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Finite Groups and Hecke Operators

Geoffrey Mason* **

Department of Mathematics, University of California, Division of Natural Sciences,
379 Applied Sciences, Santa Cruz, CA 95064, USA

1. Introduction

One of the residual mysteries of the classification of the finite simple group
concerns the connections between the Monster group M and certain genus zero
function fields associated to elliptic modular functions. These relationships were
developed by Conway-Norton, Thompson et al. at the end of the last decade, and
concerned something which is now called a Thompson series; thus it is conjectured
that there is a sequence y _, =1, v, V5, ... of characters of the group M such that
the formal power series

(1.1) Ly=37.4q"

has (among others) the following properties: (i) if g is interpreted as e*™* (zel
=upper halfplane) then Y y,(1)g" is the modular function j-744 (here 1 is of course
the identity of M); (ii) for each ge M the g-expansion ) y,(g)q" is that of a
hauptfunktion of some level N=N(g) divisible by the order o(g) of g. More
preciselyif f' = f, =Y y,(g)q" thenitis conjectured that the invariance group G of f in
SL,(R) contains [(N) as a normal subgroup, that the compactified Riemann
surface (h/G)* is a sphere, and that f generates the field of modular functions on
(b/G)*).

Despite the overwhelming evidence for the truth of this conjecture, we seem as
far today from understanding it as ever. One of the difficulties which makes the
conjecture so mysterious and compelling is the apparent disparity of data which
must be reconciled. Almost as remarkable is that the only real progress to date has
been achieved by Frenkel et al. [FLM] using methods of Kac-Moody Lie algebras,
adding another ingredient to the brew.

The point of view which we adopt in the present paper is foundational. We
attempt to develop the beginnings of a theory of g-expansions of the type in (1.1) for

* Research supported in part by a grant from the National Science Foundation
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an arbitrary finite group. To paraphrase a remark of Langlands made elsewhere
but which applies equally well here, if the problem does not fall to a series of
vigorous assaults then we must prepare for a long siege.

As soon as a more general point of view is adopted, it becomes natural to
consider formal g-expansions (1.1) where not only are the y, allowed to be
generalized (or virtual) characters of the finite group G, but also if ge G then the
g-expansion Y y,(g)q" is the Fourier expansion of a modular form of some weight k,
level N and character ¢ and depending on g (more precisely on the conjugacy class
of G determined by g). Although there is no need to so restrict ourselves, we assume
throughout this paper that the following additional conditions hold: that for each
g € G the g-expansion Y 7,(2)q" is 2 modular form on I(N) for some N depending
on g and that this g-expansion has rational integer coefficients. Thus we arrive at
the

Definition. Let G be a finite group. The formal g-expansion
r=Yr4q"

is called a Thompson series (for G) if each y, is a rational-valued, generalized
character of G and if for each ge G the g-expansion

I,=Y7.{8)q"

is that of a modular form on [(N) for some N = N(g), integral weight k(g) and
character ¢,

Generally, we will be concerned with Thompson series where either all k(g)=0
(the original situation pertaining to the Monster), or at least each I is
meromorphic. There are also important examples where each I is holomorphic,
etc., but we will usually not dwell on the various situations that may arise
concerning the analytic properties of the individual forms.

One can now ask an apparently naive question: can one extend (some of) the
elementary theory elliptic modular forms to the context of Thompson series? In
this paper we are concerned in particular with the possibility of defining Hecke
operators for Thompson series. That the answer, in at least some situations, is
affirmative is part of the theory for the sporadic group M ,, as developed in [M3].
There we constructed a Thompson series for M,, whose corresponding L-series

Y 9,/ has an Euler product. In this paper we show that the existence of this
nz1
Thompson series is just part of a general theory of Hecke operators for Thompson
series.

What is perhaps surprising is that the Hecke operators we construct are
ultimately related to the theory of the (oriented) Bott cannibalistic class, regarded
in this instance as a certain virtual character of a spin group. It is clear that this
circumstance is just part of a much wider topological context, which however we
will not pursue here.*

A brief summary of the paper is as follows: in Sect. 2 we define some important
Thompson series and present certain spaces M(g) of Thompson series which will be
our analogues of spaces of modular forms with a given weight and character, and

* Such a context seems to be provided by elliptic cohomology
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on which our generalized Hecke operators will operate. In Sect. 3 we study the
Bott cannabilistic class, and in Sect. 4 show how to define the Hecke operators
themselves. In Sects. 5 and 6 we give some illustrations of how one can use the
Hecke operators to construct (i) Thompson series which are simultaneous
eigenforms and which include the M ,, example alluded to above as a special case;
(ii) Thompson series analogues of Eisenstein series; (ii) Thompson series for which
the identity I is of the form j(g) + constant. In an appendix we list the y-functions
associated to the Conway group - O and which play a rdle in several places.

It remains only to record thanks to those several individuals who have contributed, in one
way or another, to the results contained herein. It was Oliver Atkin who computed the
g-expansions of the forms listed in the appendix and thereby provoked the author into thinking
about Hecke operators, while Marvin Knopp pointed out the existence of the paper [Ba] and
Michel Broué supplied a copy of his work [Br]. Finally, it is a pleasure to thank Professor
F. Hirzebruch and the Max Planck Institut in Bonn for their hospitality during 1983 and for
giving me a chance to think about modular forms for so many uninterrupted hours.

2. The Spaces M(g)

In this section we establish some notation, recall some earlier results of relevance,
and introduce the spaces M(p) of Thompson series on which our Hecke operators
will act.

Our results will depend on a rational representation of the finite group G:

(2.1) V is an even-dimensional Q-vector space and
0:G-SL(V)
a representation of G by unimodular matrices.

In this situation we denote the characteristic polynomial of g(g) by x%(t). As ¢ is
a rational representation one knows (cf. [M2]) that

22 =TI ¢ -1

iz1

for certain integers k(i) which are zero unless i divides the order o(g) of g(g).
Given (2.2), we also set

d(g)=T11?,
2.3) k(g)=3Yk(i),
Ag)=(—1)"d(g).

Note that k(g) =1 dim V¢ is an integer where V' is the subspace of g-invariants
of ¥, so that we can define the Dirichlet character ¢, via

A(g))
2- = —_—
(24) £,(p) ( »

for odd primes p.
As usual we denote by 7 the Dedekind eta-function

ne)=q"** 1 1 -g",
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where g=e>"”, z in the upper half-plane. If g is as in (2.2), set

2.3) @)= [ n(iz)”

ix1

and define functions w, on G, n=1,2,... by

QG = Z w"qn )
(2.6) nz1
Q= ”; 0,(8)q" =1,(z).

From the results of [M2], for example, we know that @ is a Thompson series for
G. Furthermore, one knows that #,(z) has weight k(g) and Dirichlet character
induced from ¢, For this and a discussion of the level, see Sect. 4 of [M5] or
Proposition 3.2 of [Br] for example.

