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Forms Derived from the
Arithmetic-Geometric Inequality

Bruce Reznick*

Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801,
USA

1. Introduction and Overview

A real homogeneous polynomial (a form) p in n variables is positive semidefinite or
(psd) if p(x)=0 for all x=(xy, ..., x,)eIR™ Itis sos if it is a sum of squares of forms:
p(x)=Y hZ(x) for suitable h,. Every sos form is psd. In 1888, Hilbert [13] proved
that not every psd form is sos, but no explicit example was given for nearly eighty
years. The set of psd forms p(x,, ..., x,) of fixed degree comprises a closed convex
cone. A psd form p is called extremal if it is extremal as an element of this cone: p is
extremal if p=h, + h,, where h; is a psd form, implies that h;=a;p for some a;=0.
Every psd form is a sum of finitely many extremal forms.

In general, it is difficult to determine whether a particular psd form is sos or
extremal. Many examples from the literature arise from monomial substitution
into the arithmetic-geometric inequality (AGI); we shall call these agiforms. In this
paper, we determine a necessary condition for an agiform to be sos. If the
monomials are algebraically independent, this condition is sufficient, and we
obtain an explicit representation of the agiform as a sum of squares of binomials.
We also determine a necessary and sufficient condition for an agiform to be
extremal. These expand the pools of known extremal forms and of psd forms which
are not sos.

The relevant conditions are always geometric. Associated to each agiform is a
polytope with lattice point vertices and a distinguished interior lattice point: the
convex hull of the set of exponents used in the substitution, and the exponent of the
resulting weighted geometric mean. We shall study the set of lattice points
contained in this polytope. For sums of squares, the condition involves writing
lattice points as averages of even lattice points. For extremality, the condition
involves the parity (mod2) of the lattice points contained in the polytope.

Hilbert did not carry out his construction in detail, and the first explicit
example of a psd form which is not sos was found by Motzkin in 1967. The AGI
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(see [12, p. 17]) states:
(1.1) Aty A+t Al — 3 thm >0

ift;20, 4;=0and ) A;=1. Equality holds in (1.1) if and only if, for some ¢ =0, ;>0
implies t;=c. Motzkin [16, p.217] presented the form

1.2) M(x, y,z)=x*y? +x2y* + 26 —3x2y?z2,

which is psd by (1.1), under the substitution ¢, =x*y%, t,=x?y*, t;=2% and A,=1
(and multiplication by 3); he showed that M is not sos. The polytope associated to
M is the triangle with vertices (4,2,0), (2,4,0) and (0,0, 6) and the distinguished
point is (2,2,2).

Choi, Lam, and the author [3, 4, 17] have derived other psd forms which are
not sos from monomial substitutions into the AGI. Two such examples are given
in [3, p. 388]:

(1.3) S(x, y,2)=x*y? + y*z2 + z%x? — 3x2y?22,
14 O(x, y,z, w)=w*+ x?p? + x222 + y?z2 —4dxyzw.
y

(Not all examples of psd forms which are not sos come from the AGI. Others
have been found by Robinson [21], Lax and Lax [15], Schmiidgen [22], and Choi,
Lam, and the author [4-7].)

Hurwitz [14] proved in 1891 that

(1.5) Gou(V1s s Yo=Y+ .+ Y30 —2dY1 . y2a= Y. 82 V15 s V2d)

for appropriate forms g, Hurwitz explicitly alluded to Hilbert’s recent work as
indicating the non-triviality of this representation. The form G,, arises from the

o 1 . .
substitution m=2d, ;= o7 t;=y? into (1.1). In fact, Hurwitz used the sum of

squares representation (1.5) to prove the AGI. Let ¢; be non-negative integers
summing to 2d. Upon setting ¢; of the variables equal to x; for i=1,...,n, (1.5)
becomes:

Ge)(X) = xP 4+ . X2 —2dx5 . X =3 8H (X1 s X gy Xgperey Xp).

Thus, G(c) is sos, and (1.1) is valid when 1,= — ¢;; that is, for all rational A with

1
2d
2;=0and Y 1;=1. By continuity, (1.1) holds for real 1. The polytope associated to
G(c) is the simplex with vertices 2de;, where ¢; is the i-th unit vector, and the
distinguished point is ¢. We shall repeatedly contrast the Motzkin form M and the

Hurwitz form
(1.6) H(x,y,z)=x%+ y®+ 2% —3x%y?z?

as prototypes of the not-sos and sos agiforms; 2H = G(c) for ¢=(2,2,2).
Following Choi and Lam, [4, p. 1], we let P, ,, (resp. 2, ,,) denote the convex
cone of psd (resp. sos) forms in n variables with even degree m and let
Ay m=Pp m\Zn - Hilbert proved that 4, ,=¢ if and only if m=2 or n=2 or
(n, m)=(3,4). By identifying an n-ary m-ic form with the M-tuple of its coefficients,
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1 . .
M= <m +;: , P, . can be viewed as a cone lying in RM. From elementary

convexity theory, it follows that every psd form is a sum of M extremal forms. [If p
is extremal and sos, then clearly p is a perfect square, but not every perfect square is
extremal: (x2 + y?)? =(x2— y?)2 +(2xy)2.] There are few constructions of extremal
psd forms in the literature; one general result is found in [2, p. 287]. A product of
distinct irreducible indefinite factors is called “purely indefinite”. If h is purely
indefinite, then h? is extremal; if h is purely indefinite and p is extremal, then ph? is
also extremal. The product of two extremal forms need not be extremal (see [3,
p.402].)

Choiand Lam proved that the agiforms M, S, and Q are extremal, as well as not
sos [4, pp. 8-9]. The results inspired [17], in which the author derived the set of
extremal psd forms with four or fewer terms. Such a form either is a monomial
square, c(x)? (c>0) or, after a dilation, arises from a special class of monomial
substitutions into (1.1) with 4; =3.

We introduce some notation. An n-tuple u=(u,, ..., u,) is a lattice point ifu e Z",
u is an even lattice point if u;e€ 2Z, or u= 2v, where v is a lattice point. For a lattice
point ¥ with u;20, and xeR", x* is the monomial x%'...x; (When n is small, we
name the variables x, y, z, w,v,4, ...). Ifuis even then x* =(x%)? =0 for all xe R". We
use the term framework (and a capital gothic letter) to denote a set W={u,..., u,,}

of even lattice points in IR" for which u;;=0 and Z u;;=2d for all i and some d.

(This last condition ensures that each monomial x“’ has degree 2d.) A trellis is a
framework in which u,,...,u, comprise the vertices of a simplex. (The name is
suggested by the horticultural trellis).

We collect some conditions under which a framework is a trellis. Sup-

pose _Z cu;=0. Then, by summing the coordinates on both sides,

0= ) (Z cu,]) —2d< 3 c,-), hence Y c¢;=0andso ¥ c;u;—u,)=0.Sincea
i=1 =1 i=1 i=2

polytope is a simplex if and only if {u; —u, : i> 2}, the edges emanating from u, are

linearly independent, it follows that W is a trellis if and only if U is a linearly

independent set in ]R" m=n in a trellis. The monomials x* are algebraically

independent when H (x*)*=1 implies ;=0 for all i, hence W is a trellis if and only

if the x*’s are algebralcally independent. Finally, if m=n, then U is a trellis if and
only if det[u;;]+0.

Suppose U is a framework. We let C(U) = cox(U)NZ" and EU) = cox(N)n(2Z)"
denote the lattice points (and the even lattice points) contained in the convex hull
of U. We are interested in two sets of averages of sets of lattice points. If BCZ",
let

AB)={3(+1): s te(BNQ2Z)")}
denote the set of averages of even points from B and

AB)={3(s+1): 5%, 5,te(BNQZ)")}
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denote the set of averages of distinct even points from B, so A(B)=A(B)
U(BN(2Z)"). Observe that C(U) contains A(E(Y)); we show in [20] that n<3
implies A(EQQ))=C(), but this is false for n=4 (see Theorem 6.18).

If weZ" and w=} Au; with 4,20 and } 1,=1, then we CQ); conversely, if
we C(M) then at least one such 4 exists. Let

Aw)={4:4,20, Y 4;=1 and w=Y du;}.

If U is a trellis, then the linear independence of the u;’s implies that A(w)={4}isa
singleton, and (44, ..., 4,,) are called the barycentric coordinates of w with respect to
UL If 4,>0 for all i, then w is interior to .

Fix a framework U, and select we C(U) and 4 € A(w). Under the substitution
t;=x"*(=0) the AGI becomes

(1.7 R A 2 e

: 2
Since the u;’s are even and w;=) Au;;

n Ai n
@y ()= ] (H lle""') = jl;[1 ;™7 =x"],

i=1 \j=1
and since y w;= i Au;;=2d, it follows from (1.7) that
Jj=1 j=1i=1
(1.8) S 2, W) (%) =20 + . Apxm — x¥

is a psd form. Any positive multiple of f(2, 4, w) is called an agiform on U.
(Multiples are usually taken to clear the denominators of the coefficients.) If
FU, A, w)(x)=0and 4,>0forieIC{1,...,m}, then there exists c 20 so that x*=c
when iel and x*¥=0; in particular, f(I, 4, w)(,...,1)=0.

If Wis a trellis, f is called a simplical agiform on . In this case, 4 is redundant, so
it is convenient to write f= f(U, w). The simplicial agiforms on a fixed trellis are
indexed by the elements of CU). If w e A(U), then either w=u; or w=4%(u;+u;) and
the agiform f (U, w) is simple. In the first case A =¢; and f(U, w) (x)=x* —x*=0.In
the second case, A=4(e; +¢) and f(U, w) (¥) =4 x% + 3 x4 — x¥ =4(x*/* — x*/*)?is a
binomial square. It turns out that every agiform is a convex combination of
simplical agiforms (see Theorem 7.1).

If f is an agiform on a framework U and U is a subset of a framework B, then,
by taking the additional monomials with coefficient 0, f is an agiform on 8. This
creates a possible ambiguity of notation if W is a trellis and 2B is not. Accordingly,
we say that the form f is a simplicial agiform if there exists a trellis U so that fisa
simplicial agiform on 2. We may always choose U so that w is an interior point; if
4;=0,then x* does not occur in f, and u; may be deleted from .

We return in detail to the prototypical agiforms, M and H. Each trellis lies in
the plane t, +t,+t; =6 and no information is lost in Fig. 1 by projecting onto
the first two coordinates. The elements of each trellis are labeled, the even lattice
points are large squares, and the other lattice points are smaller squares.

(1.9) Example. We define the Motzkin trellis:
M=1{(4,2,0), (2,4,0), (0,0,6)}.
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(O’|6'0)
(2,4,0)
/
t—n (4,2,0)
£ AN
Fig. 1 (0,0,6) (0,0,6) (6,0,0)
9= 55;,5

[Since the points in Mt are linearly independent, M is a trellis; alternately, cox(9N) is
a simplex, viz. a triangle.] Let w=(2,2,2) so Aw)={3,33}; M=3/(M,w)
[see(1.2)]is not sos. It is easy to see from Fig. 1 that E(9)=Mu{w} and, since each
of the ten lattice points in cox(IM) is an average of two even points, C(I) = A(E(IN)).
Considering the distinct averages, we see that A(E(IR)=CEMNEMN). It is
particularly significant that w¢ A(E(9R)); this will imply that M is not sos. By
Corollary 3.4, f(9M,v) is not sos if v is any of the four points in C(M)\ A(E(M)).

(1.10) Example. We define a special case of the Hurwitz trellis (see Example 1.12):
$={(6,0,0), (0,6,0), (0,0,6)} .

Again, if w=(2,2,2), then A(w)={G,%)}; and H=3f($,w), as in (1.6). By
Hurwitz’ Theorem, H is sos; the construction of [ 14] gives a representation of H as
a sum of nine squares which reduces to (see [12, p.55]):

(1.11) 2H(x,y,2) =(x2+ y* + 23 (x2 = y*)? + (x2 = 222 + (32 — z2)?).

