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On Murasugi’s and Traczyk’s Criteria
for Periodic Links

Jozef H. Przytycki

Department of Mathematics, Warsaw University, PL-00901 Warszawa, Poland and
Department of Mathematics, University of Toronto, Toronto, M5S 1A1, Canada

1. Introduction

Alink Lin $? is called n-periodic if there is a Z, action on S> with a circle as a fixed
point set, which maps L onto itself, and such that L is disjoint from the fixed point
set. Furthermore if L is an oriented link, we assume that each generator of Z,
preserves the orientation of L or changes it to the opposite one.

The skein polynomial (also called FLYPMOTH, generalized Jones,
HOMFLY, Jones-Conway, twisted Alexander and two-variable Jones) of oriented
links in S* can be defined uniquely by the conditions Py (a,z)=1 and aP, (g,2)
+a~'P,_(a,z)=zP(a,z) where T, is the trivial knot and L,,L_, and L, are
diagrams of oriented links which are identical except near one crossing where they
look like in Fig. 1.1.

XX =

Fig. 1.1 L4 L_ Lo

-1
Lemma 1.1. Let # be the subring of thering Z[a*',z¥'] generated by a™?, ata _

and z, then for any oriented link L, Pi(a,z)€ &.
Observe that z is not invertible in Z.
Proof. 1t is true for the trivial link of n components, T,. Namely P; (a,z)

—1\n—-1
= (a +a ) € #. Furthermore if P, _(a, z) [respectively P, (a,z)] and P, (a,z)

z
are elements of # then P, (a,z) [respectively P, (a,z)] is an element of £.
Therefore Lemma 1.1 holds by the standard induction.

Now we can formulate our criterion for n-periodic links. It has especially
simple form for a prime period (see Sect. 2 for the general statement).
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Theorem 1.2. Let L be an r-periodic oriented link and r a prime number, then the
skein polynomial P(a,z) satisfies:

PL(as Z) = PL(a— 1’ Z) mOd(r’ Zr) s
where (r,z") is the ideal in & generated by r and z".
The Jones polynomial of oriented links, V;(¢) can be obtained from the skein

polynomial P;(a,z) by substituting a=it !, z=i (]/t-— %) Therefore

t
Corollary 1.3 [Tr1]. Let L be an r-periodic oriented link and r a prime number.
Then the Jones polynomial V,(t) satisfies:

V)=V (t” Ymod(r,t’—1),
where (r,t"—1) is the ideal in Z[t/*] generated by r and t"—1.

The Kauffman polynomial of regular isotopy of non-oriented diagrams of

links, 4p(a, z), can be uniquely defined by the following properties:
(i) Agla,2)=1

(ii) 4..(a,2)=aA\a,z), A.(a,z2)=a""A|a,z),

(iii) Ay (a,z)+ Ay (a,z)=z(A<(a, z)+ 4)(a, z))
where the symbols X, >{, =, and ) ( stand for diagrams which look like that in a
neighborhood of the crossing and are identical elsewhere.

The Kauffman polynomial of (ambient) isotopy of oriented links, F;(a,z) is

defined b
ey Fia,2)=a""" Ay(a,2),

where D is any diagram of L and w(D) is the planar writhe (or twist) of D defined by
taking the algebraic sum of the crossings, counting > and > as +1 and —1
respectively.

For each L, F;(a,z)e %, as in the case of the skein polynomial.

Theorem 1.4. Let L be an r-periodic, oriented link and r a prime number. Then
Fi(a,z)=F,(a" !, z)mod(r,2"),
where (r, z") is the ideal in & generated by r and z'.

To use practically Theorems 1.2 and 1.4 we need the following fact.
Lemma 1.5. Let w(a,z)e# and w(a,z)=Y v/(a@)z' where v{a)eZ[a*']. Then

wla, z)e(r, 2"} if and only if v{(a)is an elementlof the ideal (r,(a+a" Y "% in Z[a™ ']
for each i<r.

