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1. Introduction

The duality theory for strongly continuous semigroups of bounded linear
operators (i.e., Co-semigroups) in a Banach space was initiated by Phillips in [8].
One of the difficulties in dealing with adjoint semigroups is that the adjoint
semigroup {T*(t)},» o of a Cy-semigroup {T'(#)},>, in a Banach space X, need not
be strongly continuous in X*. However, restricting {T*(t)},», to the closed
subspace X© of X* on which {T*(t)},, is strongly continuous, we obtain a Cy-
sem1group {T (}:s0 in X©. Now we can repeat this construction with the
semigroup {T°(t)},»0, and we get a Cy-semigroup {T®°(t)},5, in the Banach
space X®© (we refer the reader to Sect. 2 for a more detailed exposition of this
construction). Then it may happen that the space X®® coincides with X and
{T®°(t)},20={T(t)},5 . If this occurs we say that X is O-reflexive (“sun-reflex-
ive”) with respect to {T(t)}, o

In recent years this duality theory for C,-semigroups has found various
applications, in particular to differential equations (e.g. second order elliptic
boundary value problems, evolution equations), and @-reflexivity plays an
important role in these applications (e.g. [1, 2]). It was already shown by Phillips
(see also [7, Theorem 14.6.1]) that a Banach space X is ©-reflexive with respect to
a Cy-semigroup {T'(t)},, if and only if the resolvent operator R(4, A) is o(X, X ©)-
compact for all 4 in the resolvent set of A, where A denotes the infinitesimal
generator of {T(t)},5 . This implies in particular that X is O-reflexive whenever
R(4, A) is a weakly compact operator.

The purpose of the present paper is to show that O-reflexivity is in fact
equivalent to weak compactness of R(4, A). Moreover, it will be shown that in
certain Banach spaces (e.g. in L'-spaces) O-reflexivity in equivalent to compact-
ness of R(4, A).

* Work on this paper was supported by the Netherlands Organization for Sc1ent1f1c Research
(NWO)
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2. Preliminaries

Let (X, || - [[) be a Banach space and suppose that {T(t)}, , is a Cy-semigroup of
bounded linear operators in X. The infinitesimal generator of {T(t)},» , is denoted
by A, with domain dom(A4). We refer the reader for the basic properties of C,-
semigroups and their generators to one of the books [3, 5, 7]. For a complex
number A in the resolvent set g(4) of A we denote by R(4, A) the bounded linear
operator (Al —A)~ . For convenience of the reader and to establish notation we
briefly recall the duality theory for such semigroups. For details and proofs see e. g.
[7, Chap. 14].

The adjoint semigroup {T*(t)},», in X* is clearly weak*-continuous, but in
general it is not a Cy-semigroup in X *. The adjoint A* of 4 is a closed and weak*-
densely defined operator in X*, which is the weak*-generator of {T*(1)},, i.e.,

TH(t)x* — x*
t

dom(4*)= {x*eX*:w*— lim exists in X*}

110
and {x, A*x) = lim ¢t~ '{x, T*(f)x* — x*) for all xe X and x* edom(4*). Recall
tl0

that o(A*)=0(A) and R(4, A*¥)=R(4, A)* for all L€ o(A).
Now let X© be the largest subspace of X* on which {T*(t)},5, is strongly
continuous, i.e.,

XO={x*eX*:|T*t)x*—x*| >0 as t|0}.

Clearly X© is a closed subspace of X* and T*(t)(X®)C X for all t>0. Define
TO(t)=T*(t)|xo : X®—X® for all t=0. Then {T®(r)},5, is a Co-semigroup. We
collect some important facts concerning this “sun-dual” in the following
proposition.

Proposition 2.1 (see [7, Chap. 14]). (i) X © = dom(4¥), the norm closure of dom(A4*)
in X*; equivalently, X© = R(Z, A)*(X¥) for all Aeo(A).

(ii) If weput ||x||, =sup{|<{x,x*>|: x*€ X®, | x*|| <1} forallxe X,then | - ||, is
a norm in X which is equivalent to the original norm in X; in fact, ||x|;Z|x|

S<M,lix||; for all xe X, where My= 11m1nf |AR(4, A)||.

(iii) The infinitesimal generator AGJ of {T®(®)},50 is given by dom(4®)
={x*edom(4*): A*x*e X®} and A®x*=A*x* for all x* € dom(4°) (i.e, A® is
the part of A* in X°).

(iv) 0(A®)=0(A*)=o(A) and R(A, A®)=R(4, A)*|s0 for all ieo(A).

Note that it follows from Proposition 2.1(i) that {T*(f)},>, is a C,-semigroup
in X* if and only if dom(A4*) is norm dense in X *, which is in particular the case if X
is reflexive or, of course, if {T(t)},5, is a umformly continuous semigroup.