An important situation with which we will be interested concerns the case
where G is a suitable group of isometries of an even-dimensional even lattice IL.
Thus L is a free abelian group with a positive-definite, G-invariant, symmetric,
integral inner produce (, ), which is even, i.e., (x, x) € 2Z for x € IL. This situation was
first investigated by Thompson [T], where the following Thompson series was
introduced:

Og= Y x9q", ®,€RG,
n=0

@.7)
@g = ngo an(g)qn = 0][.‘1(2) )

where 014(z) is the theta-function of the lattice IL? of g-invariants in IL. In [M 5] it is
shown that

(2.8) IfLL is unimodular and ge G acts on IL with determinant 1, and on L&®;Q
with spinor norm 1, then @, has Dirichlet character &,

Now fix a representation ¢ of G as in (2.1). We define

(2.9) i(e)=complex vector space spanned by those Thompson series I; of G
such that for ge G, I (z) is a form of weight k(g) and Dirichlet character
induced from ¢,

Thus we do not specify the precise level of the forms I. In any case from the
preceding we have

Theorem 2. Q; e .#(¢). Moreover if IL is a unimodular lattice and ¢ is a represen-
tation of G as isometries of IL satisfying (2.8) then O ;e DY(g).

There are variations on MM(g); one that we make use of is S(g) — those
Thompson series I in MM(g) for which each I;(z) is holomorphic and a cusp-form.

We remark finally that whereas each of the theta-series @,of (2.7) are
holomorphic forms, the same is not necessarily the case with the forms #,. From
Sects. 4, 5 of [Ba] we have

(2.10) If n(z) is given by (2.5) and has level N, its order at the cusp r/s is
N k(i)

WA ® D
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3. On the Bott Cannibalistic Class

As preparation for our construction of Hecke operators in Sect. 4, we study in this
section certain generalized characters of the real orthogonal groups O(n, R) and
their universal covering groups Spin(n, R).

Recall first that the appropriate Clifford algebras and their representations
afford so-called spin modules for the spin groups. Using the notation of Chap. 13
of [Hu], Spin(2r + 1) has a (complex) spin module 4(r)= 4 of dimension 2", whilst
the corresponding module for Spin(2r) decomposes into the sum of the two half-
spin modules 47 (r), 47 (r) each of dimension 2"~ !, Moreover, with respect to the
canonical embedding Spin (2r —1)—Spin(2r), the restriction of both 4*(r) and
A~ (r) to Spin(2r — 1) are isomorphic to the spin module A(r —1).

There is a rather more recondite analogue of these constructions where,
roughly speaking, 2 is replaced by some odd prime p, or more generally by an odd
integer k. This involves the so-called Bott cannibalistic classes. We will not be
concerned in this paper with any of the topological aspects of these characteristic
classes, only with some of their formal properties. We refer the reader to the
appropriate sections of [Hu] or [Bo] for the general theory; the more formal
theory may be found, for example, in [Td] or [AT].

Thus first let k be any positive integer. Then the Bott cannibalistic class 6,
operates on special A-rings, in particular if E is the natural n-dimensional module
for O(n, R) then 0,(E)is a certain (generalized) module for O(n, R) of dimension k". If
kis odd then there is a refinement: namely there is the so-called oriented Bott class
0;" which operates on oriented A-rings. In particular 6;(E) exists if dim E is even
and we have

(3.1) O(E)2=04(E), kodd.

We note here that 0;(E) is a (generalized) module for O(2n, R) rather than its
covering group.

(3.2) Lemma There is a generalized module F for O(2n— 1, R) such that restriction
yields an isomorphism of 0(2n—1, R)-modules

0 (E)~kF .

Proof. Write E=E,@® T where dim T =2. Then the fact that 6;" is an exponential
map (on spaces of even dimension) yields an isomorphism

0% (E) = 6(Eo)0i(T)

of O(2n—2, R)-modules. Moreover 6;(T) is the trivial module of dimension k, so
that
(3.3) Ok'(E) =kO;(Eo)
as O(2n—2, R)-modules.
Now restriction induces maps of character rings

R Spin(2n)-L5 R Spin(2n—1)—% R Spin(2n —2)

and g is an injection (Proposition 13.13 of [Hu]). Moreover R Spin(2n —2)is a free
R Spin(2n—1) module with generators 1, 4*(n—1) (loc. cit.). But it is clear from
(3.3) that k6(E,) belongs to img, so the freeness of R Spin(2n—2) means that
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0Y(E) is itself the restriction of a generalized Spin(2n—1)-module, call it F. The
lemma follows immediately.

Notation

1. B, is the generalized character of O(n, R) afforded by 0,(E). It has degree k".

2. 1, is the character of Spin(2r, R) afforded by the half-spin module 47 (r),
while for odd k we let y, be the generalized character of O(2r — 1, R) afforded by the
module F of Lemma 3.2. We sometimes also use y, for the restriction to
Spin(2r—1, R); y, has degree k"~ 1.

3. B3 is the character of Spin(n, R) afforded by the spin module A(r), n=2r+1
or 2r; for k odd, ;" is the generalized character of O(2r, R) afforded by &;(E). So ;"
has degree k.

By (3.1), Lemma 3.2 we get
(3.3) (a) ky,= ;" as generalized characters of Spin(2r—1, R).
By if dimE=2r,
on2 __
(b) Ai)"= {Zﬁk if dimE=2r+1 (and k=2).
There are explicit formulae for these characters. Thus we have

(34 Blg)=T10 +u+...+47Y),

where the product runs over the eigenvalues p of g (with multiplicity). Furthermore
for odd k we have

(3.5) og)= [T 2+ 1+ pm 602,
*

Here, * means that the product runs over a set U of eigenvalues of g defined as
follows: pair the eigenvalues of g into 2-element sets {, u~ '}, and choose U to
contain exactly one element of each pair.

There is an alternate description as follows. Since g lies in a maximal torus of
O(n, R), n=2r+1 or 2r, then there are real numbers t,, t,, ...,t,, 0<t;< 1, such that
g is conjugate to the matrix

. cos2nt;, —sin2nt;
(3.6) dlag<..., (sin?.nt,-, cos 2nt, >, )

Then from (3.3) we deduce that for oddk,

. inkmt;
7 (o) = f1/2 dim(E9) SImAnt;
(3.7 i@ tjljo s,

Here, the product runs over those t; greater than 0, while E=the subspace of
g-invariants of E, which has dimension equal to twice the number of ¢; equal to 0.

The analogous formula for k=2 essentially involves replacing k by 2 and
replacing the odd function sinx by the even function cosx. Hence

(3.8) Let geSpin(n,R), n=2r+1 or 2r. Then

B (g)=2" jI;]1 cos2nt;.
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Some further explanation of this is in order. We have regarded g as an element
(ty,-..,t,) of the abstract torus T"~(R/Z), and to interpret (3.8) one must map T"
onto a maximal torus of Spin(n, R); see Sect. 8 of Chap. 13 of [Hu]. For our
purposes we do not need to be too careful with the various tori involved in this
situation. Note that for n even, AF)=4"(r)+ 4" (7).

The following definition will be relevant.

Definition. G is a group, g a representation of G on some (possibly generalized)
module, and k is an integer =2. Let ge G have finite order.