Example 1.6. Consider the knot 11,44 (in the Perko [Pe] notation); Fig. 1.2. The
skein polynomial of this knot, P,y (a,2)=03+5a*+4a*+a%)+(—4
—10a%?—5a*)z% +(1+ 6a%+a*)z* —a*z% (see [LM] or [P1]). Consider the dif-
ference w(a,z)="P,,,,,(a,2)—P;,,,(a”",2). ve(a) for w(a,z) (in the notation of
Lemma 1.5) is equal to 5(a®>—a~%)+4(a* —a~*)+a® —a~ . Therefore for a prime
number r=7, vo(a)é¢(r,(a+a"'))=(r,a*"+1). Therefore by Theorem 1.2 and
Lemma 1.5 the knot 11544 is not r-periodic for r=7.
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Fig. 1.2

Notice that the knot 11,55 has the symmetric Jones polynomial V., .(t)
=V, )=t"?—t"'+1—t+t> and therefore the Traczyk criterion
(Corollary 1.3) cannot be applied.

Example 1.7. Consider the knot 10,4 (in the Rolfsen notation [Ro]); Fig. 1.3. The
skein polynomial of 10,4 is symmetric (P,o,,(a,2)=P¢,(a™",2); [Th, P1]) so
Theorem 1.2 cannot be used to analyse periods of 10,5. We can use however the
Kauffman polynomial to show that 10,4 is not r-periodic for r=7. One can
compute (see [Th] or [P1]) that w(a,z)=Fq,(a,z)—F,,(a” ', 2)=2(a’ + 3a>
+2a—2a"'—-3a"3—a"%)+z%...). v,(a) for w(a, z) (in the notation of Lemma 1.5)
is equal to a®+3a*+2a—2a"'—3a"3—a"3 so for r=7, vy(a)¢(r,(a+a 1y 1)
Therefore by Theorem 1.4 and Lemma 1.5 the knot 10,4 is not r-periodic for r > 7.

=
:

10,8

Fig. 1.3

2. Criterion for n-Periodic Links Using the Skein Polynomial

Theorem 2.1. Let L be an n-periodic oriented link, then the skein polynomial P(a, z)
satisfies:

P,(a,z)=P,(a"!,z)modJ,,

nfk

where J, is the ideal in & generated by elements of type kz"* where k is any divisor of

n (e.g. nz and z" are in J,).
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Corollary 2.2. Let L be an n-periodic oriented link, then
(1) (Theorem 1.2) If n is a prime number then

PL(a9 Z) = PL(a h 19 Z) mOd(na Zn)

if n=r?is a power of a prime number, then
(i) Pya,z2)=P(a”*,z)mod(r,z")
(iii) P,(a,z)=P,(a" !, z)mod(r,2").

Proof of Corollary 2.2. 1t follows from Theorem 2.1 because the ideals (n,z"),
(r%,2"), and (r,z"") are bigger then the ideal J,.

Proof of Theorem 2.1. By the positive solution of the Smith conjecture [Sm,
Thur], the fixed point set of our Z,-action on S is an unknotted circle and the
action is conjugated to an orthogonal one. Therefore if we write S as R*U oo we
can assume that a fixed point set is a vertical axis with co and our Z,-action is
generated by rotation ¢ given by the formula: ¢(z, f)=(e*™/"z, 1) where R3={z,t:z
complex and ¢t real numbers}. Each n-periodic link can be represented by
¢-invariant diagram (also denoted by L); that is ¢(L)=L or — L where — L denote
the link (diagram) obtained from L by reversing its orientation; compare Fig. 2.1.

Fix ¢

X

X
Fig. 2.1

Let Loy Loymesc) and Ly ) denote three ¢-invariant diagrams which are
identical except near the Z, orbit of a single crossing where all n crossings of the
orbit are positive in Ly x) negative in Ly, ;) and smoothed in Ly, ). We have
the following fact.

Lemma 2.3,
a'P (@) +(=1)"ta™"Py  (a,2)=2"Pr,_  (a2) modJ,,

where J, is the ideal in & generated by elements of type kz"* where k is any divisor of
n but 1.



On Murasugi’s and Traczyk’s Criteria for Periodic Links 469

Proof (based on the idea of Murasugi [Mu2]). Let p be a crossing of Ly, s such
that L, x, and Ly, -, differ only in crossings p, ¢(p), $*(p), ..., #"~'(p). Let us
build the (part of) binary resolving tree for L), which uses crossings
p, (), ..., ¢" 1(p); compare Fig. 2.2. Now we analyse what value is introduced to
Pr .oo(@2) by leaves of our binary tree. The leafl Ly, gives
(=1)y"a=2"P Leymo) @ 2) 10 Pr . (a,z) and theleaf Ly, ., givesa™"z"P,__ _ (a,z).
Observe that Z, acts on leaves of the binary tree and the only fixed points of the
action are L, 5, and Ly, .,. Let ' be a leaf of the binary tree which is not a fixed
point set and let k be the order of its orbit. Of course k divides n and k> 1. Our leaf

has been obtained from Ly, by applying smoothing at least % times so it

introduced to P;__ . (a,2) the value z"/*P,(a, z) (- ). Furthermore each element of
the orbit of L is isotopic to L' so the orbit of L' introduced to P, __ .. (a, z) the value
kz"*P, (a,z)(-) which is an element of the ideal J,. Therefore

Ppoo@2)=(—1)a” 2"PLsym(x)(a, Z)+a” Py . (a,2) modJ,.

