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The Quadratic Schur Subgroup Over Local
and Global Fields
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Ontario, Canada, L8S 4K1

Let K be a field of characteristic 0 and let 4 be a central simple K-algebra with an
involution I. The restriction w of I to K is an involution of K, and we call I an
w-involution. If w is the identity, I is said to be an involution of the first kind,
otherwise an involution of the second kind.

Suppose now that the dimension of 4 is n* If I is of the first kind, the dimension
of the subspace of elements fixed by I is one of $n(n + 1) —see [Sch, 7.5, Chap. 8].In
this case we define the type of I to be +1 if the +sign prevails, otherwise —1. An
involution of type 1 is sometimes called an orthogonal involution, and one of type
—1 a symplectic involution. The quadratic Brauer class [ A, I] is then defined to be
([A], type I) where [ A] € Br(K) is the Brauer class of 4. If (B, J) is another central
simple algebra B with involution J of the first kind, then I®J is an involution of
the first kind on the central simple algebra A® B, and it is easy to check that type
I®J=(type I) (type J). It follows that the set of quadratic Brauer classes is a
multiplicatively closed subset of B(K) x { 1}, and therefore also a subgroup since
B(K) is a torsion group; we call it the quadratic Brauer group B(K, id). It follows
from a theorem of A.A. Albert that

B(K, id)=,B(K) x { +1},

where ,B(K) denotes the subgroup of B(K) of exponent 2 — see Sect. 1.

Suppose now that w #1id. In this case one defines [ 4, I to be simply the Brauer
class [A4], and the quadratic Brauer group B(K, w) is the set of Brauer classes that
arise in this way — it is again a group. It is sometimes convenient in this case to say
that I is of type 0, and formally write [ 4, I]=([A4], 0) instead; one also sometimes
refers to such an I as a unitary involution. Let K, be the subfield of K fixed by w.
Another theorem of Albert says that

B(K, w)=ker corg, ,

where corg g : B(K)—B(K,) is the corestriction map (Theorem 8).
The quadratic Brauer group is defined more generally for a commutative ring
K in [HTW]. This definition is related to the one used here in Sect. 1.

* Support by N.S.E.R.C. grant # A8778 gratefully acknowledged



480 C. Riehm

Recall that the Schur subgroup S(K) of B(K) consists of the Brauer classes
which are represented by a central simple direct summand of the group algebra KG
for some finite group G. The quadratic Schur subgroup S(K, w) is defined in an
analogous manner: an element cin B(K, w)isin S(K, ) if and only if there is a finite
group G and a central simple direct summand A of KG with the following
property: A is stable under the canonical w-involution Q of KG (which inverts the
elements of G and is w-linear) and [ A, I]=c where I is the restriction of 2 to A.

Our principal goal is the determination of S(K, w) in the case of K a local or
global field.

Let K_ be the largest subcyclotomic extension of @ contained in K, and let K be
the subfield of K, fixed by the composition of w and complex conjugation (K is the
maximal real subfield of K, in the case w=id). If L/k is any extension of fields,
denote by L& S(k) the subgroup of B(L) of classes obtained from those in S(k) by
extension of scalars; it is easy to see that L®S(k)SS(L).

Lemma 1. If K is any field of characteristic 0, the image of the forgetful map
S(K, w)—>S(K) is K®S(K), and S(K, w)=K®S(K, w).

Theorem 2. Let K be an algebraic number field.
(i) If w=*id, S(K, w)=K®S(K).
(i) If w=id and K is totally imaginary, then

S(K,id)=(K®S(R) x { 1}

(iii) If w=id and K is not totally imaginary, then S(K,id) consists of the
quadratic Brauer classes

(B,e)e(K®S(K)) x { £1} (1)
with e=1 resp. —1 iff B is split resp. non-split at all real primes.

Remarks. 1. Obviously K®S(K) depends on a knowledge of S(K), and on the local
degrees in K/K. In Chap. 7 of Yamada’s book [Y], S(K) is determined in many
cases.

2. We note that (i) actually holds for K an arbitrary field of characteristic 0.

3. (iii) can be given more generally: if w=id and K is any formally real field,
then S(K,id) consists of the classes (1) with ¢ =1 iff § splits in all real closures of K
(see Theorem 9). This theorem also contains a simple variant of the Benard-
Schacher theorem on the “uniform distribution of invariants” [Y, Theorem 6.1]
for formally real fields.

