C‘ U q NIEDERSACHSISCHE STAATS- UND
-~ L UNIVERSITATSBIBLIOTHEK GOTTINGEN

Werk

Titel: Mathematische Annalen

Verlag: Springer

Jahr: 1989

Kollektion: Mathematica

Werk Id: PPN235181684_0283

PURL: http://resolver.sub.uni-goettingen.de/purl?PID=PPN235181684_0283|LOG_0052

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational,
research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections
are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission
from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online
system to access or download a digitized document you accept the Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further
reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the
source.

Contact

Niedersachsische Staats- und Universitatsbibliothek Gottingen
Georg-August-Universitat Gottingen

Platz der Gottinger Sieben 1

37073 Géttingen

Germany

Email: gdz@sub.uni-goettingen.de



Math. Ann. 283, 353-365 (1989) Annalen
© Springer-Verlag 1989

Scalar Curvatures on S™
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of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA

0. Introduction

Let (M", g) be a compact Riemannian manifold of dimension n=3, and R(x) a
smooth function on M. One would like to ask if R(x) can be the scalar curvature of
some metric ¢ that is pointwise conformal to the original metric g. This is an
interesting problem in geometry. If we let §=u*""?g, then it is equivalent to
finding a positive solution of the differential equation
n—2 n—2 .
—Au+ an=1) Ru= Hn—1) Ru*,
u>0

0.1)

where 1=(n+2)/(n—2) and R, is the scalar curvature of the metric g.

In case R is a constant, this is the well-known Yamabe Problem and the
affirmative answer was completed by Schoen [6]. Then the attention is turned to
non-constant R(x). Recently, Escobar and Schoen [4] obtained some good results
in this respect.

It is known that the problem becomes difficult when M"= §" with the standard
metric g,. In this situation, Kazdan and Warner [5] found an obstruction to the
solvability of the corresponding equation:

— A, u+vu=K(u
u>0,

(*)

where v,=n(n—2)/4 and K(x)=[(n—2)/4n—1)]R(x). More obstructions were
found recently by Bourguignon and Ezin [2]. These show that for quite a few
functions K(x) Problem (*) has no solution. Then for which K can one solve (*)?
This has been an interesting problem for years.

* Research supported in part by NSF Grant DMS 85-03302



354 W. Chen

In paper [4], under the assumptions:

K,) K is positive somewhere [known to be a necessary condition for the
sovability of (*)];

K,) (Symmetry condition) K(hx)= K(x) for any heI, x € S*; where I is some
finite group of isometries on S”;

K,) (Flatness condition) there is pe S”, such that

K(pp)=max K and VK(p)=0, j=1,2,...,n—2;
S'I

Escobar and Schoen proved that if I consists of the isometries acting without fixed
point, then Problem (*) has a solution. Their main idea is to estimate the quotient
by Green’s function on S"/I', a manifold without boundary.

Now, if the isometries in I" have fixed point, S*/I" is a manifold with boundary.
In the following, we will deal with this situation. To overcome the boundary
difficulty, we construct a symmetric (in the sense of condition J£})) “Green’s”
function on the whole S" for estimating. Combined with the other nonlinear
analysis techniques, imposing some conditions on K at certain fixed points of I, we
prove the existence of solutions for Problem (*). This generalizes some of results in
paper [4].

We have recently learnt an announcement of interesting results of Bahri and
Coron [1] on the S* problem. They replaced the symmetry conditions by
conditions on the critical points of K.

After completing our paper, we were told about the results of Vaugon [7] on
this problem. However, as we will show in our Remark 2.2, our results are much
stronger than his.

Throughout this paper, we write the Laplacian and the gradient on the
standard S” as 4 and V respectively.

Our Main Existence Results

Let I'={h,,...,h,} where h{i=1,...,m) are isometries on S™.
Let F;= {xeS"|{h1x h x} has exactly j distinct components} j=1,...,m.