Call g strongly k-singular (with respect to g) if some eigenvalue of g(g) is a
primitive d-th root of unity for some 1+d|k. Call g k-regular (w.r.t. @) if all
eigenvalues of g(g) are I-th roots of unity for I coprime to k, i.e., o(g) has order
coprime to . Call g weakly k-singular (w.r.t. g) if g is neither strongly k-singular nor
k-regular.

We now choose a rational element geSO(n, R), ie., an element g whose
characteristic polynomial with respect to the natural representation ¢ on E is given
by (2.2). We then let d(g), k(g), and A(g) be as in (2.3).

At last we may state the main results of the present section.

Proposition 3.9. The following holds for k=2:

B(g)= k™9 if g is k-regular (with respect to @)
W8)= 0, if g is strongly k-singular

Moreover if k is a prime and g is weakly k-singular of order f then

ﬂk(g)=k2""”( 1 pe(P"‘k)>k-1

1<p|flk

where the product runs over non-trivial prime power divisors p* of f /k and for d| f we
have set

e(d)= %ik(i) (¢ 22).

Remarks. There is an analogous formula for §,(g) for composite k, but it is more
complicated to state and in any case we do not need it. Note also that if g is weakly
k-singular for k a prime then k necessarily divides the order f of g.

Theorem 3. Let k=2 or k be odd and let dimE=2r. Assume that g is not weakly
k-singular and define g, as follows: go=g if kis odd; if k=2 then g is a pre-image
of g under the natural map Spin(2r, R)—O(2r, R) chosen arbitrarily if g is (strongly )
2-singular and chosen to have odd order if g is 2-regular. Then

o= (042w

Remarks. 1. If k=2 and g is 2-regular then g, is, of course, uniquely determined.
2. If g is strongly k-singular then k divides d(g) and so B¢ (g,)=0 by the
theorem, as it must be to be consistent with (3.3b) and Proposition 3.9.

3. One verifies that if g has odd order then (—1)" 4(g)=1(mod4), so that the
(=1y4(g)

Kronecker symbol (—k———) makes sense in the case k=2, g 2-regular. Thus the
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case k=2 of Theorem 3 can be reformulated as follows (and in this form it also
holds if dimE =2r+1):

(3.10) Proposition. Let g and g, be as in Theorem 3. Then

o[ 2
P (go)= <rg)) 201,

We begin with a proof of Proposition 3.10 which is based on Eisenstein’s proof
of the law of quadratic reciprocity, as exposited in Serre’s text [Se] on p. 10. Thus
we have the identity

(3.11) For m a positive odd integer,

sinmx (m—1)2 [ . 5 2mj
- =(—4)m" Y2 71T | sin?*x—sin? i) ,
sinx =1 m

(3.12) For m a positive odd integer,
m-1y2  Dxj 2
(L) a-m-viz
jgl 5 (m>

Proof. Set x=m/2 in (3.11), noting that sinmmn/2 =(— 1)~ 12, We then obtain the
equation

(m—1)/2 i
! cos? L

j=1

- =1

and it is sufficient to verify that the signinvolved in the statement of (3.12)is correct.
Thus we are looking for the number of integers j which satisfy m/4 <j<(m—1)/2,
for these are the values of j for which cos27j/m is negative. One readily verifies that
the number of such j, say N, is even if, and only if, m= + 1(mod8). The result
follows.

We can now complete the proof of Proposition 3.10. We may assume that g has
odd order (cf. the second remark following the statement of Theorem 3), in which
case f35'(go) is given by (3.8) where we may take ¢; to be the form j/m for m odd and
0=<j=<(m—1)/2. Ineffect, then, (3.12) gives us the “contribution” of a single cycle of
length m to the value of £57(g,), so if g has characteristic polynomial as in (2.2) then
we get

m(i)
B3 (go)=2" I1 <z> 9= (= D)2
iodd \ I
2
= — zf,
(d(g)>

f=r=Y0—1k@)/2
=r—n/2+k(g).

The proposition is now proved.
We turn next to the proof of Proposition 3.9. It is clear from (3.4) that if g is
strongly k-singular, i.e., if g has an eigenvalue y which is a primitive d-th root of

with
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unity for some d =2 which divides k, then f,(g)=0; the converse is also true. So
assume from now on that g is not strongly k-singular. Then (3.4) yields

H—1

(3.13) Bi(g)=k*@ [ ——r.

pr1 p—1
Now if g is k-regular then y* ranges over the non-trivial eigenvalues of g as u does
(since g is rational), so in this case B;(g)= @ as required. It remains to treat the
case that g is weakly k-singular and k is a prime. We only sketch the proof of the
desired formula as it will not be crucial in what follows. Let f be the order of g and
recall that k| f.

In the following we let @,(t) denote the d-th cyclotomic polynomial:

(3.14) @ (t)= l-ll (t—p)= % (t°— 1ydia)

where p(d/a) is the Mobius function and y; ranges over the primitive d-th roots of
unity. Set also

(3.15) bd)= ] (1 —1)=(—1)?D21)

We have
0, d=1

(3.16) ®,1)=1p, d=p*>1is a prime power.
1, otherwise

To see this, use (3.14) to see that we may take d to be square-free, say d=p;p,...p,
with p; distinct primes. The result is clear if s=0, and if s=1 we see that

e =1 [l +e+...+7Y

Q)= Hoy = =T

[1¢e°—1)  JIA+t+...+¢771)
where u, v jointly range over all divisors of d such that d/u resp. d/v has an even resp.
odd number of prime factors. Then ¢ ,(1)= U/V where U resp. V is the product of
all u resp. v.

2j

jz0

Finally,a given prime p; is a divisor of exactly ¥ (S ) divisors of d with an

odd number of prime factors, and exactly S, divisors of d with an even
iZ0\2j+1

number of prime factors. If s =2 these numbers are equal, whence @,(t)=1 in this
case. If s=1 the result is clear.
Now if we set

(3.17) ad)=[]—~
where y; ranges over the primitive d-th roots of unity, the theory of cyclic groups
yields

 [bd/ibd) i kd
(3.18) a(d)= {b(d/k)"‘l/b(d) if k*\d
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Putting (3.15)(3.18) together we get

0, k=d,
(319 a(d)=1p*"", d=kp*,a21,p prime,
1, otherwise.

Finally, a,(d) gives the contribution to f,(g) in (3.13) which derives from a
given primitive d-th root of unity. The multiplity of such an eigenvalue is given by
the integer e(d) of Proposition 3.9, which is now a consequence of (3.19).

We now turn to the principal result of this section — the proof of Theorem 3.
There are several approaches to this result; after Proposition 3.9 and (3.3b) we
know that

(3.20) Pri(g)=e(g)k"®

for some sign &(g)= +1 (g is assumed to be k-regular). Now since S§" restricts to a
generalized character of (g), it is a triviality that (3.20) uniquely determines what
the sign &(g) must be in case g has odd order, and of course Theorem 3 implicitly says
just what it is. Equally trivially, &(g) is not determined for g of even order by (3.20) if
one assumes only that 5" is a generalized character, so in this case it is necessary to
go back to the Definition (3.7).

We will use a mixture of these approaches. Consider the following result:

(3.21) Proposition. Let k=3 be an odd integer, m=2 an integer and assume
(m, k)=1.

