5: wg,s— N, is the
zero map. Hence N, is also a quotient of wy 5. Let %, be the a-sheaf of K 5, and # be
the a-sheaf of K. By Remark 2.7, the induced morphism %, - wy, s is surjective,
hence so is # —wys. Therefore N is also a quotient of #,. This defines a closed
subgroup scheme G of K. Clearly N; ~wg/s, s0 G is flat, again by Remark 2.7. Now
let A,_,=A%P/G.

Even when o* is not faithful, we can still recover a supersingular abelian
scheme with flag type level structure from its crystal as above. Hence Dy is fully
faithful. Q.E.D.

So far we have not taken account of the integer invariants ¢, (1 < i< g) of Sect. 1.
Lett=(ty,...,t,- ). We can modify the definition in Sect. 2 by changing “index s”
to “index (s,t)”, and adding

iii) ker(F Agm/s)ﬁkef(VA,/s) is flat of o-rank ¢,.

We can also define a functor

T, ;:((reduced k-schemes))—((sets)),
S +— {flag type level structures of index (s, t) over S}/isomorphisms.

Then one can prove that T; , is represented by a locally closed subscheme of S,
just as in Theorem 2.9.

Again use induction. Suppose we have got a locally closed subscheme S; , of S..
Then it is easy to see that ¢; is an upper-semicontinuous function on the set of
closed points. Thus there is a greatest locally closed subset U of S; , with reduced
induced structure such that K x g U is a flat a-group of a-rank t,. Since giving a flat
subgroup scheme of a flat a-group is equivalent to giving a flat quotient of its
a-sheaf, we see that S;_; ,is arelative Grassmannian over U. In particular, if ¢ is the
smallest possible (i.e., such that S ; is not empty) in the lexicographic order, then
S,.:1s a smooth open subset of S,. By Sect. 1, one can easily see that S is not empty
for any s. Hence we get

Proposition 3.3. For any index s, S, contains a non-empty smooth open subset.

4. Supersingular Abelian Schemes

Suppose we have a supersingular abelian scheme f: A— S of dimension g. Then it is
natural to ask: does it admit a flag type level structure? The answer is negative in
general. (See the counter examples below.) However, it is still possible to get a flag
type level structure after making some changes in S. We need the following lemma.

Lemma 4.1 (Ogus). If S is normal, then there is an étale morphism e : S’ — S such that
there is an isogeny E? x §'— A xS’ (over §').

Proof* Let I % p be a prime, and consider the local systems E,,d:-f'R‘F «Z/I"Z on S.

According to a theorem of Grothendieck [9, Proposition 4.4.], 4/S is isogeneous
to a constant family (i.e., a product of an abelian variety over k with S) if and only if

* Unpublished proof of A. Ogus
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E, is constant for all n> 0. Thus, it will suffice to prove that this condition can be
achieved after some finite étale covering S'—S.

The key case is when & is an algebraic closure of IF,. In this case, we can find a
field IF, Ck and a descent f,: 45— S, of f to varieties of finite type over IF,. Let us
choose m large enough so that I" > 4g and a finite étale covering S, — S, on which
E,, is constant. Replace S, by Sj, to simplify the notation. Replacing g by a power,
we can assume that g=p, with d even, and that p¥?>=1(mod[™).

Let ¢ be a geometric point of S, and consider the exact sequence of groups

1-m(S, 06)—n((So, 0)>Gal(k/IF)—1.

Let E=Jlim E,,. Then E(0) is a Z,[7,(S,, 6)]-module, and is I-torsion free. It suffices
to prove that the action ¢ of n,(S, ¢) on E(6)@Q, is trivial.

For each closed point s of S, and each Frobenius element F of 7,(S,, 5), the
trace A(s) of ¢(F,) is the same as the trace of F§®Y on HY (4, Q). As 4, is a
supersingular abelian variety, we know

i) A(s) is an integer;

i) |A(s)| £2gp*? (Riemann hypothesis);

iii) p*2 divides A(s) [by supersingularity, noting that d|d(s), so d(s) is even];

iv) A(s)=2g(mod!™) (since E,, is constant).

Let B(s)=A(s)- p~“®/2, Then B(s)eZ, |B(s)| £ 2g, and B(s)=2g (modI™) since
p*®? is a power of ¢'/? and ¢'/?>=1(mod ™). Then since I" >4g, B(s)=2g and A(s)
=2gp?®@? for every s.

