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1. Introduction

The notion of meromorphic mapping which is used in this article is the one of Stein
[6, 7]. It is equivalent to the notion “SR-meromorph” of Stoll [10], and the idea to
this notion was already given by Remmert [5]. In [10], Stoll also introduced a
notion of essential singularity of a meromorphic mapping: Let X*, Y be normal
complex spaces, ACX* a thin subset, X =X*\4 and f:X—Y a meromorphic
mapping. Then a point P € 4 is called a “SR-Singularitit” of f if there doesn’t exist
a neighbourhood U of P in X* and a meromorphic extension g:U—Y of
f:(UnX)-Y.

But defining the notion of essential singularity like “SR-Singularitdt” has at
least two disadvantages:

Firstly a “SR-Singularitdt” only is a very weak form of a singularity, e.g. the
holomorphic function

27 H(C\{0h)~C

has a “SR-Singularitdt” in the zero point.
Secondly the assumption that A has to be thin in X* is very restrictive, e.g. for
the holomorphic function

" )/z:(@\Rg)->C

Ry is not thin in C.

Hence in this article the notion of essential singularity of meromorphic
mappings is defined differently:

Firstly it is allowed to replace Y by a “bigger” normal complex space Z (that
shall mean that Y is an open subspace of Z) before extending f into the point P.
Further examples, some of which are given in the Sects. 3-5 of this paper, let it seem
to be sensible to define three “versions” of an essential singularity: The first version
is the one discribed above. For the second (resp. the third) version it also is allowed
to replace Y by a normal complex space Y’ which s a bit “smaller” than Y and then
to replace Y’ by a “bigger” space Z before extending f into P. Here “smaller” shall
mean that there exists a closed nowhere dense subset M of Y and a holomorphic
mapping h: Y—Y’ so that h(Y\M) is an open subspace of Y’ and h:(Y\M)
—h(Y\M) is biholomorphic (resp. local biholomorphic).
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Secondly it is allowed that A 4 X* is an arbitrary closed subset of X* and P is
any point of X (where 0X denotes the border of X in respect of X*). Now the
situation around P can be very complicated (e.g. it can happen that for any
connected neighbourhood U of P, UnX has infinitely many connected compo-
nents), so it is not clear at once what an extension of f into P shallbe. Forg: U—Z
being an extension of the mapping f : (U X)—Z one should demand at least that
there is an open subset O C U X with P € 90 so that the equality f =g holds on O.
Using the identity-lemma for meromorphic mappings [6, p. 830] it can easily be
shown that this is equivalent to demand that there exists a sequence (G,),.n Of
connected components G, of UnX with Pea( U Gv) for all v, e N so that the

vZvo

equality f=gholdson () G,.Sincein this paper itisintended to define the notion
v=1

of essential singularity as strong as possible this already is the right concept of
extension, but it should at least be added that other concepts of extension are
possible and, more generally, there are also other possibilities to define the notion
of essential singularity than the one given in this article.

In Sect. 2 we first define the three notions “essential singularity of the i-th kind,
i=1,2,3” (Definition 2.2). Itis an immediate consequence of this definition that if 1
in P has an essential singularity of the i-th kind, it there also has an essential
singularity of the (i— 1)-th kind, i=2, 3. Then a proposition is proved that shows
that if A is nowhere dense in X * and for every neighbourhood U of P there exists a
subneighbourhood W so that W X is connected (these assumptions hold e.g. if A
is thin in X*), then Definition 2.2 gives the “right” notions.

In Sects. 3-5 there are given a lot of examples of meromorphic mappings with
essential singularities which especially show that there exist mappings f and
points P, in which f has an essential singularity of the i-th kind, but no essential
singularity of the (i + 1)-th kind, i=1, 2. Beyond that there are given two theorems
which prove:

(a) If X* is connected with dim X* =n, A+ X* is an arbitrary closed subset of
X* and m any number equal to or greater than n and 2, there exists a pure
m-dimensional normal complex space Y,, and a meromorphic mapping f,,: X - Y,,
which has essential singularities of the first kind in all points of 4X, but no single
essential singularity of the second kind.

(b) Let X* and A be as in (a) and X* be 1-dimensional. Then there exists a
meromorphic mapping which has essential singularities of the third kind in every
point of dX.

(c) Let Y be 1-dimensional. Then every essential singularity of the first kind is
one of the second kind.