The representations from Hurwitz’ proof are not efficient with respect to the
number of squares (see [197]); we write H as a sum of five squares of binomials in
(5.2). Again, |E(9)|=10 and C($)= A(E(9)). In contrast to M, A(E(H))=C(H)\9;
there are enough even points in C($) so that every non-vertex even point is an
average of two distinct even points. This will imply, independently of Hurwitz, that
H is sos (see Theorem 4.4).

(1.12) Example. The Hurwitz trellis §, ,,1is {2de;}, s0 93 = 9. Again, it is easy to
see that §, ,, is a trellis and,

(1.13) C(9y.20={c=(c15...¢,):0=¢;€Z and Y ¢;=2d}.

For ceC(9, 1), we have A(c)= {5% g} and, by HurwitzZ Theorem,

G(c)=2df(9, 24 ¢) is also an sos simplicial agiform. In Example 2.4, we show that
A(E(D,, 20)=C(Dn. 20)\Dy, 24; together with Theorem 4.4, this implies that G(c) is
S0S.

Here is an overview of the rest of the paper.

In Sect. 2, we formally introduce an essential definition. If Wis a framework and
Lis a set of lattice points containing 1, then £ is “U-mediated” if every win £\ W is
an average of two distinct even points in £. We give an algorithm for the
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construction of a maximal U-mediated set A* for which AQ)EU* < C(A), and
show that M* = A(IM) and HF ,,= C(9,, ».)- Trellises such as these, for which U* is
extreme, are called “M-trellises” and “H-trellises” respectively. We give some
sufficient conditions for U to be an M-trellis, which combine with previous results
of the author on lattice point simplices to give a recipe for the construction of a
large number of M-trellises.

In Sect. 3 we present part of the general theory of sos forms. If the agiform
fQU, 4, w) is sos, we prove that we U*, by constructing a U-mediated set from the
exponents of the monomials involved in the squares. Thus, a non-zero simplicial
agiform on an M-trellisis either a binomial square or is not sos. Combined with the
construction of the last section, this gives an efficient mechanism for producing
large numbers of psd forms which are not sos. The essential arguments used are
rephrasings and generalizations of those used by Motzkin, Choi, and Lam to show
that M, S, and Q are not sos. We review some results on the Newton polytope of a
psd form p(x)=Y c(®)x?: N(p)=cvx{v:c(v)%0}. [For example, p=¢=0 implies
N(p) 2 N(g).] This is useful in studying extremality.

In Sect. 4 we show that the mediation relation w=4(s +¢), s and t even, implies
an identity for the simplicial agiform f(,w)as a linear combination of f (11, s),
fQ,1) and (x*—x92. If € is a U-mediated set, we use this identity to derive a
system of linear equations involving the simplicial agiforms on . The solution to
this system gives f(U, w) as a sum of at most [¢\] squares of binomials. The results
of sections two, three, and four combine to give one main result (Corollary 4.9):

Theorem. The simplicial agiform f(U0,w) is sos if and only if wel*.

It follows that every agiform on an H-trellis is sos (generalizing Hurwitz’
Theorem) and an sos simplicial agiform is a sum of squares of binomials.

In Sect. S, we apply the algorithm of Sect. 4 to write H and M(x*, y*, z¥) (for
k=2, 3) explicitly as sums of squares in several inequivalent ways. In particular, we
obtain H as a sum of five squares. We also discuss non-simplicial agiforms.
Difficulties arise from the fact that A(w) is not, in general, a singleton, so geometric
information on w in C(!) need not translate into information about the agiform
S 4, w).

In Sect. 6, we examine four families of agiforms introduced by Motzkin, Choi,
and Lam, generalizing M (twice), S and Q to more variables, and we introduce
alternate generalizations of S and Q. Five of these six families of agiforms are not
sos; four of them are simplicial. We compute C(1) and E(Y) for suitable trellises
for later use.

In Sect. 7 we give a sufficient condition for extremality. We show that every
agiform is a convex combination of simplicial agiforms. An agiform f is
“primitive” if it cannot be written as a non-trivial sum of other agiforms; this is
weaker than extremality. We show that f(Q, 4, w) is primitive if and only if it is
simplicial and EQI)SQu{w}). A study of the zero-sets of agiforms leads to the
following equivalence relation on Z": vy ~y' if g¥ =1 forge { — 1, 1}" implies g" =¢"*".
This relation decomposes C(U) into equivalence classes Z,,...,Z, Wwhere
Z 2 Uu{w}. We say that U is “w-thin” if Z, =Uu{w} and Z, is linearly
independent for k = 2. We show thatif (1, A, w)is extremal, then it is simplicial and
U is w-thin.



Forms Derived from the Arithmetic-Geometric Inequality 437

In Sect. 8, we show that if U is not w-thin, then one can construct h so that
f.=f +ahis psd for small |«|, so f=4(f,+ f-,) is not extremal. Thus, we obtain
our other main result (Corollary 8.11):

Theorem. Let f be an agiform. Then f is extremal if and only if f is simplicial and 1l
is w-thin.

We use this to verify the extremality of M, S, and Q. The section ends with a
derivation, following [17], of the simplicial agiform as the simplest extremal form
which is not a monomial square. This may be viewed as an independent
motivation for the study of agiforms.

In Sect. 9, we show that M, S, and Q are each generalized by a family of extremal
forms; here are the next forms for each:

(1.14) M (%, y,2, W) =x*y?22 + x2y* 22 + x2y?z* + wB —dx?y?z2w?,
(1.15)  S,(x,y,z,w)=x*y?22 4+ y*22w? + 2%w2x2 + whx2y? —4x2y?22w?

(1.16) 04(x, y, 2, w, 0,u) =u® + x2y?z% + y?z22w? + 22w?v? + w?02x?

+0v2x2y? —6xyzWou.

We discuss S, and another two non-extremal primitive agiforms in some detail,
and begin an analysis of “almost-agiforms.”

We conclude in Sect. 10 with some open questions and areas for further
research.

Finally, we should observe that our discussion centers on forms rather than
inhomogeneous polynomials. This is largely a matter of taste, and we follow Choi
and Lam in this decision. It is easy to change from one to the other by
homogenizing a polynomial or dehomogenizing a form. The properties of being
psd and sos are preserved with the obvious modifications, which we omit. It
follows that the definitions and theorems of this paper have straightforward
translations from forms to polynomials. The only significant changes are the
deletion of the condition X ;u;;=2d in the definition of framework, an accompany-
ing adjustment in the criteria for U to be a trellis, and a reduction by one in the
number of variables.

Motzkin’s example was h(x, y)=x2y*+ x*y? +1—3x%y?, which homogenizes
to M : M(x, y,1) = h(x, y). One might also homogenize each variable separately and
create the biform ([5, p.20]) L(x,y,z, w)=x2y*z% + x*y?w? + z4w* —3x? 222w
Note that L(x,y,1,1)=h(x,y) and L is a simplicial agiform on £={(2,4,2,0),
(4,2,0,2), (0,0,4,4)}.

Suppose & is a polytope in R" with vertices {zi,...,z,,} CZ" and let

n n+1
d= max <'Z1 z;j ). We embed € in the hyperplane {’Zl z;=dy CR"! by setting
j= j=

1

Zi ppr=d— '21 z;:20, and call the resulting simplex &'. Then U=2&" is a
I=

ij=

framework, and EQ)=2(&'nZ"*"), so |[EQU)|=|SnZ"|. We return to this con-
struction in Example 2.6.
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This paper is, to a great extent, a rewriting and generalization of the author’s [17], which was
written very early in his study of psd and sos forms. All his subsequent papers in this subject have
been written in collaboration with Man-Duen Choi and Tsit-Yuen Lam (and others). This is thus
his first opportunity in many years to thank Professors Choi and Lam in print for their friendship,
guidance and assistance.

2. Mediated Sets
Let U be a framework. A set 8CZ" is called U-mediated if
(2.1) UL AL (A(QU).

That is, £ is U-mediated if it contains U, and every ve £\U is an average of two
distinct even points in £; £ need not contain all of A(L). (We will want to find the
smallest W-mediated set containing a given lattice point.) By (2.1), every subset of
A(W) containing 2 is A-mediated (see also Theorem 2.8). We now give an algorithm
for constructing the maximal U-mediated set, U*.

(2.2) Theorem. If U is a framework, then there is a U-mediated set U* satisfying
AQ)CU*C C(U) which contains every U-mediated set.

Proof. Define the sequence {U*} by U°=CQI) and W¥*!'=A4UY0U for k=0.
Then U!=(A(CQU)LNCCAU)=U If UCU*"! then U*'=(AUYLU)
C(AUF~ Yok =¥ hence {U*} is a decreasing sequence of finite sets, which
must stabilize. Let W =U"t1=2U*; since U*=U""1=AU)UU=A(U*)LU, U*
is W-mediated. Further, for k=0, AQ)=(AQ)U) (AU LU =U "1 s0 AQ0)
CU*, and W*CU°=C(U).

Let £ be any U-mediated set and suppose v€ £ is an extreme point of cox(£).
Then v cannot be an average of two distinct points in €; v¢ A(2). By (2.1), vell.
Thus, cox(€)Scvx(U) and 2CCAU)=U°. Since £ is U-mediated, LCU* implies
LL(A(Q)uM) (AU U =U**1. 1t follows by induction that LCU*. []

_ Note that U*=C(2) if and only if C(N) is W-mediated, that is, if and only if
A(EQ))=CQD\.

(2.3) Example. (Continuing Example 1.9). Let M be the Motzkin trellis. Referring
to Fig. 1, we apply the algorithm of Theorem 2.2 to compute Mi*: IN°=C(M),
ML =AMO)OUM.  As we¢M, MANQRZ) =M, so AMH=AM) and
M2 =AM UM = A(M). Hence A(P)CIM*CM? = A(M), so IM* = A(M).

(2.4) Example. (Continuing Example 1.12). Let $, ,,={2de;} be the generic
Hurwitz trellis. We show that A(E(9,, ;4)) = C(Dn, 24)\Dn, 26 hence H; 24= C(9H,, 24)-
It suffices to write c € C($,, ,4), ¢ +2de;, in the form ¢c=4(s+£), with s+t € E(D,, 24)-

Let b,= i ¢;, and choose k so that b,_ <d=<b,. If
i=1
§=(2619""26k—1’ 2d—2bk—l’ 0,...,0)

and
t=(0,...,0, 2b,—2d, 2¢; 1 1, ---, 2C,),
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then c=4(s+1) with s, t€ E(9,, ,4)- (If s=¢, then ¢;=0 for i=k; that is, c=2de,, a
case we have excluded.)

We say that a trellis W is an M-trellis if U* = A(U); Wis an H-trellis if U* = C(N).
Every trellis in Z3 is either an H-trellis or an M-trellis (see [20]), but this is false in
higher dimensions. If A(M)=C(), for example if U =$, ,, then W may be both an
H-trellis and an M-trellis. The argument in Example 2.3 generalizes into a useful
criterion.

(2.5) Theorem. If Wisa trellis, and either E(W)= or EQU)=Uu{w} (and w¢ A()),
then U is an M-trellis.

Proof. First, suppose U*n(2Z)"=U for some k. Then A(U*)= A(U) and AU)CU*
U = (AAUHLA) = (AU UW) = A(N), so U*=A(U). It thus suffices to show
that the hypothesis imply U*N(2Z)" =2 for k=0 or 1. If EQ)=1, then U°N(2Z)"
=C(U)N(Q2Zy"=EQ)=U. If EQU)=Uu{w}, then U’NQZ)"=UuU{w} and

U =UvAUU{w}) =AM {I(w+u)}.
Since w¢ AQX) by hypothesis, w¢ UL, so U'nQ2Z)"=U. []

If U is a trellis, EQT)=Uu{w} and we AU), then U is not an M-trellis. It does
not seem useful to elaborate on the conditions under which U*~(2Z)" = U for k > 2.
The number of steps in the computation of U* is bounded above by | E(U)\ U, since
U NQZ)=U "1 ~(2Z)" implies W** ! =U**2 (=U*). This bound is achieved by
the trellis

U,={(0,0,2p), (2,2p—2,0), (4,2,2p—6)}

for p = 3, which is discussed more fully in [20]. (Note that 25 = 9t.) It is not hard to
see that

E(up) = upu{(z’ 23 2p - 4)3 (29 4’ 217 - 6)9 LEE) (23 2P_ 4’ 2)}

and that EQU\EU,)=(2,2,2p—4), EQIZ)\EU})=(2,4,2p—6), etc.
We now show how to transform certain lattice point simplices into M-trellises
via homogenization.