Define an integer N = N(m, k) as follows: N is the number of integers a satisfying
(i) 1<a<m/2; (ii) (a,m)=1; (iii) ak/2m— [ak/2m] >1. Then the following holds:

k
(—), m=p°>1, p an odd prime

)(2) , m=2p°>2 p an odd prime

2
(—1)'=1 G)  meves

U1, otherwise

We will show that Proposition 3.21 is equivalent to Theorem 3. Then we give a
direct proof of Proposition 3.21 in case m is even. If m is odd (which essentially
corresponds to g having odd order) we give a proof based only on the fact that % is
a generalized character, which will also provide a second proof of
Proposition 3.10.

Now after the remarks following the statement of Theorem 3 we may restrict
our attention to the case in which k is odd and g is k-regular. Because of (3.3, 3.7)
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and Proposition 3.9 we are reduced to determining the sign of the product

sinknt;

(3.22) t;>0 SInmt;

in the notation of (3.6, 3.7). Now the eigenvalues of g are given by exp(+ 2rit;) for
0<t;<1,so0as gisrational we may take each ¢; to lie in the interval [0, 1]. With this
choice, the denominator of (3.22) is positive.

We will now show that Proposition 3.21 implies Theorem 3. An eigenvalue of g
corresponds to some value a/m of t;, and for the purposes of studying (3.22) we may
take (a,m)=1, 1<a<m/2. Moreover, the condition ak/2m—[ak/2m]>% says
exactly that sinknt;=sinkma/m is negative. In effect, then, for a given m the value of
(—=1)N gives the contribution to the sign of (3.22) which accrues from a single
primitive m-th root of unity together with its Galois conjugates.

Now assume that g has characteristic polynomial (2.2) and consider the sign
contribution to (3.22) from a single cycle of length m. If m=[]p{" is the prime power
decomposition then the relevant eigenvalues are all the m-th roots of unity,
primitive or otherwise.

Assume first that m is odd. Then the only eigenvalues which may contribute
are, from 3.21, the prime powers dividing m, and the total contribution is exactly

(-

Assume next that m=2(mod4), m> 2, with p{: =2, say. Then Proposition 3.21
tells us that the contribution from eigenvalues distinct from —1 is exactly

GIETaGT

(3.24) <27'") (m>?2).

which is simply

Similarly, the contribution from eigenvalues distinct from — 1 in case m=0(mod4)
is seen to be

629 (=22).

We excluded the eigenvalue —1 from the above considerations since it is the
(only!) eigenvalue distinct from 1 which coincides with its Galois conjugates. After
the discussion of (3.6) and (3.7), one should not calculate the contribution of —1 to
a single cycle, but to the whole expression; after we remember that only one-half of
these eigenvalues contribute to (3.22), we obtain from (3.21) that

—1 1/2me2\:' nk(m)
(3.26) (T) .
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is the total contribution from — 1’s. (Here and below, k(n) is as in (2.2).) We can now
at last make explicit the sign of (3.22); from (3.23-3.26) it is

| 2m>"‘"‘) (—2m>"‘"" <_1>u2m£mk<m>
3.27 — =) - —) =
( ) ml;[m (M> mEI}(;)( k msl_(!(4) k k

Since detg=1 then ¥ k(m)=0(mod2). If we further let c= [][ m*™ then

meven modd

quadratic reciprocity allows us to write the first product in (3.27) as

c -1 (c—1)/2
(E) (T) . Then (3.27) can be re-written as

1\~ 1)/2 k(m) S km) /__q\h
(GG
dg)\ [ —1 h+(c—1)/2
-(B)F)

where h= Y Kk(m)+3 Y k(m). Comparing this with the statement of
m=0(4) meven

Theorem 3, we must show that

c—1

(3.29) ht =5

=k(g)+r (mod?2).

From the definition of ¢ we easily find thatc—1=2 Y k(m) (mod4), so we
can write (3.29) in the form m=34

2 Y km+ ¥ km+2 ¥ km= ¥ km+ Y mk(m) (mod4).
4) m=3(4) allm allm

m=2( meven

Finally this is easily seen to be equivalent to the assertion

2( Y km+ Y k(m)) =2 ( Y km+ Y k(m)) (mod4)
) m=3(4) m=1(4) m=2(4)

m=0(4
which is true since 2k(g)= Y, k(m)=0(mod2).
allm

This completes the proof that Proposition 3.21 implies Theorem 3. The
converse follows in a similar way, for by the above discussion we only have to
determine the sign of (3.22) in case t; runs over the rational numbers a/m for
(a,m)=1 and 1<a<m/2 (at least if m=3), which corresponds to evaluating

(( —1y4()
k

unity. Then k(g)=0, r=(m)/2, d(g)=1 unless m is a prime power, and
Proposition 3.21 is readily deduced.

We will now prove Proposition 3.21 in case m is even, although some of the
arguments hold for all m. Of course Proposition 3.2 bears much more than a mere
supetficial resemblance to the Gauss lemma; our proof reflects this. The case m=2
is trivial, so for convenience we may assume m= 3. Set

F(i)={aeN|(i) 1a<m/2, (i) (a,m)=1, (iii) (i—1)m/2 <(ak/2m) <im/2}

in the case the eigenvalues of g are just the primitive m-th roots of
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fori=1,2,3,4, with

J@O=IF@).
In the notation of Proposition 3.21 we have
(3.30) N=f(3)+ f(4).

Recall next that the Gauss lemma itself tells us how many residues ak(modmy)
lie in the interval (3m, m), or at least gives the parity of the number of such residues.
In present terms it tells us that

(3.31) (—1)f@+I@ = k@2 (modm).

The next two results follow from the structure of the group (Z/mZ)*.

k .
(;) . m=p® or 2p°, p°>1 an odd prime power,

d(m)/2 — _
(3.32) kPmiz= (’1&) 4

1, otherwise,
the congruence being (modm).

(3.33) Suppose that misneither a prime power nor twice a prime power. Then both
(Z/mZ)* and (Z/2mZ)* have exponent dividing J(m)/2.

After these preparations we turn to the proof of Proposition 3.21 itself for m
even. Let a range over the interval 1 < a<m/2 with (a,m)=1, and consider which of
the sets F(i) contains the least positive residue of ak (mod 2m). Let r denote a typical
such residue. We have

4
kP2 1 a= 1 [] r=(=1y@*@ I1 r [T (=) ] r [1 @m-r),
(3 34) aeF(1) i=1reF(i) reF(1) reF(2) reF(3) reF(4)

the congruences being (mod 2m). Next we claim
(3.35) For m even, f(2)+ f(3) is even if, and only if,
k@ m)2 — (— l)f(2)+f(4)(m0d2m) .
Proof. The point is that if r, s, i=2,3, are typical residues in F(i) then
(m—r,)(m—s,), (ry—m)(s3;—m) and (m—r,) (r;—m) are congruent to (—r,)(—s,),

(r3) (s3), (—1,) (r3) (mod 2m) respectively, since each r;, s; is odd (being coprime to m).
But then f(2)+ f(3) is even, if and only if,

(=) Il r= [ (m—r ]])(r—m)(mod2m).

reF(2) reF(3) reF(2) reF(3

But clearly
as J] r [I (m—r) ['[)(r—-m) 1 @Cm—r)

aeF(1) reF(1) reF(2) reF(3 reF(4)
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s0(3.34) yields that f(2)+ f(3)iseven if, and only if, k22 =(— 1)@/ (mod 2m)
as claimed.