Notice that (a) also is interesting in connection with extension problems for
meromorphic mappings as they were examined by Stein in [7, 8] (cf. also
Theorem 6.3 of this paper), because for thin 4 (a) especially yields that the
correspondence given by G, CX*x Y, where G,,_is the graph of f,:X—Y,,
doesn’t yield a meromorphic mapping in any point P € A. This result even holds if
Y,, is enlarged to a “bigger” space Z as it was described above.

In Sect. 6 there are collected some propositions which can be helpful when
trying to prove that a meromorphic mapping in a given point has no essential
singularity. Among them there is an important theorem of Stein which deals with
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the case that A4 is thin in X* and dim X* —dim 4 >dim Y and a further theorem of
Stoll which can be applied if Y is projective-algebraic.

2. Definition of Essential Singularities of Meromorphic Mappings

First we introduce some notations which will be kept up during this paper. Let X *
and Y be normal complex spaces, where X * is connected and has a countable basis
of topology. Let A=+ X* be a non-empty closed subset of X* X:=X*\4 and
PedX, where 0X denotes the border of X in respect of X*. Let further f: X —Y be
a meromorphic mapping, G,CX x Y its graph, f:G s—X and 7:G =Y its
canonical projections and S,CX the set of its (non-essential) singularities.

Definition 2.1 (c-sequence). Let U be a connected neighbourhood of P in X*. For
every ve N let G, be (not necessary different) connected components of UnX with
Pec’)( U Gv> for all voeN.

Vv
Then 4:=(G,),.n is called c-sequence (in resp. of P and U). For 4 we set
9:= U G,cUnX.
v21

Definition 2.2 (essential singularities of meromorphic mappings ). P is said to be an
essential singularity of thei-th kind (ess i-sing) of f (inresp.of X*),i=1,2,3,if for
every
connected neighbourhood U of P in X*,
c-sequence ¥ in resp. of P and U,
normal complex space Z,
he H#(Y, Z) (see below),
there doesn’t exist a meromorphic extension g: U —Z of the mapping ho f : |9| > Z.
The sets #(Y, Z) are defined as subsets of the set of holomorphic mappings from Y to
Z as follows:
H,(Y, Z) consists of all h: Y—Z for which there exists an open subset Z,CZ,
so that h: Y—>Z, is biholomorphic.
H,(Y, Z) consists of all h: Y— Z for which there exists an open subset Z,C Z and a
closed and nowhere dense subset M C Y, so that h:(Y\M)—Z, is biholomorphic.
H;5(Y, Z) consists of all h: Y — Z for which there exists a closed and nowhere dense
subset M of Y, so that h:(Y\M)—Z is locally biholomorphic.

It can be easily proved that Definition 2.2 defines a local property of f.
Definition 2.2 becomes simpler if 4 has additional properties:

Proposition 2.3. Let A be nowhere dense in X* and assume that for every
neighbourhood V of P in X* there exists a subneighbourhood W for which WnX is
connected.

Then P is an ess i-sing of f in resp. of X* if and only if for every

connected neighbourhood U of P in X*,

normal complex space Z,

he #(Y, Z) (¢f. Definition 2.2),

there doesn’t exist a meromorphic extension g:U—Z of ho f:(UnX)—Z.

The proof is straightforward.
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3. Some Relations Between Ess 1-Sing and Ess 2-Sing

Theorem 3.1. (a) Let X* be n-dimensional, me N with m=max(n,2). Then there
exists a pure m-dimensional normal complex space Y,, and a meromorphic mapping
Jn: X—Y,, so that every point of 0X is an ess 1-sing, but no point of 0X is an ess
2-sing.

(b) Let Y be 1-dimensional. Then if P is an ess 1-sing of f, it also is an ess 2-sing
of f

Remark. See Remark 2 of Theorem 6.3 for a supplementation to this theorem.

Before we start with the proof of Theorem 3.1, we prove two lemmas:

Lemma 3.2. Let M,, M,CX* be open subsets, M, be connected and M be a
connected component of M,AM,. If M;nM,+0+(X*\M,)nM,, then

M,nOM nOM;+0.
For the Proof of Lemma 3.2, we refer, if necessary, to [2, p. 39].