Clearly, $"= U F; and U F; is the fixed points set under the action of the
1

isometries of F We will delllote Fthe set F, the common fixed pomts set of all the
isometries in I

We revise the flatness condition K) in [4] as X3). Let D;= U F;. For any
Jj=2,...,m, there is p;e D;, such that

K(p)= max K
D;

and
ViK(pj)=0 i=1, ...,n—2,

It is easily seen that, if the fixed point set U F; is empty, then J}) is just the

flatness condition K,) in [4]. As we will show in Lemma 1.3, condition ;) is
satisfied automatically for n=3.
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Theorem. Assume K,), K,), and A>,). Then Problem (*) has a solution if one of the
following conditions is satisfied:

1) F r=‘b»

2) max K <0.

Fr
3) There is jo, 2=<j,<m, such that

jo® P max K< max K.
Fr Djo

1

4) 0< max K< — | K(x)dV, where dV and , are the volume element and
Fr n Sn

volume of standard S" respectively.

5) There exists xq € F, such that

K(xo)=max K, and AK(x,)>0.
Fr

Outline of the Proof of Theorem
Let H, = {ueH‘(S")

sjn K) [uf*tdv> 0}. By K,), it is easily seen that H, +0.
And obviously, H, is an open subset in H'(S"). Write
Xr={ueH'(S")|u(hx)=u(x), a.e., for any heT}.

Define 1 |
Jw= = 2 2 o T+1
( 25'[. [Pul® +v,u*1dv — Sj"K(x)Iul dv.

By the symmetry condition K,), it is known that positive critical points of the
functional J in H, N X are solutions of Problem (*).

Define
M={ueH, nXrlu*0, {J'u),u)=0}
and
b= inf J(u) 0.2)
ueM

It is not difficult to see that if ue M and J(u)=>b, then u is a critical point of J in
H, nX,.

Analogous to [3], one can show that b>0, and there is a sequence {u,} CM,
such that

Jwu)—b and J'(u)—-0, as k—oo. 0.3)

Then {u,} is bounded in H'(S"), hence exists a subsequence (still denote by {u,})
converging weakly to some element u, in H*(S"). This leads to [3]

J(ug)=0 and J(ug)<h. (0.4)

Case 1.1fu, is not identically equal to 0. Then it is not difficult to show that u, e H,,
NXp, 50 by (0.4), uge M and J(uy)=b. Replace u, by |u,| if necessary, we obtain a
solution of Problem ().
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Case 2.1f u, =0. It is wellknown (e.g. cf. [1]) that there exist finite points {x,, ..., x,}
CS" and a constant c,>0, such that for any £¢>0,

w0 as k—oo in H' (s\u %e(x,-)> 0.5)
i=1
and [ vuPdvze,, 0.6)
Be(xi)

where B,(x) is a geodesic ball with radius ¢ and centered at x on standard S".
Under the assumptions of our Theorem, we will show that Case 2 can never
happen. Otherwise, we have the following

Lemma 1.1. Let x;€S" be a point of concentration of the sequence {u,} as was
mentioned in the Case 2, then

K(x)>0 and b= %S”/z zs: (K(e)) 22,
i=1

where [ (ol +v,02dV
Sn

inf
peHI(S™) { j' |(P|2n/(n- Z)dv}(n— 2)/2
sn

is the best constant in Sobolev embedding.
While by using a symmetric Green’s function estimate, we can show that
Lemma 1.2. For every 2< j<m, and for any p;e F, s.t.
K()>0 and VK(p)=0, for i=1,2,...,n-2.

We have i
b< % S"K(p)) 2"

Now, by £,) and the above two Lemmas, we must have

K(x)>0 and {x,,...,x}CFr. 0.7)
Then again by Lemma 1.1,
b= 1S”/2 <max K)(2 ™z (0.8)
n Fr

However, if K satisfies one of the conditions in the Theorem, we are able to
derive contradictions with (0.7) or (0.8). Thus prove the existence of solutions for
Problem (*).