This completes the proof of Lemma 2.3. ]

P(p) ©(p)

*"(p) o *"(p)
Fig' 2.2 I-sym (X) Lsym (::)

Now we can complete the proof of Theorem 2.1. From Lemma 2.3 it follows

immediately that _
y Py, oola2)=(=a®)""P, . (a,z)modJ,

(because z" € J,). On the other hand one can go from L to its mirror image L using
changes Ly, <> Loym(s) therefore Py(a,z)=(—a*)~" Pi(a,z)modJ, where nj is
equal to the writhe number of the diagram L. Now, from the well known equality
Pi(a,z)=P.(a",z), it follows that P,(a,z)=(—a?) "™ P,(a”*,z)modJ,. To com-
plete the proof of Theorem 2.1 we need the following fact.

Lemma 24. a®"+(—1)"*! is in the ideal J,.

z
=k(a+a~")"* are also in J, so k(a*+ 1)"*e J,. To prove Lemma 2.4 it is sufficient
toshow that a®"+(—1)"* ! is in the ideal generated by elements k(a®>+ 1)"*in Z[a].
This reduces, after substituting y=a?+1, to showing that (y—1)"+(—1)"*! is in
the ideal generated by the elements ky™* in Z[ y] but it follows from the well known

—1\n/k
. : ata
Proof. J, is generated by elements kz"* so the elements kz"* ata
n y

fact that for any natural number i, (’:) is a multiplicity of P f’zn, ) $O <r:) yisa
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multiplicity of . y#/™ ) which is in the ideal. It completes our proof of

"
cf(n,i)
Lemma 2.4 and Theorem 2.1. []
We can generalize Theorem 2.1 (or rather show its limits) by considering the
following operations on link diagrams:

Definition 2.5 [P2]. (a) A, moveisan elementary operation on an oriented link
diagram Lresulting in the diagram ¢,(L) as shown on Fig. 2.3. Two oriented links L
and L are said to be 1, equivalent if one can go from L to L using ¢, ' moves (and

isotopy).
t, move ./ S
Fig. 23 k positive half twists t (L)

(b) A t, move is an elementary operation on an oriented link diagram L
resulting in the diagram f,(L), which is naturally oriented for k even, as shown on
Fig. 2.4. Two oriented links L and L are said to be t, equivalent (k even) if one can
go from L to L using f; ! moves (and isotopy).

— e OOC - 2C

Fig. 2.4 L k half twists e (L)

(c) Two unoriented links Land L are called k-equivalent (or t,, f, equivalent) if
one can go from L to L using t; ! or tf! moves and ignoring orientation. For k
even k-equivalence is also well defined for oriented links.

Theorem 2.6. For every oriented link L
(@) P, wa,z)=P(a,z)modJ,
(b) P;, qy(a,z)=P(a,z)modJ,.

Proof. 1t follows essentially from Theorems 1.1 and 1.7 of [P2] but we can give a
short proof independent from [P2]. We need, first, the lemma corresponding to
Lemma 2.3.

Lemma 2.7. (a) a"P, ,\a,2)+(—1)""'a""P,.(a,2)= z"PL(a, zymodJ,
1\n—2
() a"P;, (@) +(— 1y aPya, D=2 2T ) P, (a,2)mod],

where t,,(L), L, and L, are shown on Fig. 2.5.