Lemma 3.3. Let S be the singular locus of X*. Then there exists a sequence
F=(x,),cn with the following properties:

(@) x,€X\S for all ueNN; x,, #x,, for p, +u,.

(b) We set |[F|:={x,:x,eF}. Then |F| is a discrete subset of X.

(c) For all xedX, for all connected neighbourhoods U of x in X* and for all
connected components G of UnX the set GN|F| contains infinitely many points:
#(GN|F|)=co.

Proof of Lemma 3.3. Let #: ={B,,v e N} be a countable basis of the topology of X *
consisting of connected sets and %, be the set of all connected components of
B,nX ofthose B, € # with B,nA +{. The set Z, is countable, so we can enumerate
its elements:

gA={Gu,ﬂ€N} .

Since X * has a countable basis of topology, we can introduce a metric 6(-,-) on X*.
Now define

1
Av:={xeX*:5(x,A)< ;} for every ve N.

Then A,nG,+0: Since A4, is a neighbourhood of 4, it is enough to show 9G,
NA=+0. This directly follows if we apply Lemma 3.2.

Now we can construct the sequence F:

Choose x, from (4;nG)\S. If x,, ..., x,_, are already constructed, choose x,
from (4,NnG)\SU{xy, ..., %, 1}).

It follows directly from this construction that the properties (a) and (b) are
fulfilled. From Lemma 3.2, applied with M, =X, M, =U, M; =G, it follows that
there exists a xoe UndXNaG.

Assume now #(|F|nG)<oo. Then V:=U\(Gn|F]) is a neighbourhood of
Xy, SO there is an open set Be # with x,e BCV. Since BNG+0 there exists a
connected component G, of Bn X in Z, with G,n(G\|F|) % 0. Hence G,C G\|F|, but
this contradicts |F|nG,>{x,}. O
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Proof of Part (a) of the Theorem in the Case n= 2. First we construct a sequence F
like in Lemma 3.3. Then we construct Y from X by blowing up X simultaneously
in every point of |F| by Hopf’s a-process [4]. If n: Y — X is the canonical projection,
we have:

fi=n"':X-Y; x-n"!(x) isa meromorphic mapping, 1)
Sy=IFl, 2

n:Y—-X is a holomorphic mapping with no f=id|y, 3
Y\f(X\|F]) is a 1-codimensional analytic set in Y. 4)

We now define Y,:=YxC" " and f,,: X-Y,; x—>(f(x),0,...,0) and prove the
assertion of part (a) of the theorem for n=>2:

Takeapoint PedX. Itis easy to see that f,, has no ess 2-sing in P: Define U any
connected neighbourhood of P, ¢ any c-sequence in resp. of P and U, Z:=X*
XCm ™" hi=nxid™ .Y, >Z; (V, 21, s Zm-n) = @), Z1s oo esZmn), g: X*>X*
x C"™"; x—=(x,0,...,0). As a consequence of (3) and (4) we have he #,(Y,, Z), and
ho f,,=g on |¥| is obvious.

To prove that f,, has an ess 1-sing in P, we assume the contrary. Under this
assumption there exist U, ¢, Z, h and g like in Definition 2.2. We especially have
ho f,,=g on |¥|, hence (cf. [6, p. 837])

S,N|%|=9|n|F]|. &)

S, is an analytic subset of U, for which there exists a unique decomposition in
irreducible analytic sets (S,),, 1€ I, so that {(S,),, 1€ I} is a local finite covering of S,
hence there exists a connected subneighbourhood V' CU of P with

VA(S,),+0 only for a finite number of 1€!. (6)
We have Vn|9|n|F|=Vn|9|nS, [cf. (5)]. From this we conclude with

Lemma 3.3b and (6):
#(Vnlgn|F)<o. (7)

Because of the properties of ¢ there exists a vy € N with G, NV 0, hence thereis a
connected component G of VX with GCG,,. An application of Lemma 3.3c to P,
V and G yields #(|F|nG)= o0, hence #(Vn|¥|n|F|)=o0, which contradicts
™M O

To prove part (a) of the theorem in the case n=1, we need another lemma:

Lemma 3.4. Let X* be 1-dimensional. Then there exists a sequence F =(x,),nin X
with the properties (a), (b), and (c) of Lemma 3.3 and a holomorphic function f: X -»C

with {xeX:f(x)=0}=|F|.

