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Introduction

In [1], Hoffman and Osserman gave necessary and sufficient conditions A
(2.20, 2.21) for a map @ from a Riemann surface S,, to C"\ {0} satisfying® - ®=0to
represent the Gauss map G:S,—Q,_,CCP""! of a conformal immersion
X:S,—R"

In this paper we introduce necessary and sufficient conditions B [(6, 7) of
Theorem 1], which are equivalent to A but are more explicit. Moreover, in the
proof of Theorem 1, formula (13) shows that if H is the mean curvature vector of
X(Se)CR", (log|H]|), can be expressed by a differential expression of order 2 in ®,
which generalizes a result of Kenmotsu [3, Theorem 3].

Moreover, Theorem 1 yields somewhat shorter proofs of the results of
Hoffman-Osserman for the cases n=3, 4 [1, Sect. 3; 2].

In Theorem 2, we give a constructive proof which allows us to explicitly
represent X(S,) by his Gauss map ®, and to generalize in all dimensions the
representation theorem of Kenmotsu [3, Theorem 4].

The Results
Let S,y be a Riemann surface and the map
X:S,—R" )

be a locally conformal immersion. If z=¢ +in is a local parameter on S,, and
(%4, ..., x,) are coordinates in R", then the map defining surface S is given locally in
the form

X(2), X=(xg,--»Xy)- )
The Gauss map G:S,—Q, _, is defined by

G(z)= [%] 3)
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where Q,_,={ZeCP""!|Z?=0} is the complex quadric in CP""!. We may
represent G locally in the form [@] such that

6= 2| ~toe. @
where ®(z)=(¢y, ..., p,) € C"\{0} satisfies
<1>.<1>=lé1 03=0. (5)

Theorem 1. Let S be an oriented surface in R" given by (1). Let ® be the Gauss map of
Sinthe sense of (3, 4). If the mean curvature vector His not zero on S, then the Gauss
map ® must satisfy

Im{(®,- ®,)'*(®,—1®)} =0, (6)
®, @, @ &\]_
m K«bz-mz o >} -0 ™
where 1 is defined by
0,
="pp ®)
Proof. The formula (4) means
X
o =y ©)

for some function y:S,—C. We note that the surface is regular wherever y does
not vanish. By (2.17, 2.18) in [1], we know

®>pH=D,—n®. (10)
By taking the symmetric product of (10), we get
|®*¢* H> =@, @,. (11)
From (10) and (11), we obtain
(B, ®,)V*(®,—1®)= +|®*H||y|*H.

Thus (6) holds. This concludes the proof of the first part of the theorem.
By (2.19) in [1], we know

(logy),+1n=0.
Thus we have
(logp?), +27=0. (12)
By (11), we know that H=0 is equivalent to @, - ®,=+0. From (11, 12), we have

o, 0\
(bg I(DI“IHP), +27=0.
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Thus we get
(log[H[*), =(log(®, - @,)), — (log|®[*), +27].
Using the above formula and noting (8), we obtain

(Dz"bzz _ (Dz(i)
d)f'(bi |([)i2 ‘

(log[H]),= (13)

Since [H| is real, (7) holds. This completes the proof of the theorem.

Remark 1. We can prove that conditions (2.20, 2.21) in [1] (designated by A) are
equivalent to conditions (6, 7) (designated by B). In fact, the proof that B = A is
obvious, and the proof that A = B is the proof of Theorem 1.

Remark 2. We will see that Theorem 1 yields somewhat shorter proofs of the results
of Hoffman-Osserman for the cases n=3, 4 [1, Sect. 3; 2].

When S is the surface in R*, ®(z) is determined by (3.4) in [1]. By (3.15) in [1],
we obtain

@, ®,=V-V=(F,A—F,A)-(F,A—F,A)= —2F F,|A?, (14)

where V=®, —n®, F;is defined by (3.5)in [1], A is defined by (3.14) in [1]. By (14),
we know that H+0 is equivalent to F,F,=+0. Using (3.15) in [1] and (14), we find

(®, - B,)"/%(®, —1®)= +i)/2|A|(F,F,)"*(F,A—~F,A)
= +i)/2A[(F | (F,F,)"* A—|F,|(F,F,)"&).

Thus we get

Im{(®,8,)2(®,—n®)} = +|/2|A|(F,|— |F,) Re{(F,F,)'?A}.  (15)
We will show that

Re{(F,F,)*A}+0. (16)
Assume (16) fails at some point z,€S,. Then
Re{(F1(zo)Fafzo) "} Re{A(zo)} —Im{(F1(20)Fy(zo) "} Im {A(z0)} =0,
but
(Fi(z0)F5(20))" #0,  (because of F (zo)F5(zo)#0).
Thus we have
Re{A(zo)} =AIm{A(zo)} (or Im{A(z,)} = uRe{A(z,)}).
Hence
A(zo)=Re{A(zo)} +iIm{A(zo)} =(4+i) Im{A(z,)}
(or Alzo)=(1+ip) Re{A(zo)}).