(2.6) Example. A k-point n-simplex (see [18]) is a simplex in IR” with vertex-set S
={z2p, ..., Zn}, such that cox(S)NZ"=Su{v,, ...,v,} and p;=Y A;z; with Y 1,;=1
and A;;>0 [so the v;’s are strictly interior to cvx(S).] Since 4, is the unique solution
to a linear system with integer coefficients, 4;;€ Q. The term “0-point” is equivalent
to “fundamental”; fundamental triangles are familiar, and fundamental tetra-
hedra have been extensively studied.

If S is a 1-point n-simplex and v, =Y A,z;, write 4;=a;/D. Then Y {kA;} >1 for
2<k<D—1 by [18, p.228], where {x}=x—[x] denotes the fractional part of x.
Conversely [p.230], suppose n+1 positive rationals 1,=a,/D are given, so that
YA4,=1,¥{kA}>1for 2<k<D—1 and a; and D are relatively prime for some j.
(For example, a,=1, D=n+1.) Then there exists a canonical 1-point n-simplex &
with interior point p=Y 4,z;, The only such set of rationals satisfying these
conditions for n=2 is (,4,4); when n=3, there are seven such sets, up to
permutation.
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Let ©={z;} be a 0-point or 1-point simplex in R”, translated so that the
components are all non-negative. As described in the introduction, & may be
homogenized so that we obtain the framework 2&'=U in IR"*!. Since S is a
simplex, W is a trellis; either EQQ[)=U or E(X)=UuU{2v}, depending on whether S is
0-point or 1-point. In the 1-point case, since n>2 and v is strictly interior to &, it
follows that 2v¢ A(U). In either case, it follows from Theorem 2.5 that U is an
M-trellis.

As a concrete illustration of this construction, take n=3 and 1= (4,1,4d.
Then [p. 230] S is the tetrahedron with vertices (0,0, 0), (1,0,0), (0,1,0), and (—1,
—1,4),and z=(0,0, 1) has barycentric coordinates equal to 4. After translation by
(1,1,0), we have d=4 and

U=2E"={(2,2,0,4), (4,2,0,2), (2,4,0,2), (0,0,8,0)} .

Upon permuting the third and fourth coordinates, =R, (see Theorem 6.9). This
1 1
construction, applied to A=¢,= (E’ ...,;), leads to M, , ;.

We prove the following result in [20], which complements the previous
discussion by giving a general way to construct H-trellises.

(2.7) Proposition. If W ={u,,...,u,} isa trellis and k> max(2,m—2), then k! is an
H-trellis.

The final result is really a remark used to prove Corollary 4.11.

(2.8) Theorem. If W is a trellis and we U¥*, then there is a U-mediated set § which
contains w and has at most |E(QU)u{w}| elements.

Proof. Let § consist of the even points in U* plus w (if it isn’t even.) Then
A(F)=AQU*), so § is U-mediated. []

When U=$, ,,, we can do better than this. Given w, use the construction in
Example 2.4 to write w=4(s+¢). Since s and ¢t are even and lie in §, ,,, we may
repeat the argument, and write s and ¢ as averages, etc. Unless w, or w, is greater
than d, s and t each have fewer than n positive components. It can be shown that
this process leads to a W-mediated set containing w which has considerably fewer
than |E(U)| elements. (This is the algorithm of [19], at least for n=3.)

The concept of an H-trellis is related to Handelman’s property of two-
convexity (see [10, 117), which arises in the study of the integral closure of certain
commutative algebras associated to lattice point polytopes. A lattice point
polytope & in R" is called two-convex if every lattice point in 2& is a sum of two
lattice points in & [10, p. 150]. After homogenization, U =2&’ is a framework in
R"*! and & is two-convex if and only if C(2) = A(E(W)). If S is a simplex, then two-
convexity is a weaker condition than being an H-trellis (C()= A(EQL)U.)
Handelman [11, p. 33] has proved that, among other properties, kU is two-convex
if k= n. This part of his result is implied by Proposition 2.7.
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3. Sos Agiforms: The Necessary Condition
We begin this section with some general remarks about sos forms. Suppose
p= Y. hi, where p(x)= Y a(w)x* and h(x)= Y byv)x". Then

k=1 u L

(3.9) z a(u)x*= %(% bk(y)zc”)z-

Let B(v) denote the r-tuple whose k-th component is b, (v) and let G(v,?)
=B(v)- B(t')= Y. bi(v)bi(t"). By comparing the coefficient of x¥ on both sides of
(3.1), we obtainkthe equation:

(3.2) aw= 3 G@v)=Y Gou—1).

vty =u v
These observations were made, in effect, by Motzkin [16] and generalized by Choi
and Lam [3,4] into the “term-inspection” method. Refinements on the term-
inspection method were made in [17], and results needed in our discussion are
presented in Theorem 3.6. The general theory, to be developed in [7], proceeds
from the fact that [B(v)- B(v')] is a psd matrix.

(3.3) Theorem. If Wisa framework and f = f (U, A, w) is an sos agiform, then w e U*.
Proof. Using the notation of (3.1), suppose f=Y h? and let
RN ={v: b(v)=*0 for some k}.

Let =290UU{w}. We show that £ is U-mediated (and so we £ U*) by writing
cachu e \U as a sum of two distinct points in $k; this implies that u is an average of
two distinct even points in 2N < L.

If G(v, v") <0, then b,(v)b,(v') < 0 for some k, hence v+ ' and p and ¢’ belong to N.
It thus suffices to show that, for u € \U, there exists v with G(v, u —v) < 0. Note that
au)=24, aw)=—1, and a(w)=0 otherwise. By (3.2), we have —1=a(w)
=Y G, w—0), 50 G(vy, w—10,)<0 for some v,. If u+w, then ue 2\(Uu{w}) so
au)=0=Y G(v,u—v). But ue2N, so G(3u,3u)>0 and there must exist v with
G(v,u—1)<0 to make the sum vanish. []

(3.4) Corollary. If Wisan M-trellis and w ¢ A(N), then the simplicial agiform f (U, w)
is not so0s. Any non-zero sos agiform on a M-trellis is a perfect square.

Proof. If U is an M-trellis and f(U, w) is sos, then we U* = A(2), so either w=uy;
(and f=0) or w=4(u;+u;) [and f=4(*?—xw2)?2]. O

Using the construction of Example 2.6 and Corollary 3.4, one can produce
many psd forms which are not sos. The argument used by Motzkin, Choi, and Lam
to prove that M, S, and Q are not sos was basically this: if w ¢ W, then f (U, w)is not
sos. Since N! 2U*, this is a weaker version of Theorem 3.3.

The term-inspection method can be more fully developed. Suppose
p(x)=Y a(u)x" is a (not necessarily psd) form; let N(p)=cvx{v: a(v)#0} denote the
Newton polytope or cage of p. If f is a simplicial agiform, then N(f) is the simplex
whose vertices are {u;: ,>0}. We let “a- <s” denote the set {yeR":a- y<s} and
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say that it is a supporting half-space for N(p)if a-z<sfor all ze N(p) and a - zo=s
for some z, € N(p). [By the definition of N(p), this implies that - v=s for some v
with a(v)#0.] If o - <sis a supporting half-space, then a-=s is called a supporting
hyperplane. The supporting hyperplanes of p have another interpretation. For p as
above, with a(u)+0, xeR" and >0, let

P(x,2) ()= p(t* x4, ..., t*x,) = Y (@(u)x¥)t>* = ¥ (a(u)x*)* ¥,
and let L(p,x,2,s)= lim t°p(x,)(t). If s>maxa-u, then L(p,x,a,5)=0. If
t—= 00

s=maxq -y, then L(p, x,, )= {Y a(u)x*: ¢ - u=s} < oo, and since the summation is
over a non-empty set, it is not identically zero. If 0 < L(p, x, &, s) and r<s, then
L(p, x,,r)= 0. Thus, if s <maxa - u, then L(p, y, ¢, s)= co for some y. We have thus
proved the following lemma.

(3.5) Lemma. The half-space a-<s (=s(a, p)) is a supporting half-space of N(p) if
and only if |L(p,x,2,s)|< oo for all xeR" and L(p,y,a,s)%0 for some y.

(3.6) Theorem. Let p(x)=Y a(v)x® be a psd form.
(i) If p2q=0, then N(p)2N(g).
(i) If p=YhZ, then N(h)S1N(p) for each h;.
(iii) If v, is an extreme point of N(p), then v, is an even lattice point and a(v,) > 0.
(iv) If F is a face of the polytope N(p), then p(x)= Y a(v)x® is psd.
veF

Proof. (i) Since p(x,2)(t)=q(x, ) (), it follows from multiplication by t~* that
L(p, x,2,5) = L(q, %, 2, s). By Lemma 3.5, it follows that s(a, p) = s(a, ). Thus every
supporting half-space of N(p) contains N(g). But N(p), as a convex body, is the
intersection of its supporting half-spaces, so N(p)2 N(q).

(ii) If p= Y hZ, then p=h?, so N(p)2 N(h?). Since L(h?, x, &, 25) = (L(h, x, &, 5))?,
Lemma 3.5 implies that N(h;)=2N(h)).

(iii) Ifp,is an extreme point of N(p), then a(p,) =+ 0 by the definition of N(p), and
there exists a supporting hyperplane for N(p) containing only v,. That is, there
exists o so that {v:a-v=s(a,p)}={ve} and L(p, x, &, s)=a(ve)x®. Since p is psd,
L(p, x,2,5) =0, 50 a(ve)x* is a psd form. Since a(vy)e® =0 for g€ { —1,1}", it follows
that a(vy) =0 and vy, is even.

(iv) The argument of (iii) may be applied, choosing a-<s to be a supporting
hyperplane containing F. Once again, L(p, x, &, s)=p®(x)=0. [

Both (iii) and (iv) are generalizations of the fact that a non-negative polynomial
has even degree and positive leading coefficient. Parts (i), (ii), and (iii) are contained
in [17, pp. 365-366], where they are proved as above, but less carefully; parts (i)
and (iv) were proved by Handelman [9, p. 53]. In [11, p. 69], Handelman proved
that N(fg)= N(f)+ N(g), with the usual convex set-sum; this implies the argument
used in (ii) that N(h?)=2N(h).

4. Sos Agiforms: The Sufficient Condition

In this section, we prove the converse of Theorem 3.3 when W is a trellis: if we U*,
then the simplicial agiform f(I, w) is sos. We need two lemmas: a useful identity
and a technical matrix result.



Forms Derived from the Arithmetic-Geometric Inequality 443

(4.1) Lemma. Let U be a trellis and suppose w==%(s+1), where s, t€ EQ). Then
(42) 21 (20, 9) (x) = £ ) (x) + QU ) (1) + (2 — 2.

Proof. Write w, s,and tin terms of the u;’s: w=Y Au;, 5= o;u;and t=Y 7,u;. By the
uniqueness of barycentric coordinates, 4, =%(o; +7,). It follows that the right-hand
side of (4.2),

(Cox" —x9) + (T rx" — x) +(x° - 2x" +x9),

equals the left-hand side. []

If s=t=w, (4.2) is vacuous. If s=u, e, then f(U, u)(x)=x*— x* vanishes
identically. Thus one or both of the simplicial agiforms on the right-hand side of
(4.2) may disappear.

When £ is a U-mediated set, each we £\ U can be written as (s +t), and so each
S, w) satisfies a non-trivial equation of shape (4.2). This leads to an inhomo-
geneous linear system involving the simplicial agiforms. The next lemma will be
applied to the matrix of that system.