Now we can repeat the above procedure with X and {T'(t)}, , replaced by X°
and {T®(¢)}, o respectively. Thus {T*(t)},,, is a weak*-continuous semigroup
in X©* with weak*-generator A®* Furthermore, the domain of strong contmulty
of {TO*(t)},50in XO*is X°°= dom(AZ§ *) and {T®°(8)},, is a Cy-semigroup in
X®° with generator A°®. Note in particular that g(4°®)=0(4°*)=0(4°)
=0(A*)=0(A4) and R(4, AGO) R(J, A®)*|y00 for all A€ g(A).
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Let j: X—X** be the canonical embedding of X into its bidual, and let
ro:X**—X®%* be the restriction mapping, ie., ro(x**)=x**yo for all
x** e X** Now jo=rg oj is a mapping from X into X ®* such that {jy(x),x®)
={x,x®) for all xe X and x®e X©®. Since

lioG)l =sup{l<x,x>]: x° e X, [x®| 1} = x],

for all xeX, it follows from Proposition 2.1(ii) above that j, is a linear
norm isomorphism from X onto j,(X). In particular, jo(X) is a closed subspace
of X®*, In general, however, j, is not an isometric isomorphism. Furthermore,
it follows from

(T®%jox, x> =<x, TO(t)x®) ={T(t)x, x>

for all x® € X©, that T®*j,x=j, T(f)x for all xe X and all t=0. Now it is clear
that jo(X)C X©°.

If we identify, for a moment, X with its image j(X), then the C,-semigroup
{T®®(1)},5 0 is an extension of {T(1)},5 o, dom(4°®)nX =dom A4, A°®x = Ax for
all xedomA and R(4,4°®)x=R(4, A) for all Aeg(A).

Now we recall the following definition.

Definition 2.2. The space X is called O-reflexive (“sun-reflexive” ) with respect to
{T®}iz0 f Jo(X)=X®°.

Since X©© =dom A®*, itis clear that X is O-reflexive with respect to {T(£)};»
if and only if R(4, A®)*(X®*)Cjo(X) for all 1€g(A).

Next we will present two simple examples to illustrate the above concepts.

Examples 2.3. (i) Let X = C,(R), the space of all complex continuous functions f on
R such that lim f(x)=0, with the sup-norm. For t=0 and fe C,(R) define

|x| =
T(t) f(x)=f(x+1) for all xe R. Clearly {T(t)},5 is a Co-semigroup in Co(R) and
the generator A is given by

dom(4)={feCyIR): f is differentiable and [’ e Cy(R)},

Af = ' for all fedom(A). The dual space of C,(IR) can be identified with the space
M, (R) of all bounded (complex) Borel measures on R. The adjoint of A4 is given by

dom(A*)={ue M,(R):Due M,(R)}, A*u= —Dp for all pedom(A4*),

(where Du denotes the distributional derivative of u). A Borel measure u with
Due M,(IR) is absolutely continuous with respect to Lebesgue measure m. As
usual, we identify the subspace of M,(R) consisting of all measures which are
absolutely continuous with respect to m with the space L!(IR, m), via the Radon-
Nikodym derivative. Then dom(A4*) consists of all functions in L'(IR, m) which are
of bounded variation. It is now easy to see that X© =dom(4*) = L'(R, m) and that
TO(t)g(x)=g(x—¢) for all t=0. Furthermore,

dom(4®)={ge L'(R, m): g is absolutely continuous and g'e L'(R,m)}

and A®g= —g’ for all gedom(4°).
As usual, the dual of L'(R, m) is identified with L*(IR, m). For fe L*(IR, m) we
then have TO*(t)f(x)=f(x+t) for all =0, and the weak*-generator of
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{T®*(t)},», is given by
dom(4°*)={feL*(R,m):f is absolutely continuous and f’e L*(RR, m)}

and A®*f = " for all fedom(A®*). Moreover, X®® = BUC(IR), the space of all
bounded uniformly continuous functions on R. The generator of {T®®(t)},,, is
given by

dom(4®®)={fe BUC(R): f is differentiable and '€ BUC(R)},

ACPCf=f'for all fedom(A®®). We see that the space Cy(R) is not O-reflexive
with respect to { T'(t)},» o Note that the spectrum of A is ¢(4) ={ia: a€ R} and that

R(% A) £ (x) = }:f(c)em-é*dé

for all fe Cy(IR) and Red > 0. It is easy to verify that R(4, A) is not weakly compact
(see also the comments at the end of this paper).