By (3.14) in [1], we know that A% =0, thus Im{A(z,)} =Re{A(z,)} =0. This clearly
contradicts (3.16) in [1]. Thus (16) holds. By (15, 16), we know that for a surface in
R* condition (6) becomes (3.7) in [1].
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By (3.5, 3.16) in [1] and (14), we get

D, ©,= _4(f1)z(f2)23 (17
which implies that H=#0 is equivalent to ( fl),( f2):+0. Thus we find
D, D,
o = (log(@®,- @), = - {(og(fo). +(oB(f3)).}
z z

(fl)zz (fZ)ZZ}
{(fl)z AN S a8

Using (3.4, 3.12) in [1], we find

o8 F(f). L.
TR 1i|f1|2+1i|;2|2' 19

By (18, 19), we know that for surfaces in R* condition (7) becomes (3.8) in [1].
When S is a surface in R3, ®(z) is determined by (3.6) in [2]. Thus we find

Q.- ©,=4(f), 20
and o.. B o7
OF "1+ D
By (3.9) in [2] and (20), we obtain
(@, ®,)"*(®,—n®)= +4|f,I’N. (22)

Since N is a real vector, condition (6) is always satisfied for surfaces in R3. By (20),
we know that H=0 is equivalent to f,#0. Thus we have

P, 1 fez
= = (log(®, - ® 23
o =3 (08@: @)=, (23)
By (21, 23), we know that for surfaces in R*® condition (7) becomes
fe 211 ) }
Im < = — Z =0. 24
Kf, T+1/7). 4

Remark 3. The Eq. (13) obtained in the proof of Theorem 1 generalizes Kenmotsu’s
result [3, Theorem 3].
By (18, 19), we know that for surfaces in R* the Eq. (13) becomes

(log[HI?), =S(f))+8(/3), 25

where

_ e _ 2W.
SW=1r T kb (26)

By (21, 23), we know that for surfaces in R* the Eq. (13) becomes

2 2ff
AT @)

This is Kenmotsu’s result [3, Theorem 3].

(log|H]), =
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Theorem 2. Let S, be a simply connected Riemann surface, and G:S,—Q,_, be a
map into the complex quadric. Represent G locally by a map ® into C*\{0} in the
sense that G =[®]. Define n in terms of ® by (8). If V=®,—y® is not zero on Sy,
then there exists a conformal immersion X :Sy—R" with Gauss map G if and only if
@ satisfies (6, 7).

Proof. If there exists a conformal immersion X :S,—R" with Gauss map G, we
know that (6, 7) hold by Theorem 1.
Conversely, if ®(z) satisfies (6, 7), first we put

.0, O b

T(z)= o, . BT (28)
thus we have Im{T,} =0. Using Lemma 2.1 in [1], we have
h=exp [Re{2T(z)dz}, (29)
where h satisfies
(logh).=T(z). (30)
Second, we put
_(D,-B)”
By (28), (30), and (31), we have
1 D P,
(logw)z=5(10g(<1’z'd’z))z—(logh)z—~(10g(‘1’~‘b))z= T
Thus we get
(%
= +n=0. 32
o " (32

Using (31, 32) and condition (6), we obtain
Im(p®),=Im(p,® +y®,)=Im {V)(q)z - 'T(D)}

1
= W Im{((.bz ’ 62)1/2((1)2—’1(]))} =0.

By the proof of Theorem 2.6 in [1], we know that there is a surface X: S, —»R” such
that

X —v00). (3)

Clearly, X(S,) is a conformal immersed surface with Gauss map G.

Remark 4. We may write (33) in the form
X = [Re{2p®dz}, (34)
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or

_ 2((bz i 62)1/2(1)
X= j Re {—W dZ} s

where h is defined by (29). By (11, 31), we know that mean curvature vector H of
X(S,) satisfies [H| =h.

By Theorem 2.5 in [1], we know that if X:S,—R" is a conformal immersed
surface with Gauss map G, and the mean curvature vector H is not zero on X(S,),
then X(S,) is determined uniquely by G, up to translation and homothety. And
X(S,) can be explicitly given in terms of @ by (35). Furthermore, if h is the scalar
mean curvature of X(S,), namely, |H| = A, then X(S,) can be described explicitly
from h and @ by (35).

Therefore formula (35) generalizes the representation theorem of Kenmotsu [3,
Theorem 4] to euclidean n-space.

(35)
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