(4.3) Lemma. Let A=[a;;] be a finite matrix such that a;=2 and a;;e {0, —1} if
i=j. Suppose eachrow of A has at most two — 1’s and there is no principal submatrix
of A in which each row has exactly two —1’s. Then A is invertible, and the entries of
A~ are non-negative.

Proof. Write A =2(I — P) and note that the entries of P are 0 and 4. We shall show
that all the eigenvalues of P have modulus <1, so P"—0. In this case,
AI+P+.. +P Y)=2I—-P"),and A~ '=4(I+P+P?+...) exists and has non-
negative entries.

Let o be an eigenvalue of P and let z be a non-zero column vector with Az =az;
let { =maxlz,l, 1= {k:|z|=C}, T()={j:p;=1}, and N()=|T(9) [s0 0=N()=2].
Then for iel,

1
jezT:(i) 2%
Since {>0, || <1.If |a| =1, then N(i)=2 and for je T(i), |z;| =, so T(i))CI. That is,
the principal submatrix of P with rows and columns taken from I has two 4’s in
each row. The corresponding principal submatrix in A has two —1’s in each row,
which violates the hypothesis. It follows that |¢|<1 for every eigenvalue o,
completing the proof. []

ol =z = < 3 NGXSL.

(4.4) Theorem. If Wis atrellis, & is U-mediated and w € L, then the simplicial agiform
f=fQLw)is sos. To be specific, f is a sum of |@\Y| squares of the form c(x*— x"?,
where 2s, 2te 2 and ¢20.

Proof. Index the points of 8\U as w,, ..., wr, with w=w,. Since L is U-mediated, at
least one of the following three statements is true for each w; and suitable distinct
U, U and ‘ij, Wke‘gm(zz)n:

4.5)() wi=4,+uy),
(4.5) (i) wi=4(u,+wy),
(4.5) (iid) wi=iw;+wo) G k+i).
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For the purposes of this proof, pick exactly one correct decomposition for each w,.
By Lemma 4.1, the relationships in (4.5) have, respectively, the following impli-
cations [recall that f(U,u;)=0]:

(4.6) (1) 2f(U,w)(x)= (x%/? — _Zcus/2)2 ,
(46) (ll) 2f(l[, Wi) (,ZC) = f(u’ Wk) (.ZC) + ('Zcur/Z _ ka/2)2 ,
(46) (lll) 2f(u, ‘_Vi) (ZC) = f(u, V_Vj) (-ZC) + f(u, wk) (26) + ('_xw_j/2 _ 2cw,(/z)z '

Define the T x T matrix A =[a,;] as follows. For all i, a;; = 2. If w; satisfies (4.5) (1),
then the other entries in the i-th row are 0. If w; satisfies (4.5) (ii), then @;, = — 1 and
the other entries in the i-th row are 0. If w; satisfies (4.5) (iii), then a;;=a; = — 1 and
the other entries in the i-th row are 0. Let h; denote the binomial square appearing
on the right-hand side of the appropriate expression for 2f (U, w;) in (4.6), so hy(x)
=(x%—x%)? and 2s;, 2t;€ L. Let H and F denote the column vectors whose i-th
components are h(x) and f(U, w,), respectively. By the construction of 4, (4.6) can
be put into matrix form:

@.7) AF=H.

Lemma 4.3 was tailored to fit the matrix 4; only one hypothesis is not
obviously satisfied. Suppose A has a principal submatrix (with rows and columns
from I) with two — 1’sin each row and let & = {w;:ie I}. Then every w; € &' satisfies
(4.5) (iii) with j and k in I, so every point in £’ is an average of two other points in £'.
This is clearly impossible for a finite set in R*; consider a point at maximum
distance from the origin. It follows that 4 has no such principal submatrix, and
Lemma 4.3 applies.

From (4.7),

4.8) F=A"'H,

and A~ !is amatrix with non-negative entries. The i-th component of F can thus be
read off from (4.8) as a non-negative linear combination of the h/s. Thus
f=fQ,w,)is a sum of T=|2\U| binomial squares. []

(4.9) Corollary. A simplicial agiform f(, w) is sos if and only if weU*,

Proof. Combine Theorems 3.3 and 44. [

(4.10) Corollary. Every simplicial agiform on an H-trellis is sos.
Example 2.4 and Corollary 4.10 generalize Hurwitz’ Theorem.

(4.11) Corollary. An sos simplicial agiform f(U,w) is a sum of |[EQO)U{w}|—|U|
squares.

Proof. Choose £ using Theorem 2.8. [

It is shown in [19, pp. 110, 111] that the Hurwitzian agiform G(c) is a sum of
3n—4 squares [where ¢=(cy, ...,c,) and ¥ c¢;=2d]; this is much smaller than the
bound in Corollary 4.11. Proposition 2.7 and Theorem 4.4 can be combined.
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(4.12) Proposition. If f(2, w) is simplicial on W= {u,, ..., u,,} and k=max(2,m—?2),
then the following form is sos:

FQLw) (x5, .., x) =2 x4 4 44X — x5 = f(KU, kw) (x).

Finally, one can define trellis isomorphism: (U, £)~ (B, ) if, after relabeling,
the relevant lattice points satisfy the same averages. Clearly, if (B, &) is the image of
(M, 8) under a linear map, then averages are preserved. It can be proved that this is
the only possible instance of trellis isomorphism: the matrix 4 contains enough
information to give the barycentric coordinates of £ with respect to .
Suppose p(x)= ¥ hi(x), b(x)= Y by(v)x® and [¢;;] is a matrix with rational entries
so that v;= )’ t,v;is integral for every v occurring in any h,. Under the formal sub-
stitution x;—x%, we have v—¢', and if p’ and h; are the resulting forms, then

Plx)=X h2(x)= ;(% bk(y)x’*'>2-

In particular, if t;=re;, then the substitution means replacing the variable x; by x;.
It is not necessary for the ¢;’s to be integers; we can invert the previous example

ij
and replace x; by x!” in the form p'.

5. Examples of Sos Agiforms

In this section we implement the algorithm of Theorem 4.4, and write the forms
H(x, y,z) and M(x*, y*, z¥) for k=2,3 as sums of squares. We briefly report some
complications for non-simplicial agiforms.

(5.1) Example (Continuing Examples 1.10 and 2.4). We wish to write H as a sum of
squares. Let W= and let € consist of the following eight points: u, =(6,0,0),
U= (0’ 6, 0)3 Uz = (O’ 0, 6), W= (2, 2, 2)’ W, = (2’ 4, 0), Wi3= (2’ 0, 4)’ Wy= (4’ 2, 0)3 and
ws=(4,0,2). We check that 8 is W-mediated: w; =3(w, +w;), w, =+(w,+u,),
w3 =3(ws+u3), wy=3%(w, +u,), and ws=4(w;+u,). [By Theorem 2.8, we could
have selected E($) as the U-mediated set containing (2, 2, 2); the advantage of L is
that it has fewer elements.] Using the terminology of the proof of Theorem 4.4, we
have:

-0 N o~
convo~o
|
N O = OO

and hence

SN O N
N O O N
S Hh O N -
A O N O -
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The 5-tuple of binomial squares is
((xy? = x2°P, (° = x*p)%, (2% —x?2)%, (® —xp?)?, (x> —x2?))T.

Since 2H(x)=6f(9, w,)(x), we can read off 2H as a sum of five binomial squares
from the first row of 64, compare with (1.12) and [19, p. 111]:

(5.2) 2H(x,y,z)=2x%+2y°® + 2z° — 6x%y?z2
=3(xy* —xz2)2 + 2y — x2y)? + 2(z3 — x?2)?
+ (x> —xy?)? +(x* —xz?)%.
The variable x is distinguished in (5.2), and there are two similar expressions in
which y and z are distinguished. These correspond to images of £ under a

permutation of coordinates. It turns out that H is a sum of four squares [19,
p. 112], but one is the square of a trinomial; H is not a sum of three squares of forms

(see [7]).
(5.3) Example (Continuing Example 1.9). We turn to M(x?, y?,z?). By Proposition
2.7, U=29 is an H-trellis; we choose a smaller set. It is easy to check that 2 =29
U{w,, wy, wa} is 2MM-mediated, where w, =(4,4,4), w,=(6,6,0), w3=(2,2,8). As
before, there is only one way to write the w;’s as averages from £. After some
simplification, we obtain the following representation:
M(XZ, yl, ZZ) — x8y4 + x4y8 + 212 _ 3x4y4z4
— 2(x3y3 _ xyz4)2 +(x4y2 . x2y4)2 +(26 _x2y222)2 .
For M(x3, y3,z%), we use a shortcut: M(x3, y*, z3)= H(x?y, xy?, z%). Thus we can
take x—x2y, y—»xy?% z—z> in (5.2), and obtain
(5.4)  2M(x3,y3%,23)=2x12y® +2x0p12 + 2218 — 6x6y52®
= 3(x4y5__x2yz6)2 + 2(x3y6__x5y4)2
+ 2(29 _ x4y223)2 + (x6y3 _x4y5)2 +(x6y3 _ xzyza)z .
We could, of course, invert the process and derive (5.2) from (5.4).
Here is a more leisurely representation of M(x3, y3,z%) as a sum of binomial
squares; we have suppressed the implicit 39-mediated set.
10M(x3,y3,2%)=10x"2y® + 10x%y*2 +10z'8 — 30x°y°2¢
= 15(x2y324 —'X4y322)2 + 12(xy226 _ x3y422)2
+ 9(x2y324__ x6y3)2 + 8(29 _ x2y4z3)2
+6(x3y2z* — x3Y6) + 4(x 226 — x3y5)>?
+ 3(x2y26 —X4y322)2 + 2(29 _x4y2z3)2
+ (x6y3 _x2y26)2 R

(In this case, |@\U|=9; it is easier in practice to solve for M as a linear
combination of nine specified binomial squares than it is to invert the full 9 x9
matrix.)
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The major obstacle in generalizing Theorem 4.4 to non-simplicial agiforms is
Lemmad4.1. Suppose Uisnotatrellis,and w=1%(s +¢) with s,t € E(). For a particular
/€ A(w), there may not exist g € A(s) and 7 € A(t) with A=4(o + 7). In this case, no
identity of the shape (4.2) is applicable to f(U, 4, w). For example, if

T=HUM={(6,0,0), (0,6,0), (0,0,6), (4,2,0), (2,4,0)},

and w=(2,2,2), then M and H are both agiforms on T with the same w, but one is

sos and the other is not. The Motzkin form corresponds to 4=(0,0,%,%,%) e A(w).

There are several ways to write w=14(s+1), but if A=%(g+7) with g € A(s) and

1€ A(t), then o;=1;=0 for i £2, because ¢;, 7;=0. Thus Y o,u; and ¥ 74; belong to

E(IM); since w ¢ A(E(M)), this is a contradiction. Of course, the failure of a lemma to

generalize does not mean that the theorem also fails to generalize, and the points

(6,0,0) and (0, 6,0) in this case are basically irrelevant to the form f(U, 4, w).
Here is a less trivial example.

(5.5) Example. Let B={(6,0,0), (4,2,0), (2,4,0), (0,0, 6)}. It is not hard to see that
E(B)=BuU{(2,2,2), (2,0,4), (4,0,2)}.
For w=(2,2,2), a routine computation gives:
AWw)={4=Gt51-21,3(1+1),3):0=t<4}.
We define the agiform M(x,y,z)=3f(B, 4, w) for 0=t <1
(5.6) M(x,y,z)=tx®+(1 =20)x*y? + (1 + t)x?y* + 26 — 3x2y?z2
=M(x, y, z) + t(x>— xy?)*.
Note that M, is a simplicial agiform when t=0 and t=14, and is a convex
combination of M, and M/, (see also Theorem 7.1). The identity
M, 5(x, y, 2)=(x*z—2°)* + §(3xy?* + x> — 4xz?)?

shows that M, is sos. A form is called sbs (see [6]) if it is a sum of squares of
binomials. By Theorem 4.4, every sos simplicial agiform is also sbs. The following
identity shows that M, , is sbs:

M, 5(x, p,2) =3 (xy* —xz%)* + $(x3 — x2?)* + (x?z — 2*)*.