Theorem 3. Let K be a local field, i.e. a finite extension of Q,.

) If o#*id, S(K,w)=1.

(i) S(K,id)=,S(K)x{x1} if K is an odd degree extension of an abelian
extension of Q,, otherwise S(K,id)={+1}.

The proofs are given in Sects. 2 and 3.

1. The Quadratic Brauer Group

We first recall the definition of B(K, ®) as formulated in [HTW] and, in the case of
a field K of characteristic 0, indicate its relationship to the definition given in the
introduction.
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An anti-structure over a commutative ring K is a triple A=(A4, I, 1) where A is
an algebra (associative with 1) over K, I is an antiautomorphism of 4, and Ais a
unit of 4 satisfying A4'=1 and

a?=Jal™! forall ae A.

A is called an w-antistructure if the restriction of I to K is w.

We recall that a Morita equivalence between two rings A and Bis a quadruple
consisting of two bimodules M = ;M , and N = ,N, and two bimodule isomorph-
isms M® 4,N—B and N®zM — A whose associated pairings M x N-B and N

x M — A (both denoted by {, »), satisfy

m,nym'=min,m’y and {n,myn’'=nim,n’)

for all m,m’ in M and n,n’ in N. A particular Morita equivalence, called a derived
Morita equivalence, is obtained as follows: let M be a progenerator for 4 (i.e. a
finitely generated projective module such that 4 is a direct summand of some
direct product M x M x ... x M), set N=Hom ,(M, A) and B=End ,M; then the
bimodule isomorphisms are given by the canonical maps

M® ,Hom (M, A)-»End,M, and Hom (M,A)@zyM—A4.

Suppose now that A=(4, I,4) and B=(B, J, u) are antistructures and that we
have a Morita equivalence between the rings A and B, effected by the modules M
and N. Make N into a B— A4 bimodule by twisting by I and J: bna:=a'nb’.
Suppose that h: M — N is a bimodule isomorphism satisfying

Ch(mA), m'y! = Ch(m'), pm) )]

for all m,m’ in M. Then we say that the two antistructures are quadratic Morita
equivalent (cf. [HTW, FM, H]). The quadratic Brauer group as defined in [HTW]
is the set of quadratic Morita classes of w-antistructures on Azumaya algebras, and
is a group under tensor product. We shall denote it by B(K,w) in order to
distinguish it from the group B(K, w) defined in the introduction. We note that
there is also a forgetful homomorphism of B(K,w) into B(K) given by
[A,1,2]—[A].

There is also a notion of derived quadratic Morita equivalence: Suppose that
we have a Morita equivalence between the rings A and B, effected by M and N, and
let A=(A4,1,7) be an antistructure. Make N into a right A-module via I, and
suppose that h: M— N is an isomorphism of A-modules. Then

(i) thereis a unique antiautomorphism J on B such that h is also a B-isomorphism
when N is made into a left B-module via J,
and

(i) thereis aunique unit pin B suchthat (B, J, p) is an antistructure and such that
h effects a quadratic Morita equivalence between it and A.

The scaling A of an antistructure A by a unit u of 4 is the antistructure (4,1', 1')
where

a"=u"'a'u and X=u"YA.
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Lemma 4. Let A be an antistructure, let M = A as right A-module, and identify both
B=End M and N =Hom M, A) with A via left multiplication. Let h: M— N be any
isomorphism where N is a right A-module via 1. Then h is of the form h(m)=um for
some unit u in A, and the derived antistructure is “A.

This is an easy calculation. We note that it follows from this that scaling an
antistructure does not change the quadratic Morita equivalence class — one need
only define the map h as above using the scaling unit u.

We assume from now on that K is a field of characteristic 0.

Theorem 5. Two antistructures on the same simple algebra are quadratic Morita
equivalent if and only if they are mutual scalings.

Proof. Let A and B be the antistructures. As mentioned above, the sufficiency
follows from the lemma. So assume that they are quadratic Morita equivalent,
say via the bimodules M and N and the isomorphism h: M —N. Since A and B
have the same underlying ring A, A~End,M and so M = 4; we shall therefore
identify M with A. Thus we can also identify N with A, acting via left
multiplication. Then

h(@)=h(1)a’ = a'h(1)

and so @’ =u"'a'u with u=h(1) (which is a unit since h is an isomorphism).
Similarly (2) with m=m'=1 is h(A)' =h(1)u, which implies that p=u""4'A. O

Theorem 6. There is an isomorphism =:B(K,w)—>B(K,w) which takes
[A,11—[A,L1].