Now consider the representation ¢’ of 7, (S, o) attached to a constant family of
supersingular abelian varieties. The argument above shows that ¢ and ¢’ have the
same trace on Frobenius elements, and hence on all elements, by Chebataroff. It
follows that ¢’ and ¢ have isomorphic semi-simplifications. In particular, the semi-
simplification g, of g is trivial when restricted to n,(S,0). Then g|,,s,, admits a
decomposition series whose successive quotients are constant. By a (deep!)
theorem of Deligne [3, p. 383, Théoréme 3.4.1], ¢l,, s,  is in fact semi-simple, hence
trivial. Q.E.D.

Theorem 4.2. If S is integral, then there are a blowing up b: S, —S, a normalization
n:S,—S,, and an étale covering e: S,— S, such that A%?**™? x (S_ admits a flag type
level structure.

Proof. Let K,=ker(V,s), K=ker(Vyys). Letting m be the rank of
Im(Vgy s gy /s = Okywoys) s
there is an open dense subset U CS on which coker(V ) is flat of rank g—m. By

Lemma 2.8, the functor
R':€5—((sets)),

(X —S) +— {flat closed subgroup schemes of K x X over X of a-rank g—m}
is represented by a relatively projective morphism b':S'—S and a flat closed
subgroup scheme Go K x S over §'. But bl -1y, should be an isomorphism.
Since GV is an a-group and is a quotient of K%, it gives an isogeny A, —A® xS’
with kernel GY. Replace S’ by the irreducible component (with the reduced
induced structure) which maps surjectively to S. Then b’ becomes a blowing up.
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Take §’ instead of S and A4, instead of A4, then repeat this procedure, and so on. We
will finally obtain a blowing up b: S, —S and anisogeny i: A'— A®° ™" x (S, over S,
such that:

i) ker(i)Cker(Fo™1);

i) ker(F 4py5,)nker(V,s,) is flat of a-rank g on an open dense subset of S,;

iii) There are isogenies A'=A,_;—A, ,—...5Ay~AP"" xS, such that
every kernel is an a-group.

Condition ii) implies that ker(F 4.,y5,) =ker(V.s,), and hence A’ is superspec-
ial (i.e.,, all of the closed fibers are superspecial).

Now pull back A’ via the normalization n:S,—S,. Then using Lemma 4.1, we
get an étale covering e:S,—S, and an isogeny over S,:

h:EfxS§,—»A Xxg,S,.

Let H =ker(h). First we have a decomposition H~ H x¢H,, where H  is étale and
H, is local. Since H | is a closed subgroup scheme of ker (- g, «5,) >ker(- tg) x S,
for some integer t(ptt), we see that H, ~H, x S,, where H is étale over k, and
H, ¢ E? xS, is induced by a morphism H,— E’. Thus we may assume H, =0 by
taking E?/H,, (also superspecial) instead of E’.

Suppose H' =ker(Fy;s) has a-rank r on an open dense subset U. As above, we
have a blowing up b': S, — S, and a flat closed subgroup scheme H;C H' xS, of
a-rankr. In fact, H'c ker(Fg) x S, induces a closed immersion #:S,,—»G, , X S,,
where G, , is the Grassmannian. If x e U, then E?/H., is still superspecial by Sect. 1.
But there are only a finite number of subgroup schemes H Cker(Fp,) of a-rank r
such that E%/H is superspecial. Thus pr, o #(b’~!(U)) is just one point. Therefore b’
is an isomorphism and H' ~ Hy, x S, for some Hy, C E?. Replacing E? by E?/H, (also
superspecial) and repeating this argument, h will finally become an
isomorphism. Q.E.D.

Corollary 4.3. If A—S has superspecial closed fibers and there is an isogeny
EfxS—A, then A~E? x S.

Remark 4.4. Letting s, =(1,2, ..., g), we note that S, has special importance, since
every supersingular abelian variety has a flag type level structure of index s, [18,
Theorem 2.2]. By slightly modifying the proof of Theorem 4.2, one shows that
under the conditions of Theorem 4.2, there are a blowing up b:S5,-S, a
normalizationn: S, S,,and an étale covering e: S,— S, such that A%** ") x (S_has
a flag type level structure of index s,.