We shall prove in [7] that M, is sos if and only if 1 = 1/8 and M, is sbs if and only if
t=1/2, so that the two conditions are not equivalent for non-simplicial agiforms.

6. Six Families of Agiforms

In this section we consider six families of agiforms, two generalizations for each of
M, §, and Q. One family is due to Motzkin [16, p.217], three are due to Choi and
Lam [4, p. 5] and the other two are new. The subscript of a form always indicates
the number of variables.

Motzkin defined a family of psd forms {M,} which are not sos:

n—1
6.1) M, (x)=x%...x2_, (;1 x,2> +x2"—nx?...x2,
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so My=M [cf (1.14)]. [Motzkin actually defined M,(x,,...,x,-,1); here as
elsewhere in this section, we have renamed and renormalized the families.] Choi
and Lam gave an alternative generalization of M:

6.2) M, (x)=(n—2)x2"+ Z X" 2x —n(n—2)x3...x7,

where the sum is taken over all pairs (i,j) with 1<i%j<n—1.
They also defined the family {S,}:

63) S.0= 3 it -t

where x,, ; =x,; and S;=S. We consider an alternative family:

(64) S0 =xixx (z i, )

where, again, x, ., =x, [cf. (1.15)].
Finally, Choi and Lam generalized Q for n=2m:

Q¥ =02m-2)! x50 +m!(m—1)! ¥ X} Xt —=2m2m—2)! X, ... Xy,
(65) i1<...<im

where the sum is taken over all m-subsets of {1, ...,2m—1} and Q,=20. We also
consider an alternative family {Q,,.}:

2m—1
(6.6) Qom(X)=X3m+ ,Zl xizxiz-l—1"'xi2+(m—1)_2mxl"'x2m'
i=

The summands are products of m consecutive elements of {x%,x3,...,x3,_},
viewed cyclically, and 0, =Q [cf.(1.16)].

We shall show that M,, S,, S, and 0,,, are simplicial agiforms on M-trellises,
while M, (n=4) and Qz,,, (m= 3) are non-simplicial agiforms. We use Theorem 3.3
to verify the assertions in [16] and [4] that M,, S,, and Q,,, are not sos; S, and Q,,,
are also not sos. We write M, as a sum of squares, contradicting [4,p.5]. We
compute E(Y) for the appropriate U; this is used in Theorem 9.1 to show that M,

S,, and Q,,, are extremal.

Our arguments are simplified by a technical lemma and a proposition on the

eigenvalues of a circulant matrix. For notational convenience, we let @, denote the

1 1
k-tuple (E’ . E)'

(6.7) Lemma. Suppose g=(0y,...,0,) with 6,20 and Y o;,=1 and suppose that
2(0;—a;)) is an integer for all i, j. Then g=e¢;, @, }(e;+ey) or }(e;+ @,).

Proof. Lets=ming,sog=(s, ...,s)+a, where each o; is a multiple of 1/2, s =0, and
ns+Yo;=1. If Yo,=1, then 5=0 and g=¢; (if a;=1) or g=14(¢;+e¢) (if
aj=0=1/2). If Y 0;=0, then ¢=0, s=1/n and g=g,. If Y o;=1/2, then a;=1/2,
s=1/2n and g=1(¢;+¢,). O
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A circulant matrix is a square matrix whose rows are successive cyclic
permutations of the first. To be specific, C = [¢;;] =circ(a,, ..., a,) is the n x n matrix
with ¢;;=a;_;,,, with the index k in a, reduced modn. Circulant matrices are
studied in great detail in [8], from which we cite the following result (pp. 66-73).

(6.8) Proposition. The eigenvalues of the matrixcirc(ay, ...,a,)are L= Y a;g¢™ b,
i=1

for 0=k<n—1, where ¢ is a primitive n-th root of unity. The eigenvalues of

circ(a, +d,...,a,+d) are thus Ag+nd, A{,....4,_1.

If U={u,,...,u,} CR" is a framework, then U is a trellis if and only if
det[u;;1%0. For many examples in this section, the matrix [u;;] is circulant (or has
alarge circulant block), and we shall use Proposition 6.8 to show that the circulant
block has non-zero determinant.

(6.9) Theorem. For n=3, let

(6.10)
M,={4,2,...2,0), (2,4,..,2,0), ... (2,2, ...,4,0), (0,0, ...,0,2n)} = {uy, ...} .

Then M, is a trellis and M, is a simplicial agiform on MM, which is not sos. Further,
EM,) =M, u{w}, where w=(2,...,2,2), and C(M,)= A(E(I,)).

Proof. Note that [u;;] is a block matrix, consisting of the n—1xn—1 block
circ(4,2,...,2) and the 1 x 1 block [2n]. By applying Proposition 6.8 with d=2 to
circ(2,0,...,0)=21, we find that 1, =2n and 1, =2 for k+0; thus circ(4,2, ...,2) is
non-singular and so W is a trellis. It is easy to check via (6.1) that w=Y 7,u;, where
=0, so M,=nf(I,, w). We shall show that E(,)=IM,u{w}; as w¢ A(E(IM,))
for n=3 (v, € {0,2n} for ve E(MM,)\{w}), it follows from Corollary 3.4 that M, is not
S0S.
Suppose ¥ =(uy, ..., u,) =Y Au;€ C(M,). Then, from (6.10),

=24 +...+44;+...+24,_,, 15j<n—1, and u,=2n4,.

Since YA, =1, u;=2+24;,—24, for 1<j<n—1, so 2(;—4,) is an integer; hence
2(4;—4;) is also an integer for all i, j. By Lemma6.7, either A=¢; (and u=u)),
i=%(ej+e) [and u=%(u;+u)], =9, (and u=w), or A=}(e;+¢,) [and
u=%(u;+w).] Since w and the u;s are even, each average is a lattice point. Each of
the distinct averages has at least one odd component, hence E(MR,) =M, u{w} and

CON,)=AE®M,). O

(6.11) Example. Let I, be the framework implicit in the definition of the family
{M,}; D, has 1+ (n—1)(n—2) elements and so cannot be a trellis for n>4. When
n=3, M;= M, which we know to be a non-sos simplicial agiform. It turns out that
M,=n(n—2)f(IM,, 4, w) for w=(2, ..., 2) and suitable 4. We have found represent-
ations for M,, M, and M as a sum of squares and conjecture that M, is sos for

n=4. Here is M,:
M ,(x,y,z,w)
— 2W8 +x6y2 +x6z2 +y6x2 +y622 +Z6x2 +Z6y2 _ 8x2y222W2
=2w*—x2y?)? +4(xyz? — xyw?)? + 2x?y? — x22?)?
+(x3y—xy3)2 + (3 z—yz3)? + (22 x — zx3)2.
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(6.12) Theorem. For n=3, let

(6.13)
S,={(2n—2,2,0,...,0), (0,2n—2,2,...,0),...,(2,0,0, ..., 21— 2)} = {4y, ..., u,} .

Then &, is a trellis and S, is a simplicial agiform on &, which is not sos. Further,
E(S,)=8,u{w}, where w=(2,...,2).

Sketch of Proof. After showing that [u;,] is circulant and &, is a trellis, one shows
that S,=nf(S,, w) is a simplicial agiform with 1 = ¢,. Again, E(S,)=&,u{w} will
imply that w does not belong to A(E(S,)), and so S, is not sos.

Ifu=Y Au;e E(S,), thenforallj,u;=24;_, +(2n—2)4;from (6.13), with 1, = 4,.
Since } u;=2n,ifu;>0for all j, then u; > 2, hence u=w. Otherwise u, = 0 for some k,
01 =X4=0andu,_, =24, _,. Thusi,_,isOor1.If4,_,=1,theni=¢,_,and
u=u,_,. If 4, _,=0, then y,_, =0, and the argument may be repeated. Since some
u;is positive, we eventually get u =y, € S, for some i. Thus E(S,) = &,0{w}. The set
C(S,) is larger than A(E(S,)) for n=4 (see Theorem9.3). []

(6.14) Theorem. For n=3, let

(6.15)
G,={4,2,2,2,...,0),(0,4,2,2,...,2), (2,0,4,2,...,2), ..} = {uy, .., u,}

so that [u;;] is circulant. Then S, isatrellisand S, is a simplicial agiform on S, which

is not sos. Further, E(S,)=8,u{w}, where w=(2, ...,2), and C(S,)= A(E(S,)).
The analysis of {S,} is quite similar to that of {IR,} and is omitted.
(6.16) Theorem. For m=2, let Q,,, denote the framework:

(6.17)
Qum={(0,...,0,2m)} U{(2ay, ..., 2a5,_,0):a;€ {0,1}, Ya;=m} = {u;} .

Then E(Q,,)=RQ,, and Q,,, is an agiform on Q,,, which is not sos.

Proof. As Q,,,has1+ (me— 1) elements, it is not a trellis for 2m = 6; it is easy to

. . 1 1/ 2m—-2\"1
see that Q, is a trellis. Let A= (ﬂ’ Ps-ens y), where y= 3 ( 1 ) and let

w=7Y Au;e C(Q,,). It is easy to check that Y 4,;=1 and w=(1,...,1,1), so Q,,
=2m(2m—2)! f(Q;, 4, W).

Since Q,,, liesin theslab0<x;<2forj=1,...,2m—1,ifue E(Q,,), then u;=0
or 2 for j <2m. If u, =2 for some k, then u is a convex combination of those u;’s for
which u; ;, =2, 50 u,,,=0. Since Y u;=2m, this implies that ue Q,,,. Otherwise, u;=0
for1<j<2m—1,sou=u, €Q,,. Bylooking at w,,,, we see that w¢ A(Q,,,), s0 Qs,,
is not sos. []

(6.18) Theorem. For m22 let Q,,,={u;} be defined so that [u;] has a 2m—1
x 2m—1 circulant block, circ(2, ...,2,0, ...,0), withm 2’s and m— 1 0’s, and the 1 x 1
block 2m. Then Q,,, is a trellis, E(Q,,)=Q,, and C(Q,,)=AQ,.)u{w}, where
w=(,...,1), and Q,,, is a non-sos simplicial agiform on Q,,,,



Forms Derived from the Arithmetic-Geometric Inequality 451

m
Proof. Inthiscase, 4, =2 Y &1 50 1,=2m;as ¢™is a primitive (2m — 1)-st root

i=1
of unity, 4=21—¢&")/(1—e)+0 for k=1. Thus [,, is a trellis;
0m=2mf(Q,,, w). Itis possible to argue as in Theorem 6.16 that E(Q,,)=Q,,.; as
w¢ A(E(R,,)), Osn is not sos. This may be proved more directly. For any
permutation o of {1,...,2m—1}, let

ox =(x¢r(1)’ v Xg2m— 1) x2m) .

Itiseasily seen that Q,,,(x) is the average (over ¢) of 0 ,,,(6x), up to a multiple. If 0,,,
were sos, then Q,,, would also be sos, a contradiction.
Suppose v=}Y du; € C(RQ,,,), then

(6.19) Ui=2(2i+}’i—l+"'li—(m—l))’ 1§l§m—'1; 02m=2mlzm,

where the indices are understood to cycle so that 1o=4,,,_1, A_;=A,,—2, €tcC.
With the same cyclic understanding, (6.19) implies that:

2m—1

VitV mony =44 +2 Y A=2424—2y, for 1=Zi<2m—1.
i
As before, 24;,—21,,, is an integer for 1 i< 2m—1, and we may apply Lemma

6.7. In this case, (w +u,) is not a lattice point because its 2m-th component is not
an integer. Thus C(RQ,,)=A(Q,,)u{w} and it follows easily that E(Q,,)
=ﬁ2m. D

7. Extremal Agiforms: The Sufficient Condition

Recall that a psd form p is extremal if p= h, + h, with h; psd implies that h;=a;p, or
equivalently, if p(x)= h(x) =0 for all x (written p=h=0) implies that h=ap. Choi
and Lam proved that the agiforms M, S, and @ are extremal, and it was shown in
[17] that any extremal form with four or fewer terms is, up to a scaling of variables,
either a monomial square or a simplicial agiform f=f(l, w), where |U|=3,
EQU)=Uu{w} and w=34(u, +u, +u3). In the next two sections, we generalize the
methods of [17] to agiforms in more than three variables. In this section, we give a
weaker version of extremality and discuss the zeros of agiforms. This gives a
sufficient condition, which we later prove is necessary.