Proof. Let [ A, I]e B(K, w). If k is a positive integer, there is a canonical “extension”
T of I to the kxk matrices A=A(kx k), given by “conjugate transpose”,
(a;)" =*(a}). It is easy to check that T has the same type as I, so [4, I1=[4, I]. Now
suppose that [B,J]=[4,]. Since [A]=[B], we can choose k and another integer
¢ so that A~ B=B(¢ x £); we shall assume that 4 and B are equal. By the Skolem-
Noether theorem, there is a unit u of 4 such that J=(innu)o I where innu is the
inner automorphism a+>u~*au. Then (see [Sch, Sect. 7, Chap. 8]) u' =u if Tis of
the first kind (since then J is also of the first kind and has the same type as 1), and
this can also be assumed if T is of the second kind. Thus (B,J,1) is the scaling
“A,T,1)and so [B, J,1]=[4,T,1] by Lemma 4. The fact that = is well-defined now
follows from:

Lemma 7. [4,1,7]1=[A4,1,1] for any antiautomorphism I, where X=AE, (E, the
identity matrix of degree k).

Proof. Take M = A(k x 1). In the corresponding derived Morita equivalence, we
may take B = A4 operating by left multiplication on M, and N = A(1 x k) operating
on M by both left and right multiplication. We let h: M ,—»N , be the map h(m,)
=(m}).1tis straightforward to check that the resulting derived Morita equivalence
yields the desired result. [

We now return to the proof of Theorem 6. It is clear that « is a homomorphism.
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If o #1d, it is injective since

B(K, w)—s B(K, »)
N/
B(K)

is commutative and the forgetful map on B(K,w) is simply the identity map. If
o =1d, the kernel of = is certainly contained in the subgroup ([K], +1) of order 2.
Suppose [M(m,K),I,1]=[M(n,K), J,1]; By Lemma 7 we can assume that m=n,
and so (M(n,K),J,1)="(M(n, K),I,1) for some unit ue M(n, K) by Theorem 5.
Then u~'u’1=1 so u’ =u. It is easy to see that a is fixed by I iff u™!a is fixed by
J=(innu)o- I. Thus type I =type J, which implies that = is injective.

To show that = is surjective, suppose that [4,1,A] € B(K, w). Since AA'=1, A
supports an w-involution J by [Sch, 8.2, Chap. 8], and so by Theorem 5 and the
Skolem-Noether theorem, we may assume that I itself is an involution. Then
Ae K*. If w=id, another scaling (using Hilbert’s Theorem 90) shows that we can
take A=1,s0 [4,1,A]=n[A,I]. Suppose w=id. Then 1= +1; we are finished if
A =1so suppose 1= — 1. By Wedderburn’s theorem we can assume A = M(n, D) for
some division algebra D. One can show, using the results in ibid, that there is an
w-involution J on D and that I differs by an inner automorphism from (d;;) —(d)).
Thus there is a unit u in 4 such that ' = —u, and scaling by it yields [4,1, —1]
=[A,(innu)- I, 1] which is obviously in the image of =. []

Theorem 8.

BEK)®{+1} if w=id,
ker corg g, if w=*id.

B(K,w)= {

Proof. By a theorem of Albert, [Sch, 8.4, Chap. 8], a central simple algebra has a
K-involution iff its Brauer class has order 1 or 2. The expression for B(K,id)
follows from this and the fact that M(2, K), for example, has involutions of both
types, namely transpose, and transpose followed by the inner automorphism with

1 . o
respect to [ (1) O:I' Similarly the expression when w =id is another theorem of

Albert - see 9.5, ibid.

2. The Schur Subgroup Over a Number Field

We begin by proving Lemma 1.