Now assume that m is neither a power of 2 nor twice an odd prime power. Then
(3.33) yields k22 =1(mod2m), whence f(2)+ f(4) is even by (3.31). Then (3.35)
yields that f(2)+ f(3)is even, whence also f(3)+ f(4) is even. So Proposition 3.21
holds for such m.

Next assume that m=2°2> 8. Then k?™/? = 1(modm) by (3.32), so f(2)+ f(4)is
even by (3.31). Then by (3.35) we get f(3)+ f(4) even if, and only if f(2)+ f(3) is
even; if, and only if, k?™/2 = 1(mod 2m). But this hold if, and only if, k= + 1(mod 8),

ie., (%) =1, so again Proposition 3.21 holds.

Now assume m=2p®, p°> 1 an odd prime power. By (3.32) we get k?™/2 = (l;-)

(modm), so (3.31) yields (— 1)/ @ /@ = (l;) Also, by (3.35) we see that f(2)+ f(3)
is even if, and only if, k?™/2 = (g) (mod 2m), and since k™2 = (:-j) (modm) then
.. k —1\r~ 12
this is equivalent to k2™/2= (—) (mod4). Moreoever k?™/2= (T)
k
= (;) (%) (mod 4), so we conclude that (—1)/@+/®) = (%) Finally, we now get

(— 1)@+ = (YOG () @+I @) - <%) (E)
p

as required by Proposition 3.21, which is now established whenever m is even (we
leave the case m=4 to the reader).

Finally, we prove Proposition 3.21 for modd. By a previous discussion this
amounts to the following: take g of odd order such that the eigenvalues of g are just
the primitive m-th roots of unity. Then k(g)=0 and f=f¢" is a generalized
character satisfying

(3.36) Ple)=¢elg), p)=k"™I2
and B is exponential. We must show that in the notation of Proposition 3.21, &(g)
=(—1)"= (g) or 1 according as m is a prime power p°>1 or not.

We proceed by induction on the order of g, the result being trivial if g=1.
Assume that m=p°>1 is a prime power. For each 1+d|m we have B(g™)

=¢g(gm)PmMIDW) — g(gm/d) = <:—j> for d+m by induction. Using (3.36) and the
integrality condition implicit in the equation
(3.37) B 1)y €2

we get

(3.38) H(m)e(g) + .,.Z . Jd) <§) + k@22 =(0(modm).
L#d*m
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Now k22 = C—j) (modmy), so (3.38) becomes

Zm) (s(g)— (—';)) + 2@ (%) — &(m) <s(g)— @) m (g) —O(modm),

whence &(g)= (ll_j) is immediate.

Finally, if m is not a prime power then k?™/2 =1(modm), f(g™%)?™/2@ =1
since (m)/H(d) is even (for 13=d=+m), so in this case (3.37) reads

D(m)e(g) + d%n D(d)+1=0(modm)
1+d+m

and as Y (d)=m then &(g)=1 follows, as required.
dlm

4. Hecke Operators

After the contortions of the last section we are ready to construct our Hecke
operators, which will act on the spaces Mi(g) of Sect. 2. Our approach will be naive,
i.e., purely formal; we define our operators via their action on g-expansions, as in
Sect. 3, Chap. VII of [L], for example.

Thus let A be any commutative ring with identity 1. We can define operators U,
and V; on A[[q]], de N, as follows:

@.1) UsrSnd'= 3™, Ve Snd' > Emd"

For each prime p choose y,€ 4 and set
Y,=p5l...py if n=p{.. . pr, p; distinct primes,
Y= 1 s

and identify vy, with the operator which acts on A[g] by component-wise
multiplication by 1,
The Hecke operator T, (with respec to the ) is defined by

4.3 T,= %‘, (PAZE Un/d’

4.2)

for example for a prime p we have

(4.4) L=U,+p,V,.

We then formally derive multiplicativity:

4.5) T,1,=T1,, if (mn)=1,
and the Euler product representation:

4.6) z—~n( T ?)ﬂ

>1n
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Our principal examples (aside from the original Hecke operators themselves!)
arise by taking for A a suitable ring of generalized characters. Let n=2r be an
integer divisible by 4 in the following.

Example 1. A=R Spin(n, R) with vy, the half-spin character of Spin(n, R). This
allows us to define T,.

Example 2. A=RSpin(n—1,R) with y, for p an odd prime the generalized
character of Spin(n—1,R) defined following the proof of Lemma 3.2. We
emphasize that in this section , for composite n is defined by (4.2); generally this
will not be the same as the y, of Sect. 3.

We deduce from Theorem 3 the following consequence (cf. (3.3a)):

(4.7) Let geSO(n—1, R) be rational and assume that g and g, are as in Theorem 3
with k=p prime. Then

4
V(80 = (%) PO~ =¢ (p)pt@1.

Example 3. By restricting the y, above to appropriate subgroups G we obtain
operators T, for A=RG.

Now let G, V satisfy hypothesis 2.1 with n=dim ¥V =2r divisible by 4. By
extending scalars we get a containment G < SO(n, R) and we can pull back G along
Spin(n, R)—»SO(n, R) to a group G. We make use of the notation of Sect. 2, in
particular we have the space (). With the generalized character y, e RG for p an
odd prime available, we can ask if T, preserves M(g). If I'e M(g) with I' =Y y,g" then
T,I" e M(g) precisely when for each ge G the g-expansion

(4.8) U, +v,(8)V,) Cr(8)d")

is again a modular form of weight k(g) and character ¢, But after (4.2), (4.8) is just
the action of the usual Hecke operator, so that (4.8) indeed has the required prop-
erties. Of course we must qualify this assertion with the remark that (4.8) only
holds if g is not weakly p-singular and if ge SO(n—1,r)S SO(n, R).

When considering the case p=2 we have already seen that it is necessary to
pass to the group G: vy, will generally not induce a character of G. In favorable
situations the extension

4.9) Z,-G-G

will split, so that G~Z, x G, and we may indeed think of y, as a character of G
itself. On the other hand if ge G is not weakly 2-singular and + g, are the pre-
images of g with g, as in Theorem 3 then we have

Pa(—8o)= — (224071,

Now ¢,(2)=0if o(g) is even and there is no problem; if o(g) is odd, say N, then ¢, is
defined modulo N (cf. Sect. 2) and I (z) =3 7,(g)q" is a form on I(N). Then V,(I(2))
is a form on I,(2N) with the same weight and character ¢, so that also (U,
+,(—go)V2) (I(2)) is on I(2N). In this case, then, one should perhaps think of T,

a8 map T, 9(g)~ M)
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where () is a space of Thompson series for G satisfying the same sort of
conditions as M(g) (cf. (2.10)). Of course the canonical embedding RG—RG
induces a map M(e)—M(o), but in any case T, does not generally act as the usual
Hecke operator on I(z) if g has odd order. Nevertheless we will find it profitable to
use the operator T, later.