(i) Let X be the Banach space C(S!) of all continuous functions on the unit
circle S*. Fort 2 0and f e C(S') we define T(t) f (8)= f (0 + t) (as usual we write 1 (6)
for f(e"). The dual of C(S!) can be identified with the space M(S!) of all Borel
measures on S*. As in (i) we find that X© = L!(S!, m) (where m denotes normalized
Lebesgue measure on S') and T®(t)g(0)=g(0 —¢) for all t >0 and all ge L(S*, m).
The adjoint semigroup {T®*(1)},», in L(S*, m) satisfies TO*(¢) £ (6) = f (0 +1) for
all fe L®(S*,m). It is now clear that X®© = C(S'), and hence C(S!) is O-reflexive
with respect to the Cy-semigroup {T'(t)}, 0. We note already that in this situation
the resolvent operator R(4, A) of the generator A is in fact compact for all A € g(A).

3. A Characterization of (O-Reflexivity

First we recall some relevant facts concerning weakly compact operators. Let
Z(X,Y) denote the Banach space of all bounded linear operators from Banach
space X into Banach space Y. An operator Te #(X, Y)is called weakly compact if
the image T(By) of the closed unit ball By is relatively weakly compact in ¥, i.e., if
T'(By) is weakly compact (note that the norm and weak closure of the convex set
T(By)coincide). If Te £ (X, Y), then T is weakly compact if and only if T**(X**)is
contained in Y (identifying Y with its canonical image in Y**¥). Furthermore, the
set of all weakly compact operators from a Banach space X into itself is a norm
closed two-sided ideal in #(X). The proofs of these well-known results can be
found in e.g. [5, Sect. VL4].

Now let {T'(t)},5, be a Co-semigroup in the Banach space X with generator 4.
Itis useful to note that for any A € g(A4) we have the following commutative diagram

X** R, ) X**
/
X re Yo

S

XO* —_— XO*
R(4, AQ)*
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(where the mappings j, jo, and r are as introduced in the previous section).
Furthermore observe that it is immediate from the resolvent equation that R(4, 4)
is (weakly) compact for all 1€ g(A) if and only if R(4, A) is (weakly) compact for
some A€ g(A). The proof of the following proposition is now simple.

Proposition 3.1 (cf. [7, Corollary to Theorem 14.6.1]). If R(4, A) is weakly compact
for e g(A), then X is O-reflexive.

Proof. Take A€ g(A). If R(4, A) is weakly compact, then R(4, A)** (X**)Cj(X). Since
the restriction mapping r, is surjective, it follows from the commutativity of the
above diagram that R(4, A®)*(X©*)Cj,(X). As observed in Sect. 2, this implies
that X is O-reflexive with respect to {T(t)},5o. [

As mentioned in the introduction, it is shown in [7, Theorem 14.6.1], that
O-reflexivity is equivalent to o(X,X®)-compactness of R(A, 4). Since weak
compactness of R(/, A) clearly implies that R(4, 4) is o(X, X ©)-compact, the above
proposition is an immediate consequence of this result. The direct proof above is
included for the reader’s convenience. Our next objective is to show that
O-reflexivity of X is in fact equivalent to weak compactness of R(4, A). The proofis
divided into three lemmas.

Lemma 3.2. Let Y be a closed subspace of a Banach space Z. We denote byi:Y—>Z
the inclusion mapping (so i* : Z*— Y* is the restriction mapping ). Let W be a closed
subspace of Z* and put W, =i*(W). Now suppose that T:Z—Z is a bounded linear
operator which satisfies the following three conditions: (i) T(Z)C Y, (i) THW)CW;
(iii) THY*)S Wy, where Ty=Ty:Y->Y.

Then (T*)*(Z*)CW.

Proof. Defining T, : Z—Y by Tyz= Tz for all ze Z we clearly get the commutative
diagram

z— sz 7
N
Y ™ Y e Y
and so by taking adjoints we find the commutative diagram
AR A A
Y* > Y* Y*
© Tt T8

Hence, (T*2(Z*)= Tyt o Tt o i*(Z*%) =Tt o TH(Y*) S TH(Wi) = T o (W)
=T*W)SW. O

Lemma 3.3. If the Banach space X is O-reflexive with respect to the Cy-semigroup
{T(t)},50, then R(4, A)* is weakly compact for all A€ o(A).
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Proof. Take in the above lemma Z = X* Y= X®, W=j(X) and T=R(J, A)*. Note
that W, =jo(X) and T, = R(4, A®). It follows now from the O-reflexivity of X that
R(4, A®)*(X®*)Cjo(X), i.e., that Tg(Y*)CW,. Hence, we may conclude that
(T**(Z*)C W, and so [R(4, A)*T**(X**)Cj(X), which shows that R(4,A)? is
weakly compact. []

Lemma 3.4. If {T (1)}, is a Cy-semigroup in the Banach space X with generator A,
then [AR(4, A)]*R(u, A)— R(u, A)|—0 as A—co for all peo(A).