Suppose that [4, I1e S(K, w), say that A is the direct summand of the group
algebra KG with I induced on A by the canonical w-involution Q of KG. Thereis a
unique absolutely irreducible character y of G which corresponds to A. The center
of 4 is K= K(y), so the values of y lie in K. Since Q)(x) is a cyclotomic extension of
@, this means that the values of y lie in K,. Now consider the formula for the
idempotent

n -1
e, =— s~ Ys,
x gs;GX( )
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where n=y(1) and g is the order of G. Now Q permutes the primitive central
idempotents of KG, and since A4 is stable under it, it fixes e,. Therefore

n “fo-1_" - 1yk0
e, = — S N = - S S,
o gsezGX( ) gsezGX( )

where * is complex conjugation. On comparing the expressions for e,, we see that
the values of y are fixed by *w, and so K(y)=K. This means that the direct
summand A of KG which belongs to y has center K, and so since KQ KG =KG, it
follows at once that K® A=A since K®A is simple. Therefore im S(K, w)
CK®S(K).

We now show the reverse inclusion. Let @ be the canonical w-involution of the
group algebra KG. Because *w=id on K, w acts on K via complex conjugation.
This implies that Q leaves invariant all simple factors of KG. (Indeed the proof is
almost identical to Theorem 13.3, Chap. 8, [Sch]: If T is the algebra trace of KG,
then it is easy to see that T'(xy?) is a positive definite hermitian form on KG (with G
as an orthogonal basis). Thus T (xx*?) >0, which implies that every simple factor is
Q-invariant.) Thus if 4 is a central simple factor of KG, it is clear that K® 4 is a
central simple factor of KG and is invariant under the canonical w-involution of
KG, and so Lemma 1 is proved. [J

Theorem 9. Let K be a formally real field. If feS(K) is split in at least one real
closure of K, then it is split in all real closures of K. S(K,id) consists of all

(B,e)eS(K) x {+1}

with e=1 iff B is split at all real closures.

Proof. As in the previous proof, any simple component of a group algebra KG is
stable under the canonical K-involution (of KG). Suppose for the moment that K is
real closed. It is easy to check that Frobenius’ theorem on simple algebras over R
[Sch, Theorem 6.4, Chap. 8] and the Frobenius-Schur theory of representations
over R [S,13.2] hold more generally for real closed fields. Therefore if
(B, &) € S(K, id), e must be 1 if f is split and must be — 1 if §is non-split (in which case
B is the class of the unique non-commutative central division algebra over K, the
quaternion algebra (—1, —1)). Now suppose again that K is merely formally
real, and that (B, ¢)e S(K, id). If K is a real closure of K, then (K®p,¢)e S(K, id)
and so ¢ is 1 if B splits in K and is —1 otherwise. Since this holds for any real
closure, the first statement of the theorem follows, and the second is a
consequence of this and Lemma 1 and the fact that K@S(K)=S(K). [J

Lemma 10. Let k be a finite extension of Q, and let K /k be a finite extension of even
degree. Then there exists a finite prime p of k and a prime B of K lying over p with
the property that the local extension Ky/k, also has even degree.

Proof. Let L be the normal closure of K/k, let % be the Galois group of L/k and 5#
that of L/K. Choose 1€ % — # such that t>e #, for example by considering a
2-Sylow subgroup of s contained in a 2-Sylow subgroup of %. By the
Tchebotarev density theorem [CF, p. 227], there is a prime P’ of L which is
unramified over k and whose Frobenius automorphism is z. Let B and p be resp.
the primes of K and & lying below B". Then the decomposition group of P'/p is

Z(PB'/p)=<1> =Gal(Ly/k,).
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Now 7 ¢ Gal(Lg/Kg) since the latter group is a subgroup of J# but
e G(L/K)NZ(P'/p)=2(P'/PB)=Gal(Ly/Ky).
It follows at once that Ky/k, has even degree. []

We can now prove Theorem 2. Parts (i) and (iii) follow from Lemma 1 and
Theorem 9 respectively. Therefore we assume that K is totally imaginary and that
w=id. We must show that ([K], —1) is in S(K, id).