O X DO00-2C :)LC

Fig. 2.5 n half twists L n half twists toa(L)

Proof. (a) Consider n crossings, say py, ..., p,, of the diagram ¢,(L) in which ¢,(L)
differ from ¢, *(L) (see Fig. 2.6). Let us build the (part of) binary resolving tree for
t,(L) using the crossings p,, p,, ---, P, (compare there proof of Lemma 2.3). L is the
leaf of the tree obtained from t,(L) by performing n smoothings, so it introduces to
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P, P, P, P, P, Py
OG- X = 20X

Fig. 2.6 t (L) L L)

P, u(a,z) the value a™"z"P(a,z). t, '(L) is the leaf obtained from t,(L) by
performing n F changes, so it introduces to P, (a,z) the value
(—1)"a™2"P,-1(a,z). Now consider leaves obtained from t,(L) by k smoothings
and (n—k) F changes. The crucial observation is that these leaves are all isotopic

(say to I!®) so there is ™) such leaves and they introduce (together) to P, (4, z)

the value <Z> *a Y —a?" ¥ PLwla, z). For 0<k<n, (Z) z*is in the ideal J, (com-

pare Lemma 24) so P, ;ya,z)=a""z"Pi(a,z)+(—1)"a” 2"Py-11)(@, 2) modJ,
and Lemma 2.7 (a) follows. A proof of Lemma 2.7 (b) is similar to that of (a) and we
omit it. [J

Theorem 2.6 follows now from Lemmas 2.7 and 2.4. [J

Corollary 2.8. Let L be an oriented link which is t,,, t,, equivalent to an n-periodic
link, then
P,(a,z)=P,(a"',z)modJ,. [
Now we can prove the practical criterion for w(a, z) € £ to be in the ideal J,; it
generalize Lemma 1.5.

Lemma 2.9. Let w(a,z)eZ and w(a,z)= 3 v{a)z' where v{a)eZ[a*']. Then

w(a, z)e J, if an only if for any i, v(a) is an element of the ideal Ji(a) in Z[a™ ] where
Ji(a) is generated by elements k(a+a~})™**(©"* =D where k is any divisor of n.

Proof. Let #' denote the ring # treated as Z [a¥']-module and consider the ideal
J,in & generated by z'J;(a) [i.c. by elements z'k(a+a~')**©** =] This is chosen
so that v{a)eJ,(a) for any i iff w(a,z)eJ,. Now Lemma 2.9 says that J,=J,.

— 1\ max(0,n/k —i)
First of all J,CJ, because z'k(a+a~'ymex(©.nk=i— jn/k (ﬁ_ﬁ_)

z

x zmx(0:i="0e J. On the other hand J; is an ideal in £, not only in %', be-
cause Ji(a)CJi*'(a) for any i. Therefore J,D>J, because kz"*ez"*J" a)CJ,,
and therefore J,=J,. [

The following corollary is the slight generalization of the Traczyk result [Tr1].

Corollary 2.10. (a) Let L be an oriented link t,,, t,, equivalent to an n-periodic link.

Then the Jones polynomial Vi(t) satisfies:
F1

i) V)=Vt~ )YmodJ (t) where J,(t) is the ideal in Z [t_z—] generated by
elements of type k(t—1)"* where k is any divisor of n. In particular
(i) (see Corollary1.3) If n is a prime number then V(t)
=V, (t"Ymod(n,t"—1). If n=r? is a power of a prime number, then
(iii) V(&)= Vy(t~)mod(r,t™ —1) and
(iv) V)=Vt Hmod(r,(t—1))
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(b) consider the polynomial invariant of (global) isotopy of unoriented links

defined by P (O)=(t12) 3@ (1),

where L is an oriented link which reduces to L after ignoring its orientation, and k(L)
is the global linking number of L. Then for any nonoriented link L, t,,, t,, equiva-
lent to an n periodic link:

(i) If nis odd then V,(t)=t"*LV,(t~ ) mod J (t) where lk,(L)=0 or 1 is a global
linking number of Lmod?2. It does not depend on the orientation of L and for any
orientation L of L lk,(L)=1k(L)mod2.

In particular if n=r?is a power of odd prime then
(i) Pyo)= Pyt~ Ymod(r,t™ —1) and
(i) Pyt)=Vy(t™") mod(r?, (t—1)).

1
Proof. V,(t)=P(a,z)fora=it"',z=i <1/E - ——) therefore (a) is an easy corollary
t

of Theorem 2.1 and Corollaries 2.2 and 2.8. To prove (b) of Corollary 2.10 observe
that we can always orient L so that ¢ preserves the orientation (orient first L/Z,
and then lift the orientation to L). For such oriented L, denoted L, we have by part

(a):
V@)=Vt~ )mod J(t)

and therefore
(2P D)= (1) Pye ) mod J, 1)
and so
V)=t 3" Pt~ HY)ymod J (t).
Now if n is an odd number then kL is a multiplicity of n. Furthermore lk(L)
+ nlk,(L) is a multiplicity of 2n and therefore — 3ikL =nlk,(L)mod2n, and so the

part b(i) of Corollary 2.10 follows [t"—1 is in J (t); compare Lemma 2.4]. b (ii)
and (iii) follow similarly as in part (a) or in Corollary 2.2.