We gather some of the preceding in the next result, which epitomizes the
“nicest” situation. We use the

Definition. Given G as above, we say that T, exists if T, defined by (4.4) satisfies
T,: M(e)—M(e)

and if for each g € G, I e M(g), the operator T(g):= U ,+y,(g)V, acts on I (z) as the
“usual” Hecke operator.

Theorem 4. Let the notation and assumptions be as above.

(i) Assume that GEXSO(n—1, R), and let p be an odd prime such that G contains
no weakly p-singular elements. Then the Hecke operator T, exists.

(ii) Assume that the extension (6.9) splits and that G contains no weakly
2-singular elements. Then T, exists.

Remark that G will certainly contain no weakly p-singular elements if |G| is not
divisible by p, but these are by no means sufficient conditions. If G is represented on
V by permutation matrices, for example, then it certainly contains no weakly
p-singular elements for any prime p.

Three final comments are appropriate. First, although the weakly p-singular
elements do not fit the formalism of Hecke operators, nevertheless they are not
entirely without interest; we will encounter some in connection with the Leech
lattice in Sect. 5. Secondly, if we are willing to deal with the operator pT, rather
than T, itself then from (3.3) we see that

pT,=pU,+ B3V,

pp’
in other words we can deal with Spin(n, R) and its subgroups other than having to
stay inside Spin(n—1, R) (we can in any case do this if p=2, so these comments
mainly apply to odd p).
Finally, as soon as we know that T}, exists, we can use the results of Theorem 2
to produce new (and often interesting) Thompson series T, and T,0.

5. The Leech Lattice and Some Euler Products

Having constructed the operators T, at least under certain assumptions, it is
natural to ask about the existence of Thompson series I';; which are eigenforms, i.e.,
satisfy

(5.1) TIg=up)l;
for some set of primes p. If I;= Z ¥.q" is holomorphic one knows by the usual

formalism (cf (4.6)and [L]) that (5 1) holds for the prime p if, and only if, the formal
Dirichlet series associated I; has an Euler factor for the prime p. In particular if
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(5.1) holds for all p and if y, =14 then

n=1 n®

1

We will use the symbol A for the Leech lattice, characterized as the unique 24-
dimensional even, unimodular, integral lattice with no vectors of length 2 (see
Conway’s article in [C] for this and other facts we use below about A). The group
of isometries of A is the Conway group, hereby denoted by Co. If g is the rational
representation of Co afforded by 4 we will study the Thompson series Q, of
Sect. 2. By Theorem 2 we have Q, € M(g), and we will look more closely at the
forms n,(z) defined by (2.2) for geCo. In Appendix 2 the reader will find a
tabulation of these forms and various facts about them; almost all of this material
has been supplied by A.O.L. Atkin.

The following definition is useful: call g of permutation-type if the characteristic
polynomial () of g(g) — (2.2) — is such that each k(i) is non-negative. In the
following we let 17,(z) be as in (2.4) with N(g) the corresponding level; thus #,(z) is a
form on Iy(N(g)) of weight k(g) and Dirichlet character e,

The following results, which 1 still find remarkable, summarize some facts
about the forms 7,(z) for ge Co.

(5.3) Precisely one of the following holds:

(@) k(g)=0, that is n,(z) has weight zero or equivalently g fixes no non-zero
vectors in 4.

(b) k(g)>0 and g is of permutation-type. In this case #,(z) is a (holomorphic)
cusp-form and is the unique normalized cusp-form of level N(g) and weight k(g).

(c) k(g)>0and gis not of permutation-type. In this case there are no non-zero
cusp-forms of level N(g) and weight k(g) and #,(z) is a holomorphic Eisenstein
series.

(5.4) Suppose that k(g)>0. Then the Dirichlet series associated to 7,(z) has an
Euler-factor for the prime p, if, and only if, g is not weakly p-singular. In
particular this holds for all p= 5. Moreover no g is weakly p-singular for both
p=2 and 3, so in any case the coefficients of #,(z) are multiplicative.

The assertions of (5.3b) are considered in more detail in [K], [M3] and [KM];
more precisely these papers classify all eta-products of permutation-type which are
multiplicative. There appear to be just three such eta-products which do not
appear in Co, namely

18-6, 16-8, 3%-92.

As for (5.3c), one can check using Lemma 2.10 that even if g is not of
permutation-type then #,(z) is holomorphic (we pointed out in Sect. 2 that this is
definitely not the case in general).

Concerning the assertions of (5.4), if g is of permutative-type then the fact that
n,z) is an eigenform follows from (5.3b). As for the Eisenstein series, the
multiplicativity of the coefficients still resides in the realms of the miraculous.

Now let

(5.5) Qc,=0= ) o4
n=1
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be the Thompson series for Co given by (2.6). We also introduce the corresponding
Dirichlet series

(5:6) Lo=L= Y

Dy
n

After (5.4) we know that if g € Co satisfies k(g) > 0 then the “usual” Dirichlet series
given by

,.(g)

(5.7) Ly(s)= Z

has an Euler factor for all but perhaps one prime and thus in any case has
multiplicative coefficients. Let us denote the “p-part” of L by

a0 () n
L,= o
4 "1:-:0 pns
and that of Ls) by
Wprlg)
L= % “5E.

Thus
Lys)= IPI L, (s)(k(g)>0).

In order to clarify the nature of the series L, we introduce the half-spin
character p, of Spin(24, R) and the generalized character y, of SO(23, R) for odd p
as in Examples 1 and 2 of the previous section, regarding vy, as a character of
Spin(23, R) by restriction when convenient. The next result follows from the
preceding discussion and the results of Sect. 4:

(5.8) Lemma. Suppose that k(g)>0. If g is not weakly p-singular then

_({_ @8 wp(g)>“,
LIMJ(S) <1 ps + p2s 2

in particular this holds if p=5.

The factors L, ,(s) for g weakly p-singular seem to be quite interesting; the data
from Appendix 2 indicates the following result:

(5.9) If g is weakly p-singular and k(g)>0 then
k(n—2)\ —1
This can also be written in the form
w8 | w8 \'
L (s)=(1— el .
»e e
We take this opportunity to say something more about this result. In Sect. 3 we
avoided the use of the values of the characters i, on weakly p-singular elements,




400 G. Mason

but so far as Co is concerned we may proceed as follows: first, the extension (4.9)
splits (since Co has a trivial Schur multiplier [G]) so we may regard Co
<Spin(24, R). It is readily verified that the following holds:

(5.10) As Co-modules we have
AT (12)= A+ 2A3(A)

(here we identify A with the complex Co-module A®C and A%(4) is its third
exterior power). On the other hand it will follow easily from the next section that
the following holds:

602 == _A
(5.11)
wy=—(A(A)— AR A+ A)

(here we identify a module with its character). Comparing (5.10) and (5.11) we see
that

(5.12) As Co-module, 4*(12) affords the character w3 —awy, i€., Y, =w2—w,.