1. Lemmas and the Proofs

Asin Sect. 0, let M and b be defined by (0.2), {u;} be a sequence in M satisfying (0.3).
Suppose Case 2 happen, i.e.

u,—0, as k—oo; in H'(S").
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Then holds the following
Lemma 1.1. K(x;)>0, and

bz 5 5 (KGN, (1.1)
i=1

where {x,, ..., x,} is defined by (0.5) and (0.6).
Proof. 1) Since u, € M, we have

[ {IPw > +vu}dV= [ Kx)|ul*'dV.
sn sn

This implies
Ju)= - { KOV (12)
s"

2) Since J'(4,)—0, as k—o0; one has
— A+ Vi, = K(x) |t~ i+ 0,(1), (1.3)

where 0,(1)—0 as k—co in the dual space of H(S").
Let ;€ CF(B,(x); 0=n;=1, and

m=1 for xeB,,(x,).

Note that u,—0 in H'(S") and consequently u,—0 in I*(S"), and by (0.5), one can
easily verify that

§ )IV(muk)lde= Bg )Klniukl’“dV+0k(1)~ (14)
(X (X
(1.4) and (0.6) imply, for k sufficiently large,
] Klnauf*1'dV Zco/2. (1.5)
Be(xi)

Noting that {u,} is bounded in H'(S") and consequently, bounded in L*(S"),
while ¢ is arbitrary, by the continuity of K, one can easily seen that K(x;) is positive
(i=1,...,59).

4) Since u,—0 in L*(S"), by (1.4) and (1.5), we have

2;.{ ){lV(ﬂiuk)|2+vn('7iuk)2}dV . .
s S Kinau " 1dV " +o,(1).
[ Kinaul v e (o Kl 4V P+ o

Be(xi)

Then by the definition of S and 7, as well as the continuity of K,
| K"tV z K(x)?"28"2 + 0,(1) +ofe),

Bey2(xi)

where a(g)—0 as ¢—0. Now, (1.1) follows from (1.2) easily.
Lemma 1.2. For 2<j<m, if there exists p;e Fj, s.t.
K(p)>0 and VK(p)=0, i=1,..,n-2.
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Then
b< % S"2(K(p,) 2. (1.6)

Proof. For conciseness, we prove this for j=2, and the similar argument works for
a general j>2.
1) Let g, be any point in F. Then obviously —q,€ Fr. Let

n:S"\{—q0}>R"

be the stereographic projectioon map with g, lying on 0e R”, and §=n*(é;;) be the
pullback metric on S"\{—q,}.

For p, € F,, write {h;p,, ..., h,p,} = {Po, Po}. At pole p,, the Green’s function of
the conformal Laplacian 4, under the metric § on S"\{ —q,} is alp —po|* ", where
|p— Dol is the distance between the 2 points under the metric g, and a is a constant.

Claim.

|hp—hpol=|p—pol, forany peS™\{—gq,},herl. (1.7)

Proof of the Claim. For any { € S", n({) is the tangent vector at g, of the geodesic (on
the standard S") linking g, and {. Since h is an isometry on S",

L (n(p), n(po)) = L (n(hp), n(hpo)), (1.8)

where £ (X, Y) stands for the angle between the 2 vectors X and Yin R" Let d(,)
be the geodesic distance on standard S". Note that g, € F, we have

d(hpo, 40) = d(hpo, hqo) = d(po, 90) »
d(hp, 40)=4d(p, qo)-

Hence,
[n(hpo)l =Im(po)l and  |n(hp)| = |n(p)|- (1.9)
Now, from (1.8) and (1.9), it is easy to see that
[me(hp) — 7e(hpo)| = |m(p) — 7(po)|
Therefore (1.7) is true. The same equality holds for p,,.

Let
G(x)=|x—pol* " +|x—pol* ™",  xeS"\{—qq}.
Then
G(hx)=G(x), forany hel, xeS™\{—qo}.
In fact, by (1.7),

Glhx)=|x—h""pol* " +[x—h"o|* "
=|x—pol*> " +|x—pol* "= G(x)
due to the definition of {p,, po}. Where h™! is the inverse of h.
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2) Let
2-n
Mx)= |cos 40, x)
2
Then
2eC(S"™\{—qo}) and g=A"lg,.