Example 1 (cf. [21, Remark 10]). This example shows the necessity of the étale
covering in Theorem 4.2. Let S= Spec(k[x, y,(x —y) '], G=Z/2Z = {e, 5}. Define
a G-action on S by letting e act as idg, and o act by switching x and y. Also define a
G-action on E2 =E x E by letting e act as idj., and o act by switching factors. Then
we get a free action of G on A= E? x S compatible with the (free) action of G on S.
By Lemma 2.3, we get quotients A'= A/G and §’'=S/G. It is easy to check that the
abelian scheme structure of A over S induces an abelian scheme structure of A’ over
§'. Also §’ is smooth. We claim that 4'—>S’ does not admit a level structure, not
even over an open dense subset of S'. Indeed, suppose we have an isogeny
f:E*x S'— A over §'. Then by the above corollary, we may assume that f is an
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isomorphism. The projection ¢:S—S’ induces a morphism g: A—E*x S over S
such that (id x )~ g is the projection 4—A’. Here g must be an isomorphism,
judging by its degree. Let x be a closed point of S. Then g— g, x idg maps A, to one
point, hence by rigidity [14, p. 43], it factors through §, i.e., g—g, xidg=0, or
g=g.xidg. Now the projection 4—A’ is equal to both g, x¢ and (g, x @)oo
=(g,00) X g, S0 g, =g, o0, a contradiction.

Example 2. This example shows the necessity of the blowing up in Theorem 4.2.
Let g=3, and f:E?xS;—A4 over S, represent Tj (see Sect.2). Consider the
morphlsm e: S,,— S5 induced by the level structure E? x S, —A, over S, We
claim that g is sur_]ectlve Indeed, for the fiber over a closed point x€ S, 1nduces a
flag type level structure A ;= E?/(ker F?~")n(ker f,)) of index either (1,2,3) or
(0,0, 3). In the later case, ker(f,)=ker(F ), hence for any G Cker(F:) of a-rank 2,
the flag type level structure E2—E?/G— E?/ker(F ) is compatible with the level
structure f at x. Therefore ¢~ *(x) is of dimension 2(~P?).

Now let us calculate S, . We use the notation used in the proof of Theorem 2.9.
First, S, 2P2~Pr01k[xo,x1,x2] Let G= ker(B(‘” xSy —B,), K=ker(Fyuys,)
nker(V,s,). Then G'=(ker(Fpgp «s,5,)/G)® is a flat subgroup scheme of K of
a-rank 1, and

Wg'/s, z(ker(a)Bz(,) x §1/81 _’wG/sl))(p) ~ Osl( —1)P~ Os,( -p).
Let G"=K/G'". Clearly both Fy)s, and Vg, s, factor through
j:BP~BY/G(~B; xS,).
Let Fypys,=F'cj, Vg,5,=V"oj. Then G” ~ker(F')nker(V"). Hence

D15, g, 5,/ (ME)N(Im(V ),
which is isomorphic to the cokernel of

Osl(— 1)@0&(“‘172)‘*05013
(1, 0) > (xou + X870, X, 4 X570, X1+ X5°v).

In particular, wg.s, is torsion free. Hence wgs, is also torsion free, by the exact
sequence

0-wgr s, > Wgs, > 05, 0.

Since Sy~ Projo, (wy/s,), we see that S, is irreducible.

Let S, be the normalization of S;. We claim that for any étale covering S,—S,,
AxgS, does not admit a flag type level structure. Indeed, if it had, then we would
get a surjective morphism S,—S, inducing Axg,S,~Ayxs,S, over S,. Since
S, -85 is finite, A x5,5,~S, would have only a finite number of superspec1al closed
fibers. But we have seen that Ay x 5,8, S, has an infinite number of superspecial
closed fibers, a contradiction.

Therefore the étale covering and the blowing up in Theorem 4.2 are both
necessary.
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5. Coarse Moduli Spaces

Let A—S be a supersingular abelian scheme. Then for any closed point x €S,
G, =ker(F)nker(V) of A, corresponds to M in Sect. 1, where M = H.,(A,/W).
Hence the a-rank of G, is equal to sj(M). Therefore s} is an upper-semicontinuous
function of S, Similarly s, is an upper-semicontinuous function on the open
subset of S, of all closed points whose fibers have minimal s}, and so on.