Proof. Choose the sequence F like in Lemma 3.3. It is sufficient to construct such a
function on every connected component of X. X* is a Riemann surface (because
the singular locus is at least 2-codimensional, hence empty), so the connected
components of X are Riemann surfaces, too. On every connected component of X,
|F| yields a Cousin-II-distribution. Since such connected components are not
compact (this is a simple consequence of the properties of F), this distribution hasa
solution, and this solution has the desired properties. []
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Proof of Part (a) of the Theorem in the Case n=1: Let f: X —C be the function
defined in the previous lemma and define Y,:=C" and f,:X-Y,;
x-(f(x),0,...,0).

Take any point P € 6.X. Again, it is easy to see that P is no ess 2-sing of f,,: Let U
be any connected neighbourhood of P, 4 any c-sequence in resp. of P and U,
Z:=C™" h:Y,»Z;(z,25, ..., Zm) (2122, 23y -..,2,,) and g=0: U Z.

To prove that f,, has an ess 1-sing in P, we again assume the contrary. Under
this assumption there exist U, %, Z, h, and g like in Definition 2.2. First we show:

Ped(Fnlg)), |FIng|+0. @®

It suffices to show that for every connected subneighbourhood U’C U of P the
nonequality |[F|nU’n|4]=9 holds. There exists a G, with G,nU’+ @ and hence a
connected component G of U'nX with GCG,. An application of Lemma 3.3 yields
#(/F|nG)= o and hence |F|N|%|nU’ £0.

Let z,:=h(0). Then g(x)=z, for all x€|F|n|¥], and with S, =0 (cf. [10, p. 224])
and (8) we can conclude:

{xeU:gx)=zo} D(IFInIF){P}. ©®

There exists a neighbourhood W of z, in Z which is mapped biholomorphically on
a closed analytic subspace of a domain in a €". Hence g yields r holomorphic
functions which, because of (9), are constant on ((|F|n|%))u{P})ng™(W).
Therefore if ¥ Cg~!(W) is a connected neighbourhood of P, we have with (8) and
the identity-lemma on Riemann surfaces:

gx)=z, forall xeV. (10)
Since we have ho f,, =g on Vn|%|(+0) and h is injective, we get from (10) and (8):
fA(x)=0 forall xeVnl|¥|.

But this is impossible, since {x€ X : f,,(x)=0} =|F| and |F| only is a discrete subset
of the open set Vn|%|. [

Before we start with the proof of part (b) of the theorem, we prove a topological
lemma:

Lemma 3.5. Let S, T be tapological spaces which locally admit a metric, CCS a
closed and nowhere dense subset. Let f:S—T be continuous and f:(S\C)—T be
injective. Let 0,0, CS be open sets with 0, N0, =0 for which f(0,) are open subsets
of T and f:0; - f(O,) are topological maps.

Then f(0)nf(0,)=0.

Proof. Assume W:= f(0,) f(0,)+0. Since f:0; — f(0,) are topological maps
and T locally admits a metric W':=(Wn[f(0,nC)u f(0,nC)]) is closed and
nowhere dense in W. Hence there exists wo € W\W' and w, € 0,\C, w, € 0,\C with
f(w,)= f(w,)=w,, but this is impossible because f:(S\C)— T was injective. []

Proof of Part (b) of the Theorem. Let Z be a normal complex space. It suffices to
show 3,(Y, Z)CH(Y, Z). Let he (Y, Z) and Y, be a connected component of Y.
Then A(Y,)CZ is an open subset and h:Y,—h(Y,) is biholomorphically: For
dim Y; =0 this is a direct consequence of he #,(Y, Z), for dim Y; =1 we will prove



On Essential Singularities of Meromorphic Mappings 505

that below. The previous lemma now shows that h: Y—Z is injective, hence
he #,(Y, Z).

We still have to show that if h € #,(Y, Z) with a Riemann surface Y then h(Y)is
an open subset of Z and h: Y—h(Y) is biholomorphic. It is enough to show that
h:Y—Z is locally biholomorphic, since then an application of Lemma 3.5
completes the proof.

Since A(Y) is connected, we may assume that Z is a Riemann surface. If we
introduce local charts in Y and Z in an appropriate way (cf. [1, p. 164]), we reduce
our assertion to the following one:

Let eeR*, U 0):={zeC:|z|]<e}, NCU,0) a closed and nowhere dense
subset, f(z):=z? with peN so that f:(U,(0\N)-C 2is.injective. Then p=1.