An agiform f is primitive if f=Yg; where each g; is an agiform, implies that
g;=a;f. (Keep in mind that agiforms do not comprise a cone.) An extremal agiform
is primitive; it was shown in [17] that the converse is true when n<3, it is false
when n=4. It turns out that this is a geometric condition: f is primitive if and only
if it is a simplicial agiform on a trellis 2l with EQI)SQu{w}). (Necessity follows
from Lemma4.1.)

We begin with two decomposition theorems of independent interest.

(7.1) Theorem. Every agiform is a convex combination of simplicial agiforms.

Proof. Fix a framework U= {u,, ..., u,}, and let f = f(U, A, w) be an agiform on U.
The set A(w) is the intersection of an affine subspace of R™ (the solutions to
Y. Zu;=w)and a simplex (4,20, Y 4;,=1), and so is a closed convex polytope in R™.
Hence 4 is a convex combination of extreme points, say A=Y 0, where g; is
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extremal, §;>0 and Y f;=1. Thus
f(u 4, W)(X)— Z ;Lx“‘—xw Z (z ﬂjapxul) -x
= ; B; (; Ujilcu'—lcw> = ; Bif(U,g;w)(x).

It follows that f is not extremal unless A is an extreme point in A(w). We now show
that if ¢ is an extreme point, then f(2, g, w) is simplicial. After reindexing, we
assume that ¢,>0 precisely for 1 <i<r; we now show that W'={u,:1<i<r}isa
linearly independent set, so f=f(@Ql,w) is a simplicial agiform. Suppose

zr; ou;=0; then Z (Z oc-uij> =2d(z oz-) =0. Let a;=0 for j>r and let
i=1 i=1

a=(ay,...,d,). Then Z (6;+cau;=w and Z (0;4+ca)=1 for all c. For ||

sufficiently small, o; +coc =0 for all i, so a+caeA(w) This contradicts the
extremality of ¢ unless a=0. O

(7.2) Theorem. If f=f(U,w) is a simplicial agiform, where w is interior to U, and
s€ EQ), s¢ Uu{w}), then f(U, w)= f(B,w)+ Bf(U,s), where >0 and B is a trellis
contained in E(U).

Proof. Suppose s=Y o;u; € E(M), where s¢ Mu{w} and a€ A(s). Since 4 is interior,
A;>0; after reindexing, we may assume that a, /4, =« /l for2<j<m,soa, >0.Let
B={5,u,, ..., u,) (). Define f by ; =4, /a, and/)’] —a;B, for2<j<m.Then
f;>0 and a routlne computation, which we omit, shows that the barycentric
coordinates of w with respect to B are given by (f4, ..., 8,,). It follows that

S(B, B, w)x)+B1 (U, 2, 8)(x)
=B X+ '=§2 (A;—Byop)x® —x¥ + By (o x* + j§2 a;x* — x7)

= 3 Axi—x=fLAWE). O
=1

Geometrically speaking, the point s subdivides the simplex cvx(l) into sub-
simplices, and w lies in the one which maximizes a;/4;.

(7.3) Theorem. The agiform f = f(U, A, w) is primitive if and only if it is a simplicial
agiform on a trellis W for which EQD)S(Uu{w}).

Proof. First suppose f is primitive; by Theorem 7.1, f is a simplicial agiform.
Choose U so that f=f(U,w) and write w=) Ay; with 4,>0. If se EQ),
s¢(Uu{w}); by Theorem7.2, f(!,w) is a convex combination of f(',w) and
S, s). Since the term x* has coefficient —1 in f(U, s) and does not appear in
S, w), f(U, s)Faf (L, w); this contradicts the primitivity of f.

Suppose f is simplicial on U with EQ)SUu{w}) and f(U, w)=Y g;, where
g;+0o;f is an agiform. Since the coefficient of x* is —1 in f] it must be negative in
some g;, so g;=o,f(B,w) for some B. But f=g;, so by Theorem 3.6(i),
N(f)=U28B=N(g). Thisis a contradiction, since w is not contained in the convex
hull of a proper subset of 1. []
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We remark that, if £, w) is primitive, then either f is a binomial square or U is
an M-trellis by Theorem 2.5 and f is not sos. Since extremality implies primitivity,
we have already shown that, if f(U, 4, w) is extremal, then f is simplicial and
EQOCUU{w}.

Let p be a (not necessarily psd) form. The zero-set of p, {z: p(z) =0}, is denoted
by 3(p). Since p is homogeneous, z € 3(p) if and only if rz € 3(p) for all real r. It will be
convenient to consider z and — z separately, so we do not define 3(p) projectively.
Let D; denote the operator 0/0x;. f h=h(x,, ..., x,) isa form and T is a subset of R",
then h is second-order at T if D;h(y)=0for all ye T and i=1,...,n. If p is psd and
p(z)=0, then D;p(z) =0 for all i, so p is second-order at 3(p). If pis an m-ic form which
is second-order at T, then Y x;D;p(x)=mp(x) implies that T C3(p).

s

(7.4) Lemma. Suppose z;+0 for alliand allze T and h(x)= Y, c(v,)x*. Then his
k=1

second-order at T if and only if, for all ze T and i=1,...,n,

(7.5 3 {ona™}elw)=0.

Proof. Since x;D{x?=v;x", the left-hand side of (7.5) is simply z,D;h(z); z,D;h(z) =0
if and only if D;h(z) =0 because z;+0. []

The relevance of second-order sets to extremal forms is shown by the next
lemma, which follows from this discussion and Theorem 3.6.

(7.6) Lemma. If p and q are forms and p=q=0, then N(p)2 N(q), 3(p)S3(q) and q is
second-order at 3(p).

For veZ", let O(v)={j:v;is odd}. Let G,={—1,1}"; G, forms a group under
component-wise multiplication: ¢- ¢ = (g,¢}, ..., &,8,). For a set IC{1,...,n}, let

G,(I) denote the subgroup {geG”: I1 s,:l}, 50 G,(¢)=G, and |G,(I)|=2"""* for
iel
I+¢.If keI\J, then (1, - k—}', s 1)eG,,(J)\G,,(I); I+ J implies G,(I) % G,(J). As
-1,

& ={[1&:v; is odd}, G,(O(v)={e:e*=1}.

For IC{1, ...,n}, usually I =O(w), we define I-congruence on Z" by: v= v if
e'=¢" for all g€ G,(I). [Equivalently, v and v’ are I-congruent when g¥ =1 implies
g'=¢¥, or when O(v—v') is either ¢ or 1.] We write = for = s ifv=0,thenv= '
for all 1. We shall be interested in the decomposition of CW)=Z,u...UZ, into
I-equivalence classes. If U is a trellis and I=O(w), then w=,0; hence Uu{w}
always lies within one I-class. We shall always index the classes so that
Uy {W}) €Z,.

(7.7) Lemma. If f=f(U,w) is a simplicial agiform, then G, (O(w))C3(f).

Proof. By (1.8), f(U,w)(z)=0 if %' =...=z'"=z¥=1. For any ¢€G,, g% =1; as
noted earlier, G (O(w))={e€G,:e¥=1}. O

Simplicial agiforms have other zeros, but these are not useful to us. For
example, suppose z¢' =...=z%"=0 [as when U= and z=(1,0,0).] Then
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2 =[](z*)"*=0 for v=Y o,u;e CQ) with ¢;=0, since at least one ¢; is positive.

Thus, if N(g)€C(U),then z € 3(q).

(7.8) Theorem. The form h(x)= Y c(v)x" is second-order at G,(I) if and only if
=1

I=
the vector equation

(7.9) Y, ;=0

vjeZx
holds for each I-class Z, of the set {vy,...,0}.

We require two technical lemmas (c.f. [2, pp. 295-296].)
(7.10) Lemma. Suppose w is a lattice point and IS {1, ...,n}. Then

¥ {IG..(I)I, if Ow)=¢orl
£eGnl)

(7.11) 0, otherwise.

Proof. Consider the subgroups G,(I) and G,(O(w))={w:e¥= 1} If O(w)=¢ or I,
then g” is always 1 on the left-hand side of (7.11), and the sum is |G,(I)|. Otherwise,
G, (NG, (O(w)) is a proper subgroup of G,(I) which must have index two. Thus
exactly half the summands in (7.11) are 1 and the other half are —1. [A slicker
proof is this: y,[(e)=¢* is a group character on G=G,(I), and either y=1; or

> g)=0] O
geG

(7.12) Lemma. Suppose A is a set of lattice points and 1C{1,...,n}. Then the
Sollowing two systems of linear equations are equivalent:

(7.13) Y b(v)e!=0 for all e G,(I),

ved

(7.14) Y. bu)=0 for every I-congruence class Z of A.
veZ

Proof. Let A=Z,u...uZ, be a decomposition of 4 into I-congruence classes, and
choose y, € Z,. Then, multiplying (7.13) by ¢* (=¢~ %) and summing over g€ G,(I)
gives:

(7.15) 0= ) b(y)ﬁ'”") = QEZA b(v) <EEGZHU) §""”‘)-

£€Gall) (veA

By Lemma 7.10, the inner sum is 0 in (7.15), unless (v — v,) = ¢ or I, in which case
v=,1,, and the sum is |G,(I)|. Thus, (7.15) reduces to

=16/l 3 b(),

veZyx

which implies (7.14). Conversely, suppose (7.14) holds for each Z,. Fix ¢ € G,(I) and
sum over the Z;’s, noting that ve Z, implies g*=¢*. Then

ng blu)e*= Z (vezk b(v)a"’) é (ue%k b(v) =0;

that is, (7.14) implies (7.13). O
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Proof of Theorem 7.8. Lemmas 7.6 and 7.12 combine to show that h is second-
order at G,(I) if and only if, for all k,

(7.16) Y c;=0, fori=1,...,n.

vjeZy
But (7.16) is just the i-th component of the vector equation (7.9). [
Since 1€ G,(I), it follows that Y c(v;)=0 for all classes Z,.

vieZi

Theorem 7.8 suggests the following definition. Suppose U is a trellis, we C(U) is

an interior point, I =O(w) and C(!) is partitioned into I-congruence classes {Z,},
where Z, 2Uu{w}. Then U is w-thin if

(717) Z,=uu{w},
(7.18) Z, is a linearly independent set if k=2.

If w is even, then Z, =E(U), so (7.17) is equivalent to primitivity. One can show
using Theorem 2.5 that, if U is w-thin, then either U is an M-trellis or [¥|=2 and
|E()] = 3. The same trellis may be w-thin and not w'-thin. Since |E(U,)|=p—2, the
M-trellis U, cannot be w-thin if p = 4. Since C(l) is contained in {} x;=m}, (7.18) is
satisfied if |Z,| < 2.

(7.19) Theorem. Suppose f = f(U, w)is a simplicial agiform on a trellis U, where w is
interior to W. If U is w-thin, then f is extremal.