Since K/Q has even degree, there is a finite prime B in K such that K/Q, also
has even degree by Lemma 10. Let Q be the quaternion algebra over @ with non-
trivial Hasse invariants at p and oo, and invariant O at the other primes. By a
theorem of M. Benard and K.L. Fields [Y, Theorem 7.2], S(@) consists of the
quaternion algebras and so [Q] e S(@Q). Since @ is formally real, every simple
component of a rational group algebra QG is invariant under the canonical
involution, so ([Q],¢)e S(@Q,id) for a suitable choice of e= +1. By Theorem 9,
&= —1since R®Q is non-split. Thus ((K®Q], — 1) e S(K,id). But K®Q is split at
B, and hence at all other primes lying over p by the “uniform distribution theorem”
of Benard and Schacher [ Y, Theorem 6.1]. Since K is totally imaginary, this means
that K®Q is split, so ([K], —1)e S(K,id) as desired. []

3. The Schur Subgroup Over a p-Adic Field

We now assume that K is a finite extension of Q, for some p, and we shall prove
Theorem 3 in several stages.

Case 1: w=+id. For any finite extension K/K, of local fields, the corestriction
map corg, is injective [CL, Proposition 1, Chap. XI, and Theorem 1, Chap.
XIII], and so S(K,w)=B(K,w)=1 by Theorem 8.

From now on we assume that w=1id. We first show that the kernel of the
forgetful map on S(K,id) is +1. Let Q be a rational quaternion algebra which is
split at p but not split at co. Then because S(Q)= ,B(Q) and every direct summand
of a rational group algebra QG is stable under the canonical Q-involution,
([Q], ¢) e S(V, id) for some choice of e= + 1. By the usual argument of extending to
R, we see that e= —1. Now extend to K to show that ([K], —1)eS(K,id), as
desired.

We can assume for the rest of the proof that ,S(K)= +1 since ,S(K) is either
trivial or +1 (recall that B(K)=®/Z — cf. [CL, Proposition 6, Chap. XIII]). We
shall have to construct “quadratic Schur algebras”, that is central simple algebras
which are direct summands of group algebras (over K) and which are stable under
the canonical K-involution of the group algebra — or what is the same, which are
the images of KG under an irreducible K-representation of the finite group G and
which admit an involution of the first kind which inverts the images of the elements
of G. This is done by the use of a crossed-product algebra A =(K({)/K, z) (see [MO,
Sect. 29]) using a cocycle z € Z*(Gal(K({)/K), u(K({)), where { is a suitable root of
unity and w(K({)) is the group of roots of unity of K({). Thus 4 has a
distinguished basis {u,: o €Gal(K({)/K)} over K({) with multiplication defined
b

y (aﬂ'ud) (bfuf) = adbgz(a’ ‘c) ua‘t

for any a, and b, in K({).



486 C. Riehm

Lemma 11. Suppose that the values of z are actually +1 and that there is
1€ Gal(K({)/K) such that '={"*. Then A=(K()/K, z) is a quadratic Schur algebra.

Proof. We can assume that z is normalized, i.e. z(¢,7)=1 if either o or t is the
identity. A is easily seen to be a “Schur algebra” for the group G= |J{(+u,

since G spans A over K (the representation space is of course any simple A-
module). We must show that there is a K-involution on A which inverts the ele-
ments of G. Consider the K-linear map I on 4 which, for each o, takes a,u, to
a? 'u; ! (a,eK(0). A straightforward calculation shows that I has the desired
properties. []

Lemma 12. If p, is an odd prime such that K({, )/K is a Galois extension of even
degree, then there is an automorphism 1 of K((,,)/K which inverts {,,.

Proof. Note that Q((,,)/@Q has even degree and is cyclic, so the unique element of
order 2 in its Galois group is complex conjugation, which inverts {,. The
restriction of the Galois group of K({, )/K to Q({,,) is injective and so the image
contains complex conjugation, whence the lemma. []

A standard technique for constructing crossed-product algebras is to use a
cyclic extension K({)/K; in this case one can assume that the algebra has the form

A=Y KQuz, 0<i<(K():K)=n,

where u"=ae K*; in particular the u. form a distinguished basis. 4 is often
denoted by (K({)/K, 0, a) or simply (K({)/K, a). Furthermore A is split iff a is a norm
in the extension K({)/K. See [MO, 30.4], for example. Less well known is the fact
that there is a similar construction, due to Yamada, for any finite cyclotomic
extension—see [ Y, Chap. 2]. We shall use his construction in the bicyclic case only:

Yamada’s Lemma. Suppose that { is a root of unity and that K({)/K has Galois
group the direct product of two cyclic groups {@) and {c) of finite orders r and s
resp. Let a, b, and c be roots of unity in K({) satisfying

a'=b""'=1, a°"'=Nge, b '=N,7!,
where, for example, N ,c=c*e*¢**---*¢™" Then there s a crossed-product algebra

(“bicyclic algebra”) A=(K({)/K, a, b, ¢) which has a distinguished basis uju,
0<i<r, 0<j<s, with the property that

r — —_ p—
uy=a, u;=b, uu,=cuu,.