Assume p=2. Then the two points z; = %, 2= e ? aredifferent, so there are
neighbourhoods 0, (resp. 0,) of z; (resp. z,) with 0,C U,(0) and 0,10, =0, for
which the mappings f: 0,— f(0,) are biholomorphic. Then the Lemma 3.5 yields
f(0)Nf(0,)=0, but this is wrong since f(z,)= f(z,). O

4. Some Relations Between Ess 2-Sing and Ess 3-Sing
First, we introduce some special notations for this section:
G:={z=r-e™:reR*, aeR, O<a<1}.
H:={z=r-":reR*, aeR, O<a<i}}.
f:GoH; r-e*s)/r-em*, (11)
X*=Y:=C", X:=GxC" !,
A:=C"\X, S:={zed:z;=0}
and, for
ceR, x={xp,...x,} €€ Uyx):={zeC":|z—x|<e},
Ufx):={zeC:|z—x,|<&}.
We define
XY (21,29 .0 2)=2(F(21), 225 0 r Z0)

Proposition 4.1. (a) P is no ess 1-sing of f for all Pe A\ S.
(b) P is an ess 2-sing of f for all PeS.
(c) P is no ess 3-sing of f for all Pe A.

Proof. (a) is obvious, since, if P=(p,, ...,p,)€ A\S and eeR™* with e<p, we can
extend 7 holomorphically from U,(p,)n{Imz, >0} to U,(p,).

(c) is easy: Choose Z=C", h:C">C"; (zy, 25, ---, 2,) —>(23, 23, .-+, Z,). TO prove
(b), let P € S be arbitrary. Assume that P is no ess 2-sing of /. Then there exist U, Z,
h, M, and g like in Proposition 2.3. First we want to prove:

There are points Ql =(ql’ q2a ] qn)’ QZ =(~q1: qZ’ sy qn) in
C" with q, eRR* and e R™* with d <q in such a way, that for 12)

every two points Ry =(r{, ¥z, ..., 1), Ra=(—ry, 3, ...,7,) in C"
withr, eIR* and R, € U4Q,) the equality h(R,)=h(R,) holds.
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Since S, is a 2-codimensional analytic subset of U there exist a point P’
=(p}, ..., Py)€ANU with p| >0 and an neR™* with n<p,, so that we have:

UP)CU, U P)nS,=0. (13)

Define Q,:=(+1/P}, P2 ---» Py @2:=(—=1/P"» D3 ..., P,) and 6 R* so small, that,
if g denotes the mapping C"—C"; (2,25, ..., 2,) (2%, z,, ..., 2,), we have <3<]/p-'1
and q(UxQ,))CU,(P).

Let R,, R, belikein(12)and R:=¢(R,). Let (z{"), ., (z$?), o~ b€ Sequences with
2V e Xn{Imz, >0}, z? e Xn{Imz, <0} and z{>R«z? for v—co. From (11),
we conclude f(z{")—>R;, f(z{¥)»R, and hence, because R¢S,[cf. (13)],

g(R)= lim g(z¥)= lim ho f(z?)=h(R) for i=1,2
which proves (12).

Now define s:TC"->C"; (24,23 .-, 2,)>(—21,25,...,2,). The  set
{zeU4Q,):hos=h} is an analytic subset of UyQ,), which contains the set
UsQ,)nA [cf. (12)], hence hos=h on U4Q,).

Choose z' from the set Uy Q)\[(UsQ)nM)us(UsQ,)nM)]. Then
s(z')e Us(Q,)\M, especially 2/, s(z')e C*\M and z’' +s(z’), but h(z')= h(s(z')), what is
impossible, because h is injective on C\M. [J

5. Some Examples for Ess 3-Sing
We again use the notations introduced in Sect. 2.

Theorem 5.1. Let X* be a Riemann surface. Then there is a holomorphic function
f:X—Q so that every point PedX is an ess 3-sing of f.