Define

AG(—qo)= lim AG(x).

xX= —qo
Then it is easy to see that
AGeX,. (1.10)

Observe that the functions

P (n—2)/2
e =\

are solutions of the equation
—dgu, ,=nn—2u; ,, for xeS"™\{—qo},
while —4, and — 4+, are conformal, we have
—A(Au,, ) +V,Au, ,=n(n—2)(Au, ), for xeS". (1.11)

Let B (p) be the ball centered at p with radius ¢ under the metric g. Choose ¢,
sufficiently small that

2300@0)“%00(130) = 0 and — 4o ¢ %290(1’0)\)%2@0(170) .

Let ¥ e C(B0(P0)UB1y(Po)), P(x)=1 for xeB, (po)uB, (o) and ¥ only
depends on |x—py| or on [x— pol in B,, (py) or in B, (p,) respectively.
Define

Ug, po(X) xeB,(po)
(x)= Uy 5o(X) xeB, (o)
V= eo(Gx)— Palx) xe {B200(P0)\B(P0)} U { B 20(Po)\ Byo(Po)}
&0G(x) X € S™\{B34,(P0) U B244(P0)

where

x—Pol> "—A xeB . e
a(x)= {I pOI ZQo(pO) Wlth A=|p0_‘polz n.

[Xx—pol>™"—A4 xe%Zo(ﬁO)

In order for ¢ to be continuous, we require (cf. [6])

. Py (n—2)/2
eolgp "+ A)= ( ) .

£ +0}
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By (1.10), it is not difficult to verify that Ap € X, i.e. Ap(hx) = A¢(x)for any he I
Moreover, by the assumption K(p,)=K(p,)>0, one can choose ¢ so small that
[ KlAp[**'dV >0.
s"
Now Ape H N X .
We are going to use A¢p to estimate the quotient
E(u)
{f Klulw 1dV}2/(r+ 1)°
s"

Q)=

where

E(u)= sj'n (IVul® +v,u?)dV.

The following approach is somewhat standard (cf. [6, 4]).
By (1.11), we have

I {IV (g, p)I? +vo(Au,, ) *}dV

Beo(Po

=n(n—2) | (Au,, )y dv+ | /lu,,,m;;v(iue,m)dS

Boo(Po) 0Bgo(Po)

_ a
gs{ ;)(zua,m)f“dv}(" Dt § Ay gy (g )dS. (112)

Boo(Po Bgo(po)

The same inequality holds for B, (p,) due to the symmetry of A¢. Here we have
used the fact that

S=n(n—2) {j uz“dx}z/"' (1.13)

Rn
Note that
—A(AG)+ v, (AG)=0 for xe S"\{%ou(po)u%‘m(ﬁo)} ,

and due to the symmetry of Ao, we have

E(A<p)§2${ f |,1<p|f+1dV}<"*2>/2

eo(Po.

0 i
+2 {lus’ b3y (g, o) — £6AG Fm (ZG)} dS+coged.

Bgo(Po)

Since >0, and Ae C*(S™\{—go}), similar to [6], we obtain
E(Ap)<2S { [ e[t ‘dV}"" Dm _qoAed +cog eyt +cootl

2o(Po)

with ay,>0.
Now, due to K,) and the flatness assumption

ViK(pe)=0, i=1,...,n—2
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analogous to [4], we arrive at

Blig) S 2K (po) " | K gl v}

%90(1’0)\) BQD(pO)
—agAed+c(e"  +05 st +008d)

é 22/nK(po)(2 —n)/nS { J~ K(x) M(plr+ ldV}(n-— 2)/n
sn

—apAes+clog 26y +006d) -

Because ay,4 >0, we can choose g, small and ¢, smaller to verify
Blig) <2"K(pof? " {{ K()ol™*'dv ) =20,
SH

That is
Q(Ap) <22"K(py)@ ~mins (1.19)

Choose a constant t such that {J'(tAg), Ap) =0, then
tipeM, and J(tip)= % (L),

Therefore b < J(tAg), and (1.6) (j =2) follows from (1.14). This completes the proof.