Proof. Write f(x)= Z a(v)x®, where CU)={v,,...,v,}; aw)=4; (>0 as w is
i=1

interior to U), a(v_v)—= —1, and a(v)=0 otherwise. Suppose f=h=0. As

N(f)nZ"=C(0), Lemma 7.8 implies that h(x)= Y c(v;)x* is second-order at 3(f),
i=1

which contains G,(I) by Lemma 7.7. By Theorem 7.8, the c(v,)’s satisfy (7.9), where

the Z,’s are the I-congruence classes of C(2). Since U is w-thin, (7.18) implies that

c(v)=0if yeZ,, k=2 and for Z,, (7.9) and (7.17) imply:

(7.20) 0= % cluu;+cww.

i=1
As U is a trellis, the u;’s are linearly independent, and since w=Y Au;, the complete
solution to (7.20) is: ¢(u;) =al,;, c(w)= —a for some a. Thus c(v;) = aa(v;) for all v;;
that is, h=of. Therefore, f is extremal. []

Parts of this argument were used by Choi and Lam to establish the extremality
of M, S, and Q (see, for example, the remark after the proof of Theorem 3.8 in [4,
p.11].) These methods are not applicable to all extremal forms. For example,
p(x, y)=(x—y)*is an extremal form in P, ,, but if g(x, y) = (x — y)*b(x, y), where b is
any psd quadratic form, then N(q)S N(p) and q is second-order at 3(p)={(r,r)}.
Informally, our method is effective when p has only second-order zeros, except at
the unit vectors, where N(p) provides more information. [For example, the zeros of
M are second-order at G,, but sixth-order at (0, 1, 0) in the direction of (0,0, 1), etc.]

We now verify that M, S, and Q are extremal. If W=9k and w=(2,2,2), then
O(w)= ¢ and the I-classes are congruence classes mod2. Referring back to Fig. 1,
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we see that the I-classes for C(IN) are:
Z,=Mu{w}={(4,2.0),(2,4,0,(0.0,6),(2,2,2)},
Z,={(3,3,0,(1,1,4}, Z;={(2,1,3),(2,3,1)} and
Z,={(1,2,3),(3,2,1)}.
These satisfy (7.17) and (7.18) so M is w-thin and M is extremal. If w' =(1, 1, 4), then
Ow)={1,2} and v= 0" if v, — v and v, —v), are either both even or both odd.

Thus, the I'-classes for M are Z'| =Z,0Z, and Z,=Z,UZ,, which fail (7.17) and
(7.18), so M is not w'-thin. Note that

6/ (U, w)=x*y? +x?y* +42% — 6xyz* = M(x, y, z) + 3(z° — xyz)?
is not extremal. This is no accident.

If =8;=G; and w=(2,2,2), then the I-classes for C(&) are:
Z,=Gu{w}={(4,2,0,(0.42,2,0,4,2,2,2},
Z,={(1,3,2),3,1,2)}, Z;={(2,1,3),(2,3,1)}, and
Z,={(1,2,3),3,2, 1)},

so & is w-thin and S=3f(S, w) is extremal.
IfQ=9,and w=(1,1,1,1), then O(w)={1,2,3,4} and v= v’ if v;—v! is either
always even or always odd. Then the I-classes of C(Q) are:

Z,=Qu{w}={(4,0,0,0),(0,2,2,0),(0,2,0,2),(0,0,2,2),(1,1,1,1)},
Z,={2,1,1,0),(0,1,1,2)}, Z;={(2,1,0,1),(0,1,2,1)} and
Z,={(2,0,1,1),(0,2,1,1)}.

Again, (7.17) and (7.18) are satisfied, so Q =4f(Q, w) is extremal.

8. Extremal Agiforms: The Necessary Condition

In this section we prove the converse to Theorem 7.19. We begin by showing that, if
U is not w-thin, then there exists a form h=af with N(h)C N(f) which is second-
order at G,(I). We study f,=f+ah on the orthants of R" (so the signs of the
variables are absorbed into the coefficients) by reversing the original substitution
into the AGI. Although fractional exponents occur, the variables are non-negative.
Finally, we show that f, is psd for |&| small, so f=3(f,+ f_,) is not extremal.

(8.1) Lemma. If W is not w-thin, then there exists a non-zero h=of, involving
monomials from a single I-class of C(M), which is second-order at G,(I).

Proof. If (7.18) is violated, there is a non-zero solution to (7.9) for some k>2; if
(7.17) is violated, there is a solution to (7.9) for k=1 which is not a multiple of
{a(v)}. In either case, by Theorem 7.8, the resulting form h(x)=Y c(v)x* is second-
order at G,(I) and h+of. The monomials in h come from the chosen Z,. [J

(8.2) Theorem. If w is interior to W and W is not w-thin, then f (U, w) is not extremal.
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Proof. Construct h by Lemma 8.1 and let f(x)= f(x)+ ah(x); f, is not a multiple of
S if a=0. For zeR", f(2)2 0 if f(z)=h(z)=0 or if f(2)>0 and |h(z)/f ()| || "
Write G,={gy, ..., £,n}, and let

Riy={x=(&412y, .-+, EinZn) 1 2; 20},

so R"=(R,. We shall prove there exists §, >0 so that f(x)=0 for xe R, if |o] < .
For y=mind,, f=41f,20, so f is not extremal.
Fix k and write g =g, so x?=g"z* with z;=0. Then,

(83) JX)=412" + ... + Az — ¥z,
8.4) h(x)=Y clvpe®z*,

where, as in subsequent equations, the change of variables is implicit in the
formulas. If ¢ € G,(I), then ¢ =1 in (8.3) and the ¢%’s are all equal in (8.4) (since the
v/’s all lie in the same I-class); thus h(x)= + ¥ c(v;)z*. If ¢ ¢ G,(I), then *= —1, and
we can say nothing about the g¥’s.

We reverse the substitution which turned (1.1)into f. Let 2% =¢,20.Ifv=3 ou;,
then z*=T]t; write v;=) o ;u;, where 6;20 and ) 0;;=1. Then (8.3) and (8.4)
become:
8.5) f)=2At;—e([1t]),
(8.6) h(x) =Y (")) ([1¢7).
These equations use the fact that N(h)CC(Y) in a critical but implicit way: since
0; 20, the function [ ]t is continuous for t e R} If y =} o;0; where 6, <0 for some
k, then []t7* is unbounded near £, =0.

Using (8.5) and (8.6), let F(a, £) = f(x); f(x)=0for xe R, if F(e,, £)= 0 for te R% ;

F(a, t) is homogeneous in ¢t of degree 1, but is not a form because of fractional
exponents. By its homogeneity, f,(x)=0 for x € R, if F(a,t)=0 on the compact set

K={t=(t;,....t,) ;=0 and Yt,=m}.

If g, =¢¢ G,(I), then ¢¥= —1 and, since 1,>0, f(¢) is strictly positive for te K
from (8.5). Since f and h are continuous and f >0, ¢ =h/f is a continuous function
on K and so is bounded; |p(x)| £ M fort € K. Then, as previously noted, f(x)=0for
|¢|<1/M and x€R,.

If e, =£€ G,(I), then
@®.7) F(o, )= {YAt;—[1t}"} £ o{Tcw) ([Tt7)} -

Thereisequality in the AGLon K onlyat 1 =(1,...,1): f(1)=0and f(¢)>0forte K,
t+1.(As wisinterior to U, 4,>0.) Since ¢ =h/f is continuous on K\{1}, we need to
show that ¢ is bounded near 1. Parameterize K by

(8.8) t=(1+sy,..,1+s5,)eK, Ys5;=0,
and substitute into (8.7) to get the Taylor series for f and h at 1. First,
FX)=Y A1 +5)—T1(1 + As5; + 3 AdA;— 1)s? + higher-order terms).
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The constant and first-order terms cancel, leaving:
1
8.9 fx)= 3 Y A1 —A)st— i;j A:4;8;5;+ higher-order terms

1 .
=3 3 AiAfs;—s,)?+ higher-order terms.
i<j

Since 4;>0, the leading term is a psd quadratic form which vanishes only at
m—1

(c, ...,c). Since s, = — _21 s;, it is a strictly definite quadratic form in s, ..., 5, _,
=

m—1
and so is bounded below by B Y s7 for some f>0.
=

Since h(x) =Y c(v;)x* is second-order at 1, ¥ c(v;) = 0; as v;= Y o ;u;, (7.9) implies
that

= Z( > ajic(yj)> u;
i\ Jj
But the u/’s are linearly independent, so 3’ a;;,c(v;)=0 for each i. Thus,
i

hx)= ¥ clz) (H (1 +s,~)"ff)
=Y cv)+ Z(Z aﬁc(yj)) s; + higher-order terms.

It follows that leading term of h is second-order, say,

(8.10) h(x)= Y y;s:5;+higher-order terms
i
m—1

for some y;;. Taking s,,=— ) s; we see that the second-order term for & is
i1

m-—1
bounded in absolute value by k¥ s?. Thus, (8.9) and (8.10) together imply that
i=1

=h/f isbounded near t =1. Since ¢ is continuous on K\ 1, it is bounded on K. As
before, there exists §,>0 so that f,(x)=0 for all xe R, and |a| <J,. We conclude
that f is not extremal. []

(8.11) Corollary. The agiform f is extremal if and only if f= f(U,w) is simplicial, w
is interior to U and W is w-thin.

Finally, we derive simplicial agiforms from “first principles”; this argument was
givenin [17] for n=3. Let p(x) = .Z a(u)x* (a(u;) #+0) be a form in n variables. We

say that p has k effective vartables if the r xn matrix [u;] has rank k, or,
equivalently, if cvx({0, u,, ..., 4,}) lies in a k-dimensional subspace of R". Since the
u;’s are contained in the hyperplane 1-=24, it follows that N(p)=-cux({y;}) is,
geometrically, (k—1)-dimensional.

(8.12) Theorem. Suppose p(x)=Y a(u;)x* is a psd form in n variables with k effective
variables and r terms, and r <k + 1. Then after a dilation of variables, p is a sum of
monomial squares and (possibly) a simplicial agiform.
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Proof. As N(p)is (k— 1)-dimensional, it has at least k extreme points. By Theorem
3.6, if v is extreme, then itiseven and a(v)> 0, so a(v)x*is a monomial square. If p is
not a sum of monomial squares, then r=k+ 1 and one of the y,’s is not an extreme
point. Since N(p) is (k— 1)-dimensional and has k extreme points, it is a simplex.
After relabeling, we denote the extreme points by u,, ..., u;, and the non-extreme
point by w=Y Au;, with 4;=0and ' 4;=1. If w is even and a(w) >0, then p is still a
sum of monomial squares. If wis not even (say w; is odd) and a(w) > 0, take x;— — x;
so that x* —x* and x¥— —x". We may thus assume that p(x) =Y a(u;)x* — a(w)x",
where a(y;) =0 and a(w)> 0. Suppose 4;>0fori=1,...,land A;=0fori=I+1, and

write p(x)=p*(x)+ Y a(u)x*. In the notation of Theorem 3.6 (iv), p* =p® is
i=T+1

psd, where F is the facial simplex with vertices {u;, ..., 4}. Since a sum of monomial
squares is still a sum of monomial squares after a dilation, it suffices to show that p*
decomposes in the desired way. For notational convenience, we assume that [ =k.

By hypothesis, the k x n matrix [u;;] has full rank, thus, the inhomogeneous
linear system of equations

2u it

ijti=logd;—loga(u), i=1,...,1

has at least one solution: t=(s,, ...,s,) and %% =] (a(y;))”*. Under the scaling
X;—>e%x;, we have x* —(e™%)x% = A(a(y;))”'x*, and p*(x)—q(x) =Y Ax"—cx",
where ¢ = (¢**7*/)a(w) >0. Since p* is psd, so is ¢ and 0<¢(1, ...,1)=1—c. Thus
0<cZ1, and

qX)=cfQLw)(x)+1—c) (T Ax")

as asserted. [

9. Examples of Extremal Forms

In Sect. 6, each of the forms M, S, and Q was generalized by two families of
agiforms. Since {M,} (n>3} and {Q,,,} (m>2) are not simplicial, they cannot be
extremal. In this section we use Theorem 7.19 to show that the families {M,}, {S,},

and {Q,,,} consist of extremal forms, but S, is not extremal for n>4. (We have
already seen that M, S, and Q are extremal.) We also return to a primitive, but not
extremal, agiform, first mentioned in [17].

(9.1) Theorem. M,, S,,and Q,,, are extremal for n=3 and 2m=4.

Proof. Forall three cases, let u; ;=3(u;+u;),i<jand w;=4(u; +w); w;e C(U) if and
only if w is even. If v and v" are in C(U) and v;= v; for i<n—1, then Y v,=Y v}
implies v=y'.