Let M be a supersingular Dieudonné crystal of genus g over W. Then it has a
canonical flag type level structure M;= F?~ ' "iS(M)+ M (0 < i< g) whose index s is
clearly the smallest possible in the lexicographic order. This flag type level
structure is called rigid. Similarly we can define a rigid flag type level structure for a
supersingular abelian variety.

Now consider the moduli space S,. Any ¢ € Aut(E?) gives another flag type level
structure of index s over S, hence gives an automorphism of S;. Therefore Aut(E?)
acts on S, The action is finite since for any pg,o €Aut(E?) such that
0—0' ep’End(E%), g—¢'=0 on the closed subgroup schemes ker(4”—A4,;_,)
(1<i<g), hence ¢ and ¢’ act in the same way on S,. Therefore the action has a
quotient S, by Lemma 2.3. Similarly, using the method of Sect. 3, we see that
Aut(M, tr) acts on S and the quotient space is just S,. But Aut(M) also acts on S,
and we get a quotient space S, (which was described in [18, p. 606]). We use similar
notation for an index (s, ¢). The actions may not be transitive on a set of all closed
points with isomorphic A, [resp.., (M, tr) or M] fibers, but they are transitive if
one of the fibers is rigid, because any isomorphism M, Mj is induced by an
isomorphism S(M)->S(Mj). Clearly the closed points with rigid fibers form an
open subset, which we denote by an upper r. By Theorem 4.2, it is easy to show that
(87 )%* ™ can be viewed as the “coarse moduli space” of supersingular abelian
varieties of index (s,t). In other words, we have

Proposition 5.1. If S is a normal scheme of finite type over k, and n: A-S is a
supersingular abelian scheme whose closed fibers are all of the same index (s, t), then
there is aunique morphism f:S—(S7 )?** ™™ over k such that for any closed point x of
S, n~Y(x) is isomorphic to the supersingular abelian variety corresponding to f(x).

Proof. We may assume S is integral. By Theorem 4.2, there is an étale covering
e:S,—S such that A®*” Y xS, has a flag type level structure of index (s, ). (We
don’t need blowing up since the group scheme K in the proof of Theorem 4.2 is
flat.) This gives a unique morphism S,— S’ ,, hence a morphism f": S,— 5" ,. Clearly
/' maps every closed fiber of e to one point. Take another étale covering S,— S such
that S, xS, is a disjoint union of copies of S,. Then f”opr,: S, xS, —5 , factors
through S, set-theoretically, hence scheme-theoretically [10, Ex. I1.4.2]. So f’
factors through S by the following lemma (whose proof is easy and is left to the
reader).

Lemma 5.2. Suppose X — S, Y-S are both flat surjective morphisms of finite type of
Noetherian schemes. Let Z=X xgY. Then S is the scheme-theoretic push-out of
pr,:Z—-X and pr,: Z—>Y.

The only thing remaining to check now is the coincidence of A,=n"!(x) with
the supersingular abelian variety A4’ corresponding to f(x). The above shows that
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AP~ 47 To get rid of (p**”>) one can consider 579 instead of S. Then one
gets SP° 7958 or S—(57 ). QE.D.

It is natural to ask: What are the degrees (of the generic fibers) of the finite
morphisms 7 ,— 8 , §7 ,—57 , etc.? As an example, we calculate the special case
s=s, here. In this case ¢t can only be (1,2,...,g—1). We need the following
proposition.

Proposition 5.3. Let M = Av, where v satisfies Lemma 1.5 and is general enough (i.e.,
vis contained in some non-empty Zariski open subset of k®9). Then an automorphism
he Aut (M) stabilizes M if and only if there isll € W(IF .)* (= W(IF ,.) — pW(FF 2)),
91
such that (h—AI)MCF?~'M, and A—2°ept 2 'W(F ).
The normal subgroup of all automorphisms satisfying the conditions in
Proposition 5.3 will be denoted by H.

Lemma 5.4. Let T=(a;)), T' =(b;;) be two g x g matrices over k, let n be an integer,
0=n<2g-3,and y,,...,¥; V1.,V be indeterminates. Let

g g
L GO e Y gy by
” , , V1 e Y,
R('I; T’n’y1,-'-ayg’ylﬁ--':yg);_' ypz :2
1 cee yg
e e

Then R(T, T',1, Y1, ..., Vg V1 -+ V) =0 if and only if T=a,,I and T'=0 when n is
even, or T=T'=0 when n is odd.