Lemma 1.3. The flatness condition X¢,) is always satisfied for n=3.

Proof. It suffice to show that for any 2 < j<m, at maximal points of K on D,
VK=0.

Consider the case j=m—1. Suppose that poeD,,_;,

K(py)= max K, but VK(p,)+0. (1.15)

Dm—l

Then by the definition of D,,_ ,, there is at least one he I', such that hp, = p,,. By the
linearity of h and because of K(hx)=K(x) for any xeS*, we have

PR = po =V K1) po = AV KX)]; = pp = BV KX < po - (1.16)

Let IT be the plane in IR* spanned by the vectors VK(p,) and p,, let S'=ITNS>.
Then due to hp,=p, and (1.16), and the linearity of A, it is easy to see that

hx=x VxeS!
which implies S'CD,,_,. Hence
K(pg)= max K.
xeSt
This leads to VK(p,)=0, a contradiction with (1.15). Therefore we must have
VK(py)=0.

Similarly, one can prove that for any 2 < j <m, at maximal points of K on D,
holds VK =0.

Remark 1.1. Infact, the conclusion of Lemma 1.3 is true on " for any n and for any
j=12,...,m.
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2. Existence Theorems and the Proofs

Throughout this section, we assume that K(x) satisfies the conditions K ), K ), and
A).
Let’s still consider the sequence {u,} CM, such that

Jw)—b, and J'(u)—0, as k-oo.

As we argued in Sect. 0, in order to find a solution of Problem (), one only needs to
show that Case 2 can’t happen. We argue indirectly. Suppose Case 2 occurs, i.e.

u,—~0 as k—oo, in H(SY.

Then by Lemma 1.1, one must have
1 s
K(x)>0 and b= - M2y K(x)2 ™2, 2.0
i=1

where {x,, ...,x,} is defined by (0.5) and (0.6).
Under the assumptions of the following theorems, we will derive contradic-
tions with (2.1), therefore prove the existence of solutions for Problem (*).

Theorem 2.1. If Fr=0 or if max K<0. Then Problem (*) has a solution.
Fr

Proof. Since K(x;) > 0, under either one of the assumption of the Theorem, we have
{x1s ..o X" Fr=0.

Consequently, there exists x;€ F; with 2<j<m, 1 <i<s. By the symmetry of K,

there are j points in {x,,...,x,} belonging to D; hence by (2.1),

b L g2 [max K]@ -mi2 2.2)

n D;
while on the other hand, by £3) and the definition of D, there exists pe F, with
2<k<j, such that

K(p)=max K and VK(p)=0, i=1,...,n—2.
Dj
Hence by Lemma 1.2,

b< k N [max K]‘Z‘”)/Z )
n Dj
An obvious contradiction with (2.2). This completes the proof.

The following theorems deal with the situation that max K >0.
Fr

Theorem 2.2. If there is jo, 2=< jo<m, s.t.

jA*~P max K< max K. 2.3)
Fr Djq

Then Problem (*) has a solution.
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Proof. First case, {xy,...,x,}"Fp=0, the proof is then the same as the one in
Theorem 2.1.
Second case, {xy,...,x,}"Fr+0, then

b= 1S"/2 [max K](z‘"’/z. (2.4)
n

Fr

while by J¢3) and Lemma 1.2,

b< % sni? [max K]‘z‘"’/z Vji=2,...,m.
Dj
Consequently,
j [max K]‘z'"’/z > [max K]‘z'"’/z Vji=2,...,m.
D; Fr
This contradicts with (2.3). The proof is completed.

Now, from the proofs of Theorem 2.1 and Theorem 2.2, we see that in order to
find a solution of Problem (*), it suffice to derive a contradiction with (2.4), i.e. to
verify the following inequality

b< 1 Sz [max K]‘Z‘””z . 2.5
n Fr
Theorem 2.3. If 1
0< max K< o { K(x)dV. (2.6)
Fr n ST

Then Problem (*) has a solution.