3. Criterion for n-Periodic Links Using the Kauffman Polynomial

Theorem 3.1. Let L be an oriented link which is t,,,t,, equivalent to an n-periodic
link, then the Kauffman polynomial of L satisfies:

F(a,z)=F (a”!,z)modJ,.

Our proof of Theorem 3.1 is very similar to that of Theorem 2.1 and
Corollary 2.8 so we will only sketch it here.

We start by considering nonoriented diagrams of »n periodic link and its
invariant of regular isotopy 4(a, z). We use the notation analogous to that of the
proof of Theorem 2.1. In particular we consider nonoriented n-periodic diagrams

Loymexp Loymxp Loyme=y a0 Lgymqy()-

Lemma3.2. (a) A, . +(—11"""4;, o =240+ Agmoo) mod T,
(b) Ay, o =(—1)"Ayyp modJ,.
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Proof. Let p be a crossing of Ly, such that Ly, ) and Ly, s, differ only in
crossings p, ¢(p), ..., "~ '(p). Let us consider the (part of) trinary resolving tree for
Liym(> Which uses crossings p, ¢(p), ..., "~ (p). Z, acts on leaves of the trinary tree
and the only fixed points of the action are L) Lsym(=)y 80d Lgym())- They
introduce to A, . the values (—=1y'A, . .z"A; __.and z"A; - respec-
tively. All other orbits of the Z, action on the leaves introduce to A Leyme) @ Value
which is in the ideal J, (see the proof of Lemma 2.3) so Lemma 3. 2 (a) follows.
Part (b) follows 1mmedlate1y from (a). O

Now we will show that the equality from Theorem 3.1 holds for any n-periodic
oriented link. It follows from Lemma 3.2(b) that for n-periodic oriented link

diagram @ ) © )
W(Lsym (X —( — 1\ W Lsym(X
aVtemOOF, o =(=1) a0 modJ,.

sym(X)
Because W(Lgym(5) — WLgym(x)) = F 2n therefore by Lemma 2.4
Fomoo =F Layme, m0d S,

We can go from L to _155 mirror image L using changes Lqyp x) <> Loym(x) and
because Fj(a,z)=F(a"',z) we have

Fi(a,z)=F,(a"!,z)modJ,.
To complete the proof of Theorem 3.1 we need the following Lemma.

Lemma 3.3. (a) Let L, and L_, be a nonoriented link diagrams which are the same
except the part shown on Fig. 3.1. Then

=(—1)y"4,_ modJ,.

(b) If Land L are oriented t,,, t,, equivalent links then F ;(a, z) = F (a, z) mod J,,.

p1 pZ pn
XX - X POED
J _/ - _/\-
Fig.3.1 L, n positive half twists n negative half twists L_g

Proof. (a) Consider the (part of) trinary resolving tree for L, using crossings
P1, D2, ---» P Let y(p;) be defined y(p,) =p,, v(p,) =p3, - -, Y(p,) = p;. Now consider
the Z, action on leaves of the tree with the generator g defined as follows: Let L be
any leaf of the tree, then g(L!)is the leaf related to I’ as follows. If an operation (X to
> or =< or)() was performed on p; in L, the same operation is performed on y(p;) in
g(L)). The elements in an orbit of the Z, action are all isotopic so we can complete
our proof of Lemma 3.3 (a) in the same manner as that of Lemma 3.2. To proof (b)
of Lemma 3.3, observe that w(L,)—w(L_,)= F 2n for any orientation of L, (and
corresponding orientation of L_,) so by Lemma 2.4, F; (a,z)=F,_ (a,z)modJ,.
Hence Lemma 3.3(b) and Theorem 3.1 follows. []

Corollary 3.4. Consider an invariant of (global) isotopy of nonoriented links,
F(a, 2), defined by the formula F\(a,z)=a***)F, (a,z) where L is any orientation
on nonoriented link L. Then for any nonoriented link Lwhichist,,, t,, equivalent to a

Z . d l k PN
n periodic lin Fya,2)=Fya!,z)modJ,.
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Proof. Let L denote L oriented in such a way that Z, preserves the orientation

[compare the proof of Corollary 2.10(b)]. Then by Theorem 3.1 Fila,z)