If A and p are roots of unity in K({)*, and if v,:= Au, and v, : = pu,, then the elements
vyvl form a distinguished basis for the bicyclic algebra A=(K({)/K, ', V', ¢') where
d=(Na, b=Npb, =2""w . O

We now return to the proof of Theorem 3.

Case 2: w=id, K/Q, abelian, p odd, and u(K), = + 1. By a theorem of Janusz, [J],
S(K) is generated by the class of a cyclic algebra (K({,)/K, {) where { generates the
group of roots of unity in K with order prime to p. Since the Brauer class of a cyclic
algebra (L/K, a) is multiplicative in g, it is easy to see that the class of (K({,)/K, —1)
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is the non-trivial element of ,S(K). By the Yamada-Fontaine theorem [Y, 4.4, 4.5],
S(K)is a cyclic group of order (p — 1)/e, where e, is the tame ramification index of
K/Q,. Since Q,({,)/Q, has tame index p—1, S(K({,)) must be trivial. Thus K({,)/K
has even degree since the scalar extension map B(K)— B(K({,)) is multiplication by
(K({,): K) when viewed as a map Q/Z—Q)/Z. This case then follows from Lemmas
11 and 12.

Case 3: w=id, K/Q, abelian, p odd, |u(K),|>2, and K({,)/K a ramified quadratic
extension. Suppose u(K), has order 2" (h>2). Let { be a primitive 2**!-root of
unity; then K({) is an unramified quadratic extension of K and so is disjoint from
K(¢,)- Thus K(¢, {,)=K({{,) has Galois group over K generated by elements ¢ and
o of order 2 where the fixed field of ¢ is K({) and that of ¢ is K({,). By Yamada’s
lemma, thereis a bicyclic algebra 4 =(K({{,)/K, 1,1, —1). Suppose that the residue
class field of K has g elements (so g is a power of p). The gcd of g+ 1 and g—11is 2, so
g+ 1 is not a power of 2 since the fact that K contains the fourth roots of unity
implies that ¢—1 is divisible by 4. It follows that there is an odd prime p, which
divides g>—1 but not g— 1. It is easy to see then that K({)=K((,,) and K(,{,)
=K(,.,)

It Foflows from Lemma 12 that go inverts {, , and so A4 is a quadratic Schur
algebra by Lemma 11. The proof for case 3 will be finished by showing that A4 is
non-split.

We define a new distinguished basis of 4 by taking v,:={u, (with { a 2"*'-root
of unity as before) and v, =u,. Since N ={*and {* "' = —1, A=(K((,,,)/K, {* 1,
1) by Yamada’s Lemma. In particular v, and v, commute and one sees easily that

A= (KK, P)R(K(E, /K, 1).

The second factor is of course split, and so this case will follow if we show that {2 is
not a norm in K({,)/K. Suppose that {* is a norm, say (*>=Na with ae K({,).
Certainly o must be a unit; we can write o ={'f8 where {’ is a (g— 1)* root of unity
and B is a 1-unit, i.e. is =1 mod‘P where P is the maximal ideal of the ring of
integers of K(,). Now Nf is also a 1-unit, and is also a root of unity since both of
Na and N{' are, and so must be a p-power root of unity. Since {2 is a 2-power root
of unity, we can therefore assume that f=1, and that {’ is also a 2-power root of
unity. Since K({,)/K is totally ramified, u(K({,)), =u(K), and so ' is a power of {2,
This is impossible since N{'={'?={2. This finishes the proof of case 3.