Proof. First we apply Lemma 3.4 and get a sequence F =(x,), . With the properties
(a), (b), and (c) of Lemma 3.3 and a holomorphic function f: X —C with

{xeX:f(x)=0}=|F]. (14)

Let us assume that there exists a point P € dX which is no ess 3-sing of f. Then there
exist U, %, Z, h, M, and g like in Definition 2.2. Since € is connected, we may
assume that Z is connected, too, and hence a Riemann surface. Now we can prove
(8, 9) literally as it was done in Sect. 3. From (8, 9) we can conclude with the
identity-lemma for holomorphic mappings between Riemann surfaces (where
zo=h(0)):

g(x)=z, forall xeU. (15)

Since |F|is a discrete subset of X and (14, 8) there exists a connected component G,
of |%| where f is not constant, hence locally biholomorphic outside a discrete
subset of G,. Since h is locally biholomorphic outside M, too, there exists an open
subset V of |4| where he f is locally biholomorphic. This contradicts (15). [J

Proposition 5.2. Let H, be the n-dimensional Hopf-manifold and n:(C"\{0})>H,
the canonical projection.
Then the zero point of C" is an ess 3-sing of .
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Proof. Define X*:=C", A:={0}, Y:=H, and f:=m. Let pelR" be the smallest
number so that for an arbitrary ze X we have f(p - z)= f(z), and, for this p and any
reR™, define F,:={ze X :r<|z]<p-r} (cf. [2, p. 146]).

Assume that the zero point is no ess 3-sing of f. Then there exist U, Z, h,and g
like in Proposition 2.3. There exist open subsets U,CY and W,CZ, so that
h:U,—W, is biholomorphic, especially W, is n-dimensional. We further may
assume that U,Cf(F,) for suitable chosen reR™*. For all keN, define
Vee=(f lprp_k)‘l(U o)- Then all mappings f: V,— f(¥;)=U, are biholomorphic.

Now let w,e W, be arbitrary. Then there exists a point u,e U, and for all
keN, a point v, € V; with f(v,)=uy, h(ue)=w,, hence (v;, wy) € G,. Since v, —0 if
k— o0 and G, is closed in U x Z we have (0, w,) € G,, and, because w,e W, was
arbitrary:

{0} x W, CG,, dimW,=n. (16)

Since G, is an irreduzile n-dimensional analytic set, we therefore get the
contradiction G,=G,N({0} xZ). [

6. When do Ess i-Sing not Exist?

Proposition 6.1 (Product-Spaces). Let Y, ..., Y, be normal complex spaces,Y =Y,
X ...x Y, and pr;, j=1,...,t, the canonical projections from Y to Y,

(@) If there exists a connected neighbourhood U of P in X*, a c-sequence ¥ in
resp. of P and U and for every je{l,...,t} a normal complex space Z; and a
holomorphic mapping h;e #(Y;, Z;) such that h;o pr;° f :|9|—Z; can be extended to
a meromorphic map g;:U—Z;, then P is no ess i-sing of f.

(b) Let A be nowhere dense in X* and assume that for every neighbourhood V of
P in X* there exists a subneighbourhood W such that WX is connected. Then if P
is no ess i-sing of any mapping pr;o f : XY}, j=1,...,t, P also is no ess i-sing of f.

Remark. There exist meromorphic mappings, for which some pr;o f may have ess
i-sing in P, but f hasn’t: The mapping f,, constructed in the proof of part (a) of
Theorem 3.1 in the case n=1 has no ess 2-sing, but pr, o f,, has ess 3-sing, as we
showed in the proof of Theorem 5.1.

Proof of Proposition6.1. (a)Define Z:=Z, x...xZ,h:=h;x...xh;:Y->Z.Itis
easily proved that he #(Y,Z). Now we have to construct g: Let G,:= {(x,
Z4y.e2):X€U, z;€g(x), i=1,...,t}CU x Z. Then there exists a meromorphic
map g:U—Z with G,CG,, (cf. [6, p. 839]). There further exists a closed an thin
subset M* of U such that G,.n[(U\M*) x Z] gives a holomorphic map, hence G,
N(U\M*) x Z]=G,n[(U\M*) x Z]. From the last equality it follows g=ho f
on (|%|\M*), hence an application of the identity-lemma for meromorphic maps
(cf. [6, p. 830]) yields g=ho f on |%]. So g is an extension of ho f from |¥| to U.