This shows that the term corresponding to n=21n (5.9) is correct (p =2). There
is only one class of weakly 3-singular elements g in Co, and the value of y,(g) is
easily verified to be consistent with (5.9). We recall that if f is a normalized
modular form, say f = Z a(n)q”, and if f is invariant under the Hecke operator

T,, then one has a(2)2—a(4) 8(2)2" ! where k is the weight and ¢ the Dirichlet
character of f. The result (5.12) is, of course, the Co-analogue of this fact.

Finally, we state some specific results for subgroups of Co which fix a non-zero
vector of A.

Theorem 5. Let G<Co fix a non-zero vector of A. Then the Hecke operator T,
exists for G whenever G has no weakly p-singular elements (in particularif p=5).1In
this case we have

T,.Q=w,Q,

1) w,\ !
= 1——”+—’i) .
( r ¥

Corollary. Let M,, < Co be the usual subgroup permuting an orthonormal frame of
A. Then we have

equivalently

T,Q=w,Q2, all primesp,

niln _H(l_ ;%) :

(Inthese two results we have identified the characters w, and v, with their restriction
to G.)

Proof. Since G fixes a non-zero vector in 4 we get an embedding G < SO(23, R), and
even G <Spin(23, R) coming from Co <Spin(24, R). Now Theorem 2, Theorem 4,

and
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the theory of Hecke operators and the results of this section yield the theorem. As
M,, is a permutation group on a basis of A®Q the corollary follows from
Theorem 5 and the remarks following Theorem 4.

InTable 5 of [C] the reader will find listed many vector-stabilizers within Co to
which Theorem 5 applies, among them several sporadic groups such as Co,, Co,
(the two smallest Conway groups), Mc (McLaughlin), HS (Higman-Sims), as well
as M,, and several classical groups.

Of course there is an analogue of the corollary for each of these groups, but
since they will generally contain weakly p-singular elements we have to use (5.9)
and consequently the factor L, may be more complicated.

Finally we mention another sort of Euler product that we receive gratis from
the results of Sects. 3 and 4. For simplicity we restrict our attention to the groups
Spin(2r—1,R) and O(2r—1,R) with r even, and let y, for p a prime be as in
Examples 1 and 2 of Sect. 4. Consider the formal expansion

1

AN
(5.13) 1;1( ps) .

“Evaluating” (5.13) at a rational element g which is not weakly p-singular for any
prime p yields the product (cf. (4.7))

14 _ & ”)“
(514 I1 (1 » .

p

and (5.14) is just the Euler product for the Dirichlet series of the “twisted”
Eisenstein series E,, ,(s) defined by

(519) Ed9= % 2ot
n=1 n
where
(5.16) Op—1,{N)= ; e(d)d*~*.
dln

Thus if we define the generalized characters o, of Spin(2r—1, R) via
0,= 2 Va
din
then we obtain the equivariant analogue of (5.14-5.16). Thus in particular we have
(5.17) Lemma. Let G<Spin(2r—1,R) be a finite group containing no weakly
p-singular elements for any prime p. Then the formal identity

&0 _ g %)
Ee-n(-2)

reduces to (5.14-5.16) at each element g€ G.

We remark that we have been careful to avoid the Thompson series associated
to the Dirichlet series Y o,n~* of Lemma 5.17, for that entails studying the constant
term of the Eisenstein series associated to (5.15).
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6. Some Explicit Modules

Suppose that I;=Y7,9" is a Thompson series for the group G with V, the
(generalized) G-module affording the character y,. Then the graded G-module

6.1) PR

affords I in an obvious sense; conversely gives a graded G-module (6.1) we can
form the series

(6.2) YV =X g"

(identifying a module with the character it affords). In this section we will be
concerned with the following issues: to describe genuine graded G-modules, i.e.,
each V¥, is a genuine G-module, such that it affords a Thompson series I; with the
property that for each geG, I4(z)= Y 7,(2)q" is a modular function, i.e., has

weight 0.

This problem is inspired, of course, by the questions raised in [CN] concerning
the Monster. Furthermore anyone familiar with the work of [FLM] will see some
familiar objects below, though perhaps from a different perspective.

First let L be an even G-lattice (hypothesis 2.5) with CL the group algebra of L
and L,={xe L|(x,x)=2n}. Then there is a natural G-grading attached to CL:

(6.3) CL= S ®L,
n=0

and of course CL affords the Thompson series O of (2.7).
Next, let ¥V be some G-module, and consider the graded module

(6:4) M=M(V)= T &V,

where each V= V. We let S(M) and A(M) be the symmetric and exterior algebras of
M, each of which carries a natural G-grading. Specifically we have in terms of
g-expansions,
st=I1 3 S,
(6.5) - ';
AM)= Y A (V)"
k=1r=0
where S'(V), A"(V) are the r-th symmetric and exterior powers of V' (cf. Sect. 4 of
[M2] or Sect. 2.2 of [Br]).
We will also have cause to consider a variant of these modules, namely let

M1/2 = n§1 @Vu—l/z

be graded by half-integers, where again ¥, _; ,=V; then define 4(M, ;) to be the
exterior algebra on M, and let

AO(MI/Z)
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be the submodule consisting elements of integral degree. In terms of g-expansions
we may write

(66) A(My )= [ﬁ i A’(V)q'“‘-ml

where the subscript Z means that we take only the integral powers of q.

(6.7) Lemma. Let g be a rational representation of the finite group G by unimodular
matrices of degree 24d, d€ Z, on the space V. Then with M as in (6.4), the Thompson
series Qg is afforded by S(M) with the grading decreased by d. In terms of
g-expansions, Qg arises from

aSM)=q [ T S
Proof. See [M2], where it is also shown that Q; itself corresponds to
¢ Il T (=)¥(g".
k=1r=0
(Equation (5.11) follows from this.)

Theorem 6.1 Let L be an even, unimodular G-lattice with V =V, the corresponding
rational G-module. Assume that G < O(Vy) and that dimL=24d,de Z. Let X be the
graded G-module

q ' CLRS(M).

Then the following hold:
(i) X affords the Thompson series 0, ¢/Q¢=J¢, say.
(i) If geG then J (2)=0.42)/n,2) is a modular function.
(iii) J,(z) has level N(g) dividing 240(g).

Remark. Part (iii) should be compared to part (4) of Thompson’s conjecture in [ T].
Note that X is a genuine G-module, moreover for any given G we can find an L
satisfying the hypothesis of Theorem 6.1.

Proof. See [M5].

Wenote thatif g=11in Theorem 6.1 then J,(z) (the Poincaré series of X)is given
by 6,(z)/n(z)*** and by (iii) is a modular function of level 1. The g-expansion is of the
form g~ ?+ higher terms, in particular if diim L = 24 then J,(z) must differ from the
modular function j(z) by a constant. Let us set

J(@)=q 1 +196884q + ...

so that J(q)=j(z)—744. We may ask for those groups G with the property that
there is a Thompson series Iz;= Y. 7,g4" such that
nz1

(@) L)=Y7y.g)q" s a modular function for each geG.

(b) I;(z)=J(q)+ constant.
Of course we can take each y, to be a sum of trivial G-modules — hardly an
interesting situation — we are interested in non-trivial examples. Theorem 6.1
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provides some examples whenever G acts on an even, unimodular lattice of
dimension 24. We give another example which is in some sense “48-dimensional.”