=F,(a"',z)modJ, Therefore a™2*EF (a,z)=a?*L)F (a~!,z)modJ,, so
F,(a,z)=a*™F (a"1 z)modJ,. Finally by Lemma 2.4 a*"=(—1)"modJ,
a*™ =1 modJ, and Corollary 3.4 follows. [J

We can consider the simplified version, S;(a), of the Kauffman polynomial by
substituting z=a+a~! in F,(a,z). S;(a) is interesting on its own and resemble
somehow the Alexander polynomial [if L is a split link then S;(a)=0;if Lis a knot
then S;(a)=1+(a+a"')(-)]. Our criterion for n periodic links also simplifies
when one applies S;(a). Namely, Theorem 3.1 reduces to

Corollary 3.5. Let L be an oriented link which is t,,, t,, equivalent to an n-periodic
fink ther S4@=S,a)modJ,(a),
where J (a) is the ideal in Z[a™ '] generated by elements of type k(a+a~')"* where k
is any divisor of n. In particular for n=r? (a power of a prime number)
S (@)=S;(a” Ymod(r,a®  +1)
and
S(@=S(a”Ymod(r% (a+a” V). O

4. Examples and Further Speculations

Example 4.1. Consider the right handed trefoil knot, 3, (Fig. 4.1). The skein
polynomial P; (a,z)=(—2a"?—a"*+a" ?z2. Then w(a,z) = P5 (a,z)— P5 (@™ ', 2)
=@a+a Y (a—a YH—z¥a+a YHY(a— a“l) Therefore, w(a, z)eJ, iff n=2,3,4,6
or 12. Hence by Theorem 2.1 the right handed trefoil knot is not n periodic for
n=%2,3,4,6 or 12. If one consider the Kauffman polynomial one cannot do any
better so our criteria cannot exclude periods 4, 6, and 12 (compare Lemma 4.5).

Example 4.2. Consider the knot 10,5, [Ro], Fig4.1. It is 10,,, in [Th]. The
Kauffman polynomial

Fio,,(a,2)=—a"?—1—-2a*-2a*—a®+z(—a" ' —3a' — 5a° —3a°)
+z%a"?+4+7a*+8a* + 4a")
+232a"'+9a+15a°+8a%)
+2*%); [Th].
Consider the difference w(a,z)=F,,,,,(a,z)—F1,,,,(a”",z). One can check that
w(a,z)e J,iffn=2,3,4,6 or 12s0 10,5, is not n-periodic for n+2,3,4,6,and 12. Let

us check it in more detail for n=5. Consider vy(a) for w(a, z) (in the notation of
Lemma 1.5). Modulo the ideal (5,a> +a~>) one gets:

—a"?2—1-2a*>-2a*—a®+a*+1+2a *+2a *+a"*
=a2-a’+2a"*-2a*+a *—a*=a"?—a’+3a"*-3a*
#0mod(5,a°+a”% so wla,z)¢Js.

vo(a)
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The case n=>5 is interesting because in [BZ] the knot 10,;, has, by mistake,
associated with it period 5. I would like to thank Murasugi for pointing out the
possibility of mistakes in [BZ].
Example 4.3. Consider the right handed Hopf link H, (Fig. 4.1). The Kauffman
polynomial

Fyla,z)=(—a"*—a™ )z '+a ?+@ *+a !)z.
Then w(a,z)=Fp (a,z)— Fg,(a™ ', z) is in J, iff n=2. Therefore the only period of
H, is equal to 2.

Example 4.4. Consider the oriented link 63 as on Fig. 4.1. The skein polyno-
mial Pgia,z)=(—a " *—2a"2—1)z 2+ (@ *+3a"*+2)+(—a *—-3a"2—1)z?
—-1\2
+a~?z* Then w(a,z)=Pga,z)—Peya™',z)=(a+a"") (a—a™") (a +za >
+ (a +a~YH?(-)+z%(-). Therefore w(a, z) € J,, iff n= 2. Hence 63 is not n periodic for

0 @0

Fig. 4.1 3, 1044,

Examples 1.6, 1.7,4.1, and 4.2 suggest that our criteria cannot exclude periods 2
and 3 for knots. For links of more than one components one can exclude period 3
as shown in Examples 4.3 and 4.4 (notice that the global linking number is equal to
F1 in these examples). In fact the following holds

Lemma 4.5. For any link L
(@) Pla,z)—P(a™',2)el,
(b) Fila,z2)—F(a ', 2)el,.
For any knot K
(C) PK(a,Z)_PK(a_l’Z)EJS;
(d) Fxla,z)—Fgla™',2)eJ,
(C) PK(aaz)_PK(a_ 1,2)6J4
(f) Fy(a,z)—Fila™,2)eld,.
Therefore our criteria do not work for period 2 and for knots and periods 3 and 4.