Let W=9N,. Since w=(2, ...,2) and E(M,)=M,u{w} by Theorem 6.9, (7.17) is
satisfied, and =, is congruence mod2. For i<j<n—1,u; ;=(ay, ...,a,_,,0) with
3’s in the i-th and j-th place and 2’s elsewhere. For i gn— 1, yi,,,z(l, v 2, 1n)
and w;=(2, ..., 3, ...,2,1) with the i-th place distinguished, and w,=(1,...,1,n+1).
Itiseasy to see that no two of these are congruent, so each Z, is a singleton for k > 2,
confirming (7.18).

A similar argument, whose details we omit, works for U=3,.
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For U=Q,,, m=3, w=(1,...,1) and v=v' provided v;— v} is always even or
always odd. Let e; denote the i-th unit vector. Then, for i<j<2m—1, u;
=e+...+€im-1+ej+...+¢, -1, With the subscripts reduced mod2m—1;
U om=€+ ...+ €+ m-1+(0,...,0,m), and, by Theorem 6.18, C(J,,) consists of
these vectors and Q,,,u{w}. For suitable k, the first 2m—1 components of the
u;’s have the following pattern mod2, taken cyclically: 1*0™~*1*™~ '~k Tt
follows that Z, =Q,,u{w}, so (7.17) is satisfied, and no two other elements of
C(Q,,,) are I-congruent, so (7.18) is satisfied and Q,,, is extremal. []

It can be shown that two conditions, satisfied above, are sufficient, but not
necessary, for U to be w-thin:

9:206) EQ)=QUu{w}) and COD=AUG{w}),
(9.2)(ii) EU)=U and CU)=AU)U{w}.
(9.3) Theorem. For n>4, S, is primitive but not extremal.

Proof. The primitivity of S, follows from Theorems 6.12 and 7.3. We shall show
that («, 8,7, 6,2, ...,2)e C(S,) for each permutation («, 8, y,d) of (1, 1, 3, 3). These six
linearly dependent points are congruent mod 2, so they belong to the same Z,, S,
is not w-thin and S, is not extremal.

Suppose v=(vy,...,v,)eC(&,) with 1,20 and Y v;=2n. By the proof of
Theorem 6.12, the barycentric coordinates of v satisfy the equations v;=24;_,
+(2n—2)A; for 1 £j<n, with the indices viewed cyclically. It is easy to invert this
system. Let = —(n—1)"!; then

(9.9 Vit o0+ 0%+ .+ Q" o =2{(n—1)+0" " '}4;.

Let tj=v;+¢v;_,. If n is even, (9.4) implies that 4; is a non-negative linear
combination of t;, t;_,, ..., t;.,. If nis odd, there is the “leftover” term ¢"~ 1y j+1-In
any event, if t;>0 for all j (and v;20 if n is odd), then 4;20 and ve C(S,). Since
(n—1)tj=(n—1)v;—v;_,, any v with Y v;=2n and v;e{1,2,3} belongs to C(S,)
when n=24. [

(9.5) Example. We decompose S, into psd forms by carrying out in detail the proof
of Theorem 8.2. The lattice points (3,1,3,1), (3,1,1,3),(1,3,3,1), and (1, 3,1, 3) are
linearly dependent members of the same Z, for C(S,), and h(x,y,z,w)
=xyzw(x? — y?)(z2 —w?) is second-order at G,. Let
9.6) fulx, vz, W)= x6p2 + y52% + z6w? + wx? —dx?y?z?w?
+axyzw(x? —y?) (22 —w?).
Since f(x, y,z, —w)=f_x, y,2,w), f,is psd if and only if f_ is psd. We show that
1> is psd. The next two identities may be routinely verified:
9.7) 06,9, 2, W)= (x3y + 23w)? + (52 + w3x)? — 2xyzw(yz + xw)?,
9.8) 10£,(x, y, 2, w) = (7x%y? + y°22 + 3262 + IwOx2 — 20x3yzw?)
+(3x%y%2 4+ 9y%22 + 7z5w? + wéx2 — 20xy3z>w)
+20xyzw(xz— yw)*.
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If xyzw <0, then (9.7) shows that f,(x, y,z,w)=0. If xyzw =0, then (9.8) gives 10f,
as a sum of two simplicial agiforms and a non-negative term, so f,(x, y,z, w)=0.
Thus f, is psd and S, =4(f, + f-,) is not extremal. We have been unable to prove
that f, is extremal, and suspect that it is not.

(9.9) Example. A version of this example was announced in [17, p.373]. Let
(9.10) D(x, y,z, w)=2x*y? + 2x%y* + z*w? + 22w* — 6x2y%zw,
D=6f(D,w), where w=(2,2,1,1) and

D={4,2,0,0), (2,4,0,0), (0,0,4,2), (0,0,2,4)} .

It is easy to check that C(D)= A(D)u{w, w'}, where w' =(1, 1, 2,2), so the I-classes
of C(D) with respect to w are:

0-11) Z,={(4,2,0,0), (2,4,0,0), (0,0,4,2), (0,0,2,4), (0,0,3,3), (2,2,1,1)},
Z,={(1,1,2,2),(3,3,0,0)}, Z,={(1,2,1,2),(1,2,2,1)},
Z4={(2; 1’ 1’ 2)’ (25 1’2a 1)} .

We see that Z, is independent for k=2, but D is not w-thin, because Z, contains
0,0,3,3). Let

(9.12)  E(x,y,z,w)=4x*y? +4x2y* + z*w? + 223w3 + 22w* — 12x%y%zw;

2D(x) = E(x) +(z?>w—2zw?)?; E is not an agiform because (0,0, 3, 3) is not even. We
shall show that E is psd; since D = 1E, this verifies that D is not extremal. Observe
that (9.12) arises from the substitution t; =x*y?, t,=x2y* t;=z*w? t,=2°w3,
ts=z>w* and 1=(%,4,751,1%) into (1.1). If zw >0, then t;=>0, so E=0. If zw=<0,
then

E(x,y, z, w)=4x*y? + 4x?y* + (22w + zw?)? + (— 12zw)x?y?

shows that E>0. Thus E is psd, as asserted.

Finally, we show that E is extremal. Note that N(E)= C(D) and 3(E) contains
G,({3,4}) and (0,0,1, —1). If E=2q=0, then g is second-order at 3(E) and
N(q)E C(D). Write g(x)=Y c(v;)x" and apply Theorem 7.8 to G,({3,4}). Since Z,,
Z,, and Z, are linearly independent, c(v)=0 unless v;€ Z,. After relabeling, we
have

q(x, y, 2, w)=c,x*y* + c,x2y* + c3z2*w? + ¢, 23w3 4 ¢ 22w + e x?y 2w,

(9.13) 4C1 +2C2 +2C6=2C1 +4Cz +2C6=4C3+ 3C4+2C5 +C6
=2c3+3c,+4cs+c6=0.

One parametric solution of the system in (9.13) is: ¢;=c, =40, c3=cs=a+f,

cy=20—2f, ce= —12a. Hence,

(©.14) q(x, y, 2, w)=0aE(x, y, 7, W) + p(z>w—zw?)>.

Taking o =f=1%in(9.14) returns D; this is not surprising, as we have only used 3(D)
so far. Finally, ¢(0,0, 1, —1)=0 implies =0, so g=aE, and we conclude that E is
extremal.
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This example suggests that some classification may be possible for “almost
agiforms” such as E.

10. Further Questions

We conclude with some open questions about agiforms. Of course, these are
dwarfed in importance by the questions which motivated this paper. Given a psd
form p, how can one tell whether it is sos? Given a psd form p, how can one tell
whether it is extremal?

We begin with mediated sets. Given a framework 1, is there an algorithm for
computing U* which is more efficient than Theorem 2.2? Does the set of
U-mediated sets for fixed U have interesting properties? Given w e U*, is there an
easy way to compute a “small” U-mediated set containing w? [ One algorithm is to
list all averages of distinct points in E(U), then build a U-mediated set containing w
by starting with the average w=1(s+1), then finding averages for s and t (unless
they are in U) etc.; the branching looks horrendous.] What is the worst-case bound
on size? If L CIR" lies in the hyperplane 1- =2d and we U*, then by Theorem 2.8, w

—1
d+2 >+1 ele-

ments. One expects to do better. Handelman’s publications contain many results
and open questions related to the material in Proposition 2.7, as will [20].

After the generality of Theorem 3.3, it is painful that Theorem 4.4 is limited to
simplicial agiforms; but the examples in Sect. 5 cast doubt on a general “yes-or-no”
lattice point criterion for deciding whether f(, 4, w) is sos in the non-simplicial
case. For fixed w, can anything be said about {Ae A(w): fL, 4, w) is sos}? What is
the “probability” that a simplicial agiform is sos? (Is this question meaningful?) It
is proved in [20] that every trellis for m=3 is either an H-trellis, or the image of
some U, with p=3, so “almost every” ternary simplicial agiform is sos.

Let R be a commutative ring, and suppose x is a sum of squares in R; x has
length k if there exist y;e R so that x=y%+...+y?, but x is not a sum of k—1
squares in R. As noted after Corollary 4.11, the Hurwitz agiform G(¢) has length
<3n—4, when R=R[x,,...,x,], see also [19]. The achievement of these small
numbers relies on the fact that a psd binary form is a sum of two squares, which
need not be binomials. By Theorem 4.4, the estimate on the size of a A-mediated set
containing w gives an upper bound on the length. How good is this estimate in
general? That is, how many fewer squares arise when we allow more terms? Can
these “bigger” squares be incorporated into our algorithmic structure?

If pis a psd form, let Y(p)={keZ: p(x%, ..., x¥) is sos}.In[20] we study Y(f) for
simplicial agiforms; Y(M,)= {k:k=n/2}. If wis even and f = f(2, w) is simplicial,
then Y(f)={k:k=k,} for some k,; for any agiform, k € Y(f) implies k+2€ Y(f).
What can be said about L(f, k), the length of f(x%, ..., x¥), beyond the obvious fact
that L(f, rk) < L(f, k)? The “Horn form” (see also [3, p. 396]) is an even quartic form
H(x,, ..., xs); we prove that Y(H)=¢. Is Y(p)= ¢ possible for a psd form p in three
or four variables?

In Sect. 6, circulant matrices make it easy to compute C(Ul) and E(U). Can we
find other interesting trellises (and simplicial agiforms) using circulant matrices?

is contained a U-mediated set with at most E(9, ,,)+1= (
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The condition of w-thinness seems rather mysterious; does it have a more natural
reformulation? Theorem 8.12 suggests the question of presenting the psd forms in
k effective variables with k+2 terms and the determination of the resulting
extremal forms. The form E, from Example 9.9, with k =4, might play the role of M
for the “almost-agiforms”.

There are several open algebraic questions about agiforms of a different nature.
A celebrated theorem of Cassels, Ellison, and Pfister [1] states that
h(x,y)=M(x,y,1) has length four when R=R(x,y). (By Artin’s solution to
Hilbert’s Seventeenth Problem, every psd form is a sum of squares of rational
functions.) What can be said about the length of the dehomogenizations of other
simplicial agiforms in three variables? What about the extremal ones? These
questions are probably very hard; [1] uses elliptic curves. It is known that the
maximal length of an element in R(x,,...,x,) is at most 2". Can this bound be
achieved by the dehomogenization of another agiform?

Another question involves irreducibility. Binomial squares are reducible. It
follows from the identity

a*+b3+c*—3abc=(a+b+c)(a*+b>+c*—ab—ac—bc)

[cf. (1.11)], that f(2, w) is reducible when 2 = {3u,, 3u,, 3u;} and w=u, +u, +u,.
Are these the only reducible simplicial agiforms?

What can be said about monomial substitutions into agiforms? The identities
22M(x, y,2)=Q(xy, xz, yz, z*) and x*z2S(x, y, z) = M(x?, yz, xz), and others, are used
in [4] to simplify the proofs of extremality. Is there an efficient way to find formulas
such as these?
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