Theorem 6.2. Let V be the standard 48-dimensional module for SO(48, R), let M be
as in (6.4), and let X be the graded Spin(48, R) module given by

q~ ' A°M ) @q* 4" (24 AM).

Then the following hold:
(i) The Poincaré series of X is J(q)+1128.
(ii) Let GZS0(48, R) be represented rationally on V, and assume that G contains
no weakly 2-singular elements and also that the pull-back of G into Spin(48, R) splits.
Then X affords the Thompson series

Jo=TrQ/2
of G where T, is the Hecke operator of Theorem 4.

Remarks. A discussion of the case in which G contains weakly 2-singular elements
or does not split with lifted to Spin(48, R)is also possible, although we will ignore it
here.

Proof. Let us compute the g-expansion of the level 1 form T,5(z)*8/5(z)*8, which is

(U2+223 V2) <q2 nl;ll (1 _qn)48) H (1 _qn)48

-1 nz1
q2 H (1_qn)48 q 2 H (1_q2n—l)48
nz1 n=1
[T -g*
+223q2 nz1
I;Il (1—q")48

[\%

1

=q—1U2 ( H (1 _q2n-1)48) +223q2 1;11(1 +qn)48

=q—1U2<l—I (1+q2n—1)48 +223q2 H (1+qn)48

nz1 nz1

=q—1 [ H (1 +qn~1/2)48] +223q2 l—[ (1 +qn)48
nz1 Z nx1
where the subscript “Z” indicates that we take only the integral powers of g.

Now with V as in the theorem, the formalism of Sect. 2 of [M2] shows that we
obtain the graded Spin(48, R)-module whose Poincaré series is this last
g-expansion by replacing (1 +¢")*8 byY A’(V)g" and replacing 2** by the half-spin
module 4*(24). A comparison with (6.5, 6.6) shows that we obtain the module X of
the theorem.

Since Tyn(z)*8/n(z)*® =q ' +1128 + ... is a modular function of level 1 then (i)
holds, and more generally Sect. 2 of [M2] shows that (ii) also holds as long as the
“equivariant” operator T, is well-behaved, which is guaranteed by Theorem 4.1(ii).

The first few terms of the g-expansion afforded by X are as follows:

G VOV + VgV + VISV 4+ 2V 4+ V24 44 (23)g% +...
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Let us consider some finite subgroups G of SO(48, R) to which Theorem 6.2
applies. Certainly if G acts on 48-dimensional lattice then X affords a Thompson
series for the pullback G of G into Spin(48, R). For example if we take G~ Co x Co
(acting on the sum of two copies of the Leech lattice) we get a Thompson series for
G, moreover by taking either one of the direct factors or a “diagonal” copy of Co
we get distinct Thompson series.

Another interesting example is obtained by taking G~ 4,5 acting on its natural
permutation module. Then the graded module X of Theorem 6.2 affords a
Thompson series for the 2-fold covering group A4, and part (ii) of the theorem
applies to any subgroup of 4,5 which splits over the center of 4,5. For example we
may take L,(47) (acting on the projective line over GF(47)) of M,,.

One can check that in the L,(47) case each of the series J (z) = T,n,(z)/n,(2)
coincides (up to a constant) with the Thompson series of an element of the same
order in the Monster as in [CN], suggesting that perhaps L,(47)<M (although
in fact it is not *). If we take M, , < 4,4 such that it acts with two orbits of length 24
on the 48 letter permuted by A,4 then the Thompson series T,Q2,,,./Qy,, appears
to coincide with that of Theorem 6.1 (with L=Leech lattice) up to a constant.

Appendix
Eta-Products for Co

We list information about the forms #,(z) arising from the action of the Conway
group Co on the Leech lattice, as studied in Sect. 5. More precisely in Table 1 we
give the Dirichlet series corresponding to #,(z) for those g € Co with k(g)> 0, g not
of permutation-type, and g not weakly p-singular for any prime p (cf. (5.4, 5.3¢));
Table 2 gives similar information for g weakly p-singular, but with the first few
terms of the p-part of the Dirichlet series given explicitly; Table 3 gives the
coefficient of ¢” (for the first few primes p) in the g-expansion of #,(z) for g of
permutation type (cf. (5.3b)).

We use the following notation: for a Dirichlet character y and integer k=1 set

[e]

Eds,p)= Y amn=*, an)= ; X (g) a1,

n=1 din
For an integer m we also let E,(s, x)™ be the Dirichlet series E,(s, y) with the Euler
p-factors removed for each prime p|m. In the tables we index the elements g € Co by
a- b, a being the order of g and b being used to differentiate between non-conjugate
elements of the same order. The shape column gives the integers k(i) in the
characteristic polynomial (2.2), the weight and level being that of the correspond-
ing eta-product 7,(z). The column “char” gives the conductor of the primitive
character which induces the Dirichlet character of 7,(z). In Tables 1 and 2 we write
E, and E{™ for the corresponding Dirichlet series since x is uniquely determined by
the level and conductor.

* I thank Simon Norton for pointing this out to me



406

Table 1. “Eisensteins”

G. Mason

Element Shape Wt. Lvl.  Char. D. Series
22 21618 4 2 1 E,
32 39173 3 3 -3 E,
4.2 264414 3 4 — 4 E,
43 48274 2 4 1 ED
52 55171 2 5 5 E,
6.3 253%.174 3 6 —3 E,
6.5 2464172372 2 6 1 (1=3"9"1EP
6.6 336317127 2 6 1 (1=2"9"1EP
610  1.6272373 1 6 —3 (1+279)71EP
8.2 2348171 2 8 8 E,
8.3 84472 1 8 -4 EY®
9.2 933! 1 9 -3 E®
10.4 235210171 2 10 5 E,
12.3 22324.12.172 2 12 12 E,
12.6 236.1221°1371472 1 12 — 4 1+3"97LEQ
1210  4%1222'67! 1 12 -3 E®
2 24-2 [ —4 -3 S
12.14 1223124 2 12 12 [mf1={{—J)p+{—|J|p°°
P L p p
24 62 -2 -3 —4 |
1215  1%4.6%123 2 12 12 mit—je+{—»|p°°
p L\\ P p
14.2 22142471771 1 14 -7 E,
162 2216247187 1 32 -8 I [ ((§> + <i>> p':_l
L\ P i
18.4 229.18.171671 1 18 -3 E®
20.2 22520171471 1 20 -4 E,
e [ 5 -4\\ _ |
20.6 1.2.10.2047157¢ 1 20 -20 mi={=)+{—J)pr
r L P p |
24.2 23424171871 1 24 — 8 E,
i - 12 -1
24.8 26824471271 1 48 -3 I 1- <(—~) + <——)> p":l
r L p p
i i -3 8 1
249 14624371871 1 24 =24 [mt={{t—y)+{=))jpr?
p L p 4
304 2.3.530.1 71157 1 30 -—15 E,
-3 5 -1
3010 1.6.10.153°'5°* 1 30 —15 A+2"971 11 [1—((——) +<—>)p‘s]
p*2 p p,
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