Proof. Let us write P;(a,z) or Fi(a,z) as

—1\i

) ui(a)("*“ ) +0,(@z+ 3 vfa)z

i<0 z i22
Then uya) is in Z[a¥?] so ufa)—uga™") is in the ideal (a+a ')(@—a™')) of
Z[a®']. v,(@)—v,(a™ ") is in the ideal (a—a~ ") of Z[a*'] and Z v{a)z' is in the

ideal (z?) of #. Combining this one gets that P;(a,z)— PL(a z) and F,(a,z)
—F,(a™%,2)eJ,=(22,2%.
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To prove (c) of Lemma 4.5 we use the folklore fact (compare [LM], [L] or
[P1]) that for any knot K, Px(a,z)—1 is a multiple of (a+a” 1)2—2 Because
Py(a,z)= Z v,{a)z?* where v,(a)e Z[a™?] so vy(a)—vy(a™?!) is a multiple of

20

(a+a” 1)3 and v,(a)—v,(a~ ') is a multiple of (a+a~*) so P(a,z)— Pxla™',2)eJ;4
=(3z, z%); compare Lemma 2.9. Now consider F(a, z) = Z wia)z'. wy(a) —wela™t)

is a multiple of (a+a~!)? (the first coefficients of Fi(a, z) and Py(a, z) are the same;

compare [L] or [P1]). wy(@)—w,(@™ ') is a multiple of (a+a~')* because
w,(a) € Z[a™?]. Finally w,(a) — w,(a~ *)is a multiple of (a+a~ ') To prove this it is
enough to show that w,(a) is a multiple of (a+a~!). By [LM2], Fg(a,z)—1is a
multiple of (a+a~'—z). Therefore Fy(a,z)—1/a+a"'—z= Y s{a)z'; further-

iz0
more the first coefficients of F(a, z)—1/a+a~'—z and Py(a,z)—1/a+a "' —z are
the same, so sq(a) is multiple of (@+a~') [we use the fact that Py(a,z)—1 is a
multiple of (a+a~')*—z?]. Finally because w,(a)=so(a)+(a+a')s,(a), hence
w,(a) is a multiple of (a+a~!'). By Lemma 2.9, Fi(a,z)—Fgla™',z)eJ; so
Lemma 4.5(d) is proven. 4.5(¢) and (f) can be proven similarly. One should only
additionally observe that if a polynomial w(a)e Z[a*?] then w(a)—w(a™!) is a
multiple of

-1

(@a+a YHa—a Y=(@+a YYa+a '-2a").

It completes our proof of Lemma 4.5.

Our examples show that even if our link is p periodic our criteria can detect the
lack of p? periodicity. On the other hand if our criteria do not exclude n and
m-periodicity (n and m co-prime numbers) then they cannot exclude nm-
periodicity. It is the case because if weJ, and weJ,, then weJ,,. (Lemma 2.9
allows us easily to prove that J,nJ,,=J,,.) We conclude, combining the above
with Lemma 4.5 that our criteria cannot exclude a periodicity of knots for n=2, 3,
4, 6, and 12 (compare Examples 4.1 and 4.2).

Ifa link L is n-periodic then L, =L/Z,,is a link in the 3-sphere S*/Z,. The idea
of Murasugi [Mu 2] is to compare polynomial invariant of L and L, and to show
that for some ideal I, a polynomial invariant W satisfies:

4.6 W,=W; modl,.

For the Jones polynomial V;(t), Murasugi has shown [Mu?2] that if L is an
r-periodic oriented link and r a prime number then V(t)= V[ (t)modI,(t) where

t+1\! ..
I(t)is the ideal in Z[t ¥ /2] generated by r and < - —i—> —1. The similar result
t

can be obtained for skein and Kaufmann polynomials. In the case of skein
polynomial one gets
Py(a,z)= P} (a,z)modI,,

—1\r—1
ata
+ —1 and

where I, is the ideal in Z[a¥!,z¥!] generated by r, (

polynomials Py, (a,z) where T; , is the torus link of type k,r. To make 4.6 useful
one should analyse how big is the ideal I,. The idea of a proof of 4.6 is based on the
observation that, to the binary resolving tree of L, corresponds r-periodic binary
resolving tree for L (one uses triplet Ly x) Lsymsz) Lsym(=))- The second tree
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suffices to compute P,(a,z)modr assuming the values at leaves are known
(compare the proof of Theorem 2.1). Finally notice that the above method can be
used to prove another Murasugi result [Mu 1] that for an r-periodic knot the
Alexander polynomial satisfies:

A=A, O +t+...+ 7Y " modr

for some integer A.