Case 4: w=id, K/Q, abelian, p odd, and |u(K),|>2. Let K({,), be the maximal
unramified subextension of K({,)/K. Since S(K), #+ 1, K({,)/K({,), must be tamely
ramified of even degree; let L be the unique intermediate field of which K({,) is a
quadratic extension. We can therefore apply Case 3 (and its proof) to find an odd
prime p, % p and a cocycle ze Z*(Gal(K((,,,)/L), +1) such that the corresponding
crossed-product algebra is non-split and such that there is an 1€ Gal(K((,, ,)/L)
which inverts {, ,. Let z'€ Z%Gal(K((,,,)/K, +1) be the corestriction of z. As
mentioned earlier, cor is injective on the Brauer group over a local field, and so the
crossed-product algebra corresponding to z' is non-split. Therefore this case
follows from Lemma 11.

Case 5: w=id, K/Q, abelian, and p=2. It is known in this case that the non-trivial
Brauer class in S(K) (= ,S(K)) is represented by a bicyclic algebra of the following
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form (see [R], for example): Let k be the smallest integer =2 with the property that
there is an odd integer m such that L: =®Q,({,x, {,,) contains K ; we can assume that
the residue class degree f of L/K is =0 mod2*. The Galois group ¢ of L/K is the
bicyclic group {a,) x {¢,) where

(i) o, is of order 2, inverts { ={,, and has fixed field K({,,).

(i) o, is of order f and has fixed field K({,).

Then the bicyclic algebra is 4:=(L/K, 1, 1, {).

As was indicated in [R], one can replace m by any odd multiple m’ of m. We
shall choose m’ in such a way that Q,({sx, () =Q({n, {,) for some odd positive
integer n which is relatively prime to the order of u(K). The following lemma is
useful in this regard:

Lemma. If qisapowerof 2,IF . is generated over IF, by a primitive (q +1)* root of 1.

Proof. Let IF be a proper subfield of IF,, say with ¢’ elements. Then ¢* = ¢” for some

r=2, so g'<q. Therefore ¢'—1 is not divisible by g+ 1, whence the lemma. []

Now let g be the number of elements in the residue class field of Q,({;x,¢,); We
can assume m=gq+ 1. Clearly g+ 1 is relatively prime to g—1, hence a fortiori to
|u(K)| as well. By the lemma we can choose m' =q?—1 and n=q+ 1. Suppose that
m has been replaced by m'. Let f'=1f and K’'=the fixed field of ¢4 If p, is any
prime divisor of g+ 1, K'(,,) = Q,({,, {,,) since p; does not divide g — 1. Therefore
it follows from Lemma 12 that ¢ inverts a (g4 1)* root of unity {'; moreover 2"| f
implies that ¢4’ {=¢.

We shall now show that A4 is a quadratic Schur algebra. Let {u}u}} be the
distinguished basis of 4 over L. Let v, =u; ! and v,=u; '. Under the multiplic-
ation - of the opposite algebra A° v, -v,-v7'-v;'=("", vi=1=v}, and
v;-A-v; '=0/A)fori=1,2.Thus A°=(L/K, 1,1,{ " !). Let J : A— A° be the additive
map defined by J(Auiui)=0,0%'(1) v’ vi. Then J is an isomorphism of
K-algebras, i.e. J is a K-involution, and it inverts the elements of the group
{{, ¥, uy,u,y. This finishes the proof of Case 5.

Case 6. K/Q, an arbitrary finite extension.
Lemma. Let K, be the maximal abelian extension of Q, contained in K. Then
im(S(K,id)—-S(K))=K®im(S(K ,id)->S(K}))-
Proof. The product of the restriction maps
Gal(K K,/Q,)—Gal(K /Q) x Gal(K,/Q,)

is clearly injective, so the subextension K K,/Q, of K/Q, is abelian. Therefore
K.K,=K,,i.e. K,.CK,,andso K,;.=K_ and K, =K. It follows from Lemma 1 that

im(S(K,id)—S(K))= K®S(K)= K®@(im(S(K ,,id)—»S(K,)). O
By the earlier cases we know that im(S(K,,id)— S(K,))=,S(K,) and so we get
im(S(K,id)-»S(K))=K®,S(K,).

Moreover S(K)=K®S(K,) by [Y, Proposition 4.6], so that ,S(K) =+ 1 implies that
2S(K,)#1 since S(K,) is a finite group. Theorem 3 follows from this and the fact
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that the scalar extension map B(K,)— B(K), when these two groups are identified
with Q/Z, is multiplication by the degree of K/K,. [

Acknowledgement. 1 am grateful to H. Kisilevsky and J. Labute for providing the proof of

Lemma 10.
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