Proof. Look at the Laplacian expansion of R(T, T, n, y4, ..., yg, Vis - ¥ 1 b0,
then there is only one term of the form cy;?" [] ype ﬂ yP* 7" ¢=%0, a contradic-

tion. If a;;%0, i+j, then there is only one term of the form
" Tt T oy =0,

L*i,j
si<smifl<m

also impossible. If n is odd and a;#0, then there is only one term of the form
cyipnl—[ylpli—Zl—ly;JZi—‘l’ C*O’
i<j 5]

still impossible. Finally, if n is even and i #j, then there are exactly two terms of the
form
'y I i,

1#i,j
S <smifl<m

namely ¢= t+a; and ¢c= Fa;;. Hence a;=a;;. Q.E.D.
Proof of Proposition 5.3. The proof of sufficiency is easy. We now prove necessity.

Fix a basis x;, ..., x, of M. For every n, 0Sn<g, we want to obtain A, € W(IF,.)*
such that h=, I(modF"M) and 1,—A2=0(modp™?!). We use induction on n.
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Take /10-1 Suppose we have got 4,. Then there are two possible cases.

i) n is even. In this case we may assume that 1,e W(IF,)*. Let h'=h—4,]
=p"*a;+b,;F). Then h stabilizing M implies that Rhvep”?MnM
=(F"v, F""*Vu,..., V™). Since

g
Wo=p"* Y (a;+b;F)(a;+b;F)x;

i,j=1

and

is

g
Fn—lVlv___pn/Z _Zl (a;,n—zz +bgn—21F)x
i=

modulo F"*'M we get (still denoting by @ the image of ae W in W/pW=~k)

g _ _ g _ _
Z atail Z alalg
i=1 i=1
&t .4 N L .
0= —g—n+2 —g—nt2 =R((aij),(0),n,al,...,ag,El,‘..,Eg)a .
ag .er ag
- —n;Zg—A ) - —n;2g-—4
as ... ag

Hence by Lemma 5.4, (a;;)=a, ;I when v is general enough. Note that g;;€IF . and
there are only a finite number of g x g matrix over IF,.. Therefore we can take
A+ € W(EF,2) such that h=4,, I (modF**'M) and /1,,,,1 =), (mod p"?).

ii) n is odd. Then we can write

h= “+p 2 (bl,)F(modPHl)

n—1

n-1 atl
A—A,=p 2 u(modp 2 ), ue W(F,:).

Let

"1y nt1
v'=hv—Aip=p ? Y <): ab,l+ub)Fx (modp 2 M)

j=1

Since v e F"'M M we have

g g
Y abiy +fib, Z ab; +#5
i= i=1
0= a‘;' " a" =R((b3), 3°I,n,ay, ..., d, by, ...,b)" ",
a—i'—n;Zg—ll a—;—n;2g—4

Since n is odd and v is general enough, we have =0, b;=0. Therefore

h=A,1 (mod p%l-) . QED.
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Now S;, is smooth, and there is an open dense subset of S, on which the action
of Aut ,(M )/H is free and transitive for every set of closed pomts with isomorphic
M, fibers. Therefore

the degree of S;,— ST

= #(Aut(M)/H)
o B2 4 1) (1) (1) .. (P~ 1) i g>2
‘{pz(phl) if g=2

Now consider the degree of S; —+S’ We have seen that Aut (M, tr) is the
normal subgroup of Aut (M) con31st1ng of all matrices of determinant 1.
Let H'= HmAut(M tr). Then the degree is equal to the order of
(Aut(M)/H)/(Aut(M, tr)/H’). When g=+2, letting f be the 2g™ power map of
(W(F,)/p¥?W(IF,)*: f(a)=a®, this is equal to

#(WAE,)/p"*'W(F,)*)
+#((WAF,)/p“*1W(IF,)*"*)

= #(ker(f))

= # {solutions of x**=1 in Z/p"/*'Z}-

If g =2, we also get that the degree is equal to the number of solutions of x* =1
in IF,. Summarizing, we obtain

G.CD.Qg,(p—1)p2~ Yy if p+2,g>2

| 26.cD2g, p1-2) it p=2,g>3
degree of §t -7 = 5 i 2 go2
1 if p=2, g<3.
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