The method of our paper can be also applied for Z, invariant links when the
fixed point set of the action is a part of the link. Then we have to use Hoste-Kidwell
polynomial [HK] or its simplified version introduced in [HP]. We can also
analyse Z, invariants links when Z, acts freely on S3. We will describe it in the
sequel paper (compare [P 4]).

Finally we hope that the analysis of n-periodic (or symmetric) links in any
3-manifolds can lead to some unified theory of skein modules of coverings
(compare [P 3]).

References

[APR] Anstee, R.P., Przytycki, J.H., Rolfsen, D.: Knot Polynomials and generalized
mutation. Topology Appl. (to appear)

[BZ] Burde, G., Zieschang, H.: Knots. De Gruyter studies in Math. 5. Berlin New York:

De Gruyter 1985
[FYHLMOQO] Freyd, P., Yetter, D., Hoste, J., Lickorish, W.B.R., Millet, K., Ocneanu, A.: A new
polynomial invariant of knots and links. Bull. Am. Math. Soc. 12, 239-249 (1985)

[H] Hillman, J.A.: Symmetries of knots and links, and invariants of abelian coverings.
Parts I and II. Kobe J. Math. 3, 7-24 and 149-165 (1986)

[HK] Hoste, J., Kidwell, M.: Dichromatic link invariants. Trans. Am. Math. Soc. (to
appear)

[HP] Hoste, J., Przytycki, J.H.: An invariant of dichromatic links. Proc. Am. Math. Soc.
(to appear)

A Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials.
Ann. Math. 126 (2), 335-388 (1987)

[Ka] Kauffman, L.H.: An invariant of regular isotopy. Preprint 1985

[L] Lickorish, W.B.R.: The panorama of polynomials for knots, links, and skeins.
Proceedings of the Santa Cruz conference on Artin’s braid groups (1986) (to appear)

[LM] Lickorish, W.B.R., Millett, K.C.: A polynomial invariant of oriented links.
Topology 26, 107-141 (1987)

[LM 2] Lickorish, W.B.R., Millet, K.C.: An evaluation of the F-polynomial of a link.
Preprint 1987

[Mu1] Murasugi, K.: On periodic knots. Comment. Math. Helv. 46, 162174 (1971)

[Mu2] Murasugi, K.: Jones polynomials of periodic links. Pac. J. Math. 131, 319-329
(1988)

[Pe] Perko, K.A.: Invariants of 11-crossing knots. Publ. Math. Orsay (1980)

[P1] Przytycki, J.H.: Survey on recent invariants in classical knot theory. Warsaw
University preprint 1986

[P2] Przytycki, J.H.: t, Moves on links. Proceedings of the Santa Cruz conference on
Artin’s braid groups (1986), to appear

[P3] Przytycki, J.H.: Skein modules of 3-manifold. Preprint 1987

[P4] Przytycki, J.H.: On Murasugi’s and Traczyk’s criteria for periodic links. An

extended version of the short talk given at Honolulu (1987)



478 J. H. Przytycki

[PT] Przytycki, J.H., Traczyk, P.: Invariants of links of Conway type. Kobe J. Math. 4,
115-139 (1987)

[Ro] Rolfsen, D.: Knots and links. Math. Lect. Series 7. Berkeley: Publish or Perish 1976

[Sm] The Smith conjecture (J.W. Morgan, H. Bass). New York Academic Press 1984

[Th] Thistlethwaite, M.B.: Knots to 13-crossings. Math. Comp. (to appear)

[Thur] Thurston, W.: The geometry and topology of 3-manifolds. Mimeographed notes,
1977-1979

[Tr1] Traczyk, P.: 10, has no period 7: a criterion for periodic links. Proc. Am. Math.
Soc. (to appear)

[Tr2] Traczyk, P.: A criterion for knots of period 3. Preprint, 1988

Received May 31, 1988