(b) The proof is straightforward if we firstly apply Proposition 2.3, then the
special assumption on the structure of 4 and at last part (a). [

Proposition 6.2 (Closed Complex Subspaces). Let A be nowhere dense in X, U a
connected neighbourhood of P in X*, Z a normal complex space and he #Y,Z). Let
Z be a closed complex subspace of a normal complex space Z,,.
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Then, if g:U—Z, is a meromorphic extension of ho f:UNnX—Z, we have
g(U)CZ and g: U—Z is a meromorphic mapping; especially P is no ess i-sing of f.

Proof. §~1(AuUS,) is a closed, nowhere dense subset of G, (cf. [6, p. 823], [3,
p- 167]). Since §~(UnX)CU xZ we therefore have G,CU x Z. Since G, is
irreducible in U X Z, and ¢ is a proper map these properties hold in U x Z,
too. [

The next theorem is due to Stein [8, 9]:

Theorem 6.3. Define fmd f:= M1n dim 7~ (f(2)).

Let ACX* be analytic and fmdf>d1mA
Then the topological closure G ; of G in X* x Y is a meromorphic extension of f
from X to X*; especially f has no ess 1-sing in any point Pe A.

Remark 1. A simple dimension-theoretic calculation shows that fmd f =2dimG,
—dimY =dimX*—dim Y. So Theorem 6.3 is especially true if codimA4 >dim Y.

Remark 2. Theorem 6.3 shows that the inequality “m=max(n,2)” in part (a) of
Theorem 3.1 can’t be improved: If m <n, we take 4 an isolated point P of X*. Then
Theorem 6.3 tells that f,,: X — Y, has no ess 1-sing in P. The fact “m=2" already
follows from part (b) of Theorem 3.1.

The next theorem actually only is an application of Stoll’s theorem (4.3) in his
paper [10]:

Theorem 6.4. Let A be thin of codimension 2 in X* and Y be a projective-algebraic
space.

Then there exists a meromorphic extension g: X*—Y of f:X—-Y; especially f
has no ess 1-sing in any point Pe A.

Proof. We may assume that Y =IP" for a suitable r € N, since then the assertion for
arbitrary Y follows from Proposition 6.2. An application of Stoll’s theorem (4.3)
yields:

There exists a € {0, ..., r} such that X\S ¢ (f1xs,)” '(E,) and for all Pe X\(S,

U(flxs,) ' (E,) the equation

SP)=(fo(P): f(P):...: fu—1(P):1: f11(P):...5 f(P))
with meromorphic functions f;: X —C holds, where
E,={(wo:w;:....w,)eP":w,=0}.

n
Now Levi’s extension-theorem (cf. [ 3, p. 185]) tells us that we can extend the f;
to meromorphic functions f*: X*—C. Let P(f*) be the polar sets of f;* and

R=__ U P(f* Then

i=0,..,mi*p
[ (X*\R)=IP'; Po(fH(P): f5(P):...: £ 1(P):1: f5 (P fX(P))

is a holomorphic mapping on which we can apply Theorem (4.3) of Stoll a second
time, but this time the other way around. We get that G~CX* x IP" yields a
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meromorphic mapping g: X*—IP". As is easily seen with the identity-lemma for
meromorphic mappings, g is an extension of f. []

The following proposition shows that in Theorem 6.4 the assumption that 4 is
thin of codimension 2 in X* cannot be weakened. It also gives the connection
between essential singularities like they are defined in Definition 2.2 and isolated
singularities like they occur in the function theory of one complex variable:

Proposition 6.5. Let BCC be a domain with 0 B and f:B\{0}>C be a holo-
morphic function. Then the zero point is aness 1-sing of f if and only if itis anisolated
essential singularity in the sense of function theory of one complex variable [1]. In
this case it even is an ess 3-sing of f.

Proof. Since the zero point is no ess 1-sing of f if it is a removable singularity or a
pole we only have to show:
If the zero point is an isolated essential singularity then it is an ess 3-sing of f.
Assume that it is no ess 3-sing. Then there exist U, Z, h, M, and g like in
Proposition 2.3. Take yV), y*® e € with h(y'V)+h(y'?)). Now with the theorem of
Casorati-WeierstraB there exist two sequences (x{V),cn, (x1?),c in U\{0} with

xV-0ex?,  f(x)=y?,  f(xP)-»y? for v-ooo.
Now we have

g(0)= lim g(x{")= lim h(f (X‘v”)=h(lim f (X‘v“)> =h(y")

v— o0

+HyP)=h(lim f(x7)) = lim HS)= lim gx)=g0). 0

V=
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