Proof. Fix ueg(A)and let M =1 be such that |AR(4, A)|| < M for all 1 = A, for some
Ao€R . For A4=u we have

ARG, ARG A)= ROt A)= 5 {R(s 4)RUL ) — Rt A

1
= 5 (kR A= iR(, A}

and hence
R
A=yl

for all 1>max(Ay,|u|). This shows that |AR(4, A)R(u, A)—R(u, A)| >0 as A—oco0.
Now

ILAR(4, A))* R(p, A)— R(p, A)|
S AR, A) [AR(Z, A)R(p, A)— R(p, A)1[| + [ AR(A, A)R(p, A)— R(p, A)|
S(M+1)]|AR(4, A)R(p, A)—R(u, A)|
for all 1= Ay, by which the lemma is proved. []

IAR(4, A)R(n, A)— R, A)[| = (IuR(u, A + M)

We now formulate the main result of the paper.

Theorem 3.5. Given a C-semigroup {T (1)}, in the Banach space X with generator
A, the following two statements are equivalent.

(i) X is O-reflexive with respect to {T(t)};> 0.

(ii) R(4, A) is weakly compact for Aeg(A).

Proof. Assume that X is O-reflexive. It follows from Lemma 3.3 that R(4, 4)* is
weakly compact for all 1eg(A). Since the set of weakly compact operators is a
closed two-sided ideal in #(X), Lemma 3.4 now implies that R(4, A) is weakly
compact for all A€g(A). The converse implication is Proposition 3.1. [

In certain Banach spaces the result of the above theorem can be strengthened.
For this purpose, recall that a Banach space X has the Dunford-Pettis property if
every weakly compact operator from X into any Banach space Y maps weakly
compact subsets of X onto compact subsets of Y (see e.g. Sect. I1.9 in the book [9]).
Clearly, if X has the Dunford-Pettis property and Te #(X) is weakly compact,
then T? is a compact operator.
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Corollary 3.6. Suppose that X is a Banach space with the Dunford-Pettis property,
and let {T(t)},5 o be a C-semigroup in X with generator A. The following statements
are equivalent.

(i) X is O-reflexive with respect to {T(t)},»o.

(ii) R(4,A) is compact for Aeg(A).

Proof. Only (i) = (ii) needs proof. Suppose that X is O-reflexive. It follows from
Theorem 3.5 that R(4, A) is weakly compact for all 1€g(A4). Since X has the
Dunford-Pettis property, this implies that R(4, 4)* is compact for all A € ¢(4). Now
itis a simple consequence of Lemma 3.4 that R(4, A)is compactforall Le o(4). O

We mention two important examples of Banach spaces to which the result of
the corollary applies.

1) For any o-finite measure space (£, X, u), the space X =L'(€, u) has the
Dunford-Pettis property (this is the classical result of Dunford and Pettis [4]).

2) For any locally compact Hausdorff space Q, the Banach space Cy(€2) of all
continuous functions on Q2 vanishing at infinity (with sup-norm) has the Dunford-
Pettis property. In particular, the Banach space C(Q) of all continuous functions
on a compact space €2, has the Dunford-Pettis property (these results go back to
Grothendieck [6]).

We end this paper by mentioning a criterion for weak compactness of R(4, A).
Let A4 be a closed and densely defined linear operator in the Banach space X with
o(A)# ¢. For xedom(A) define ||x| ,=]x|+||Ax]. Then (dom(4), ||-|,) is a
Banach space with unit ball B, ={x edom(4): | x|| + || Ax[| < 1}. Given 1€ g(4) itis
easy to verify that

(IR(4, A)]| + | AR(A, A)) ™' R(4, A) (Bx) & B, Smax (|4, 1)R(4, 4) (By),

s0 R(4, A)(By) is relatively weakly compact if and only if B, is a relatively weakly
compact subset of X. Furthermore, by the Eberlein-Smulian theorem (see e.g. [5,
Theorem V.6.1]), a subset S of X is relatively weakly compact if and only if S is
relatively sequentially weakly compact. Combining these observations we get the
equivalence of the following three statements:

(1) R(4, 4) is a weakly compact operator for 1€ o(4);

(2) the embedding of (dom(A) Il - 1|4 into X is weakly compact;

(3) any sequence {x,};>-, in dom(4) with sup [Ix,ll <oo and sup |Ax, |l < oo

has a subsequence which is weakly convergent to an element in X
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