Proof. We are going to verify (2.5). By the assumption 0< | K(x)dV, we see that
S'l

any constant ce H,. Choose a proper c such that {J'(c),c)> =0, then ce M. Hence
b=<J(e)= % sn2 {w,, / | K(x)d V}‘" -22 2.7
S”

-2
nn=2) w?2 Now it is easily seen that (2.6) and (2.7) imply (2.5). This

because S=
completes the proof.
Theorem 2.4. If there exists x, € Fp, such that

K(xo)= max K>0 and AK(x,)>0.
Fr

Then Problem (x) admits a solution.

Proof. Let
w(x)=(26)" " ?/2{e? + 4+ (s> — 4) cosd(x, x)} /2,
Then it is not difficult to verify that
—Aw,+v,w,=nn—2w;, VxeS", (2.8)
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Note that
hxo=x, and d(hxy,hx)=d(xy,x) Vhel,xeS",
it is easily seen that
w(hx)=w,x) Vhel, xeS".

That is
w,eXr.
Since K(x,)>0, and
W(x)— {0 XFXo o5 60,
+00 x=Xg

We see that for sufficiently small ¢, w,e H,,. Choose a suitable constant ¢, such that
J(tw,), w,)=0, then

tw,eM and bSJliw)=  [QMI™. 29)

Now, let’s estimate the quotient Q(w,). Again let & be the stereographic projection
from S"\{—x,} to R", with x, lying on the origin of IR". Let B,(0) be the ball of
radius g and centered at origin in R". Obviously, By(0)=n(B(x,)), where B (x) is
defined in Sect. 1. Taking into account of the fact that
fwitldv= [ u*'dx VDCS" (2.10)
D

n(D)

by (1.13), (2.8) and through a direct calculation, we obtain

Bo(x0)

+c¢ | utldx. (2.11)
R7\B,(0)

[ (7w, 2 +v,w2}dVES { j w;“dV}‘"‘z’/"
SVI

Using the second order Taylor expansion of the function K(x) at point x,, taking
into account that

[ yyuy)y*ldy=0 for i%j,1=i,j<n
B(0)
due to the symmetry of u, (here y=(y,, ..., y,)); we arrive at

[ oWV i [ K03 AK () d g WY (212)
B,(x0) K(x0) Bix0)

for g sufficiently small.
By the assumption that 4K(x,)>0, boundedness of K and (2.10), (2.11), and
(2.12), we have

{17+ v}V SSTR (02 {1 (s avje -2
sn sn

—c; | IXPuttldx+c [ uitldx
B,(0) R™\By(0)
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with the constant ¢, >0. Now, by an elementary calculus, it is not difficult to verify
that, for ¢ small and ¢ much smaller,

Q(w,) < S[K(xg)]* ™"
This verifies (2.5) due to (2.9), and the proof is completed.

Remark 2.1. By Theorem 2.1, if the fixed points set on S" under the action of I' is
empty, and if K satisfies K), K), and J£3), the Problem (*) has a solution, which
implies this part of results in paper [4].

Remark 2.2. In paper [7], the sufficient conditions for Problem (*) to have a
solution are, in the language of our paper

1) K satisfies K) and K,)

2) for all xe §",

b< Z%)S"/Z[K(x)]‘z‘"”z (2.13)

where j(x)=j for xeF;, j=i,2,...,m.

However, in our paper, due to Lemma 1.1, we only require condition (2.13) be
satisfied on at most m points. Moreover, if K satisfies the flatness condition J¢5) (it
is satisfied automatically for n=3) then we only require (2.13) be satisfied at one
point on §", that is [cf. (2.5)], if there is x, € F, such that

K(x;)=max K and b< %S"/Z[K(xl)]‘z”"’/z. (2.19)
Fr

Furthermore, we provide some direct and verifiable conditions on K (cf. Theorems
2.1-2.4) so that (2.14) can be satisfied. Now one can see that our results are much
stronger than that in paper [7].
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