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0. Introduction

It has been apparent since the 1968 example of De Giorgi that weak solutions of
elliptic systems in m = 3 independent variables may well have points of discontinu-
ity [dG]. In the geometrically interesting case of harmonic mappings, the example
f(x)=x/|x| of a discontinuous (weakly) harmonic mapping, from Euclidean R™ to
the standard sphere of dimension m—1, was given by Hildebrandt and Widman
[HW]. Thus, the regularity theory for harmonic mappings between Riemannian
manifolds requires a clear understanding of the behaviour of the mapping near its
singular set. If f:M™—>N" is a minimizing harmonic map with a point of
discontinuity O € M, then its homogeneous tangent map is defined as follows. Let
x=(x!,...,x™ be Riemannian normal coordinates at 0; for each 0< 1< 1, define
the blowup f(x):=f(4x), as introduced in [GM]. By means of a monotonicity
lemma, Schoen and Uhlenbeck showed that f, has uniformly bounded Dirichlet
integral with respect to the Euclidean metric in the domain [SU, p. 314]. It follows
that each blowup sequence f};, as A(i)—0, has a subsequence converging locally
weakly to f,:IR™— N. They also show that f; is harmonic and homogeneous, and
that the subsequence converges in the H! norm [SU, p. 329]. We shall adopt the
global approach of Schoen and Uhlenbeck: we choose an isometric embedding of
N"into some Euclidean R¢, and define H*(M, N) to be the subset of H!(M, R¥), the
space of functions having square-integrable first partial derivatives, having values
in N almost everywhere.

The analysis of Schoen and Uhlenbeck left open the important question of the
uniqueness of the homogeneous tangent mapping f,,. This was resolved for any
smooth f, by Simon in [S1] (see also [S2]):

Theorem (Simon). Let f'e H(M, N) be a harmonic mapping which minimizes energy
on some neighborhood of OeM, where N is a real-analytic manifold. Let
foe CHR™\{0}, N) be the weak limit of some blowup sequence f;, as A(i)—0. Then
fo is the unique homogeneous tangent map to f at 0, and the restrictions to the sphere
of radius 1 satisfy, as 1—0,

I fi— follcasm- 1+ 1Dy fillcssm-1y—0.
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Here D, denotes partial differentiation in spherical coordinates of IR™ with respect
to ¢=|x|. Similarly, we shall write D, for partial differentiation with respect to x*,
1Zasm.

Note that Simon’s theorem gives an estimate implying only rather slow
convergence of f to its homogeneous tangent mapping f, (compare inequality (0.6)
below). In the present paper, we show that the order of convergence, in general,
depends on the dimensions of the domain M™ and the target manifold N”. In the
lowest dimensions for which singularities may occur, namely m=3 and n=2, the
convergence of f to f; is controlled by a positive power of |x|. On the other hand,
whenever m=3 and n= 3, we construct examples for which this convergence is
slower than any positive power of |x|.

Let us describe harmonic maps in detail. For feH'(M,N), the energy
functional is

E(f)=1/2}§lV“”(Daﬁl)ﬁfﬂvolm (0.1)

where the Riemannian metric of M is given by dsg; =7,5(x)dx*dx’, (y,,) is the
inverse of the m x m matrix (y*#), and summation over 1 <o, f <mis assumed. The
volume form is d voly, =]/y(x)dx" ...dx™, where y = det(y,,). Since we have chosen
an isometric embedding of N" into Euclidean R?, the inner product < , » may be
understood as the standard inner product of R Via integration by parts, one sees
that fe HY(M, N) is stationary for E if and only if the weak Laplace-Beltrami
operator

Aufi= =" "2D/vy*Dy f) 0.2)
is normal to N almost everywhere. Equivalently, the vector function f satisfies
Au [ +7%(x)B(D, £, Dy f)=0 (0.3)

weakly, where B is the second fundamental form of N in IR“. For any vector fields
U,V tangent to N, we may define B(U, V):=(DyV)*, where Dy is covariant
differentiation in R?, and at the relevant point of N, a vector WeR? is given the
orthogonal decomposition W= W+ WT into vectors W* normal to N and W7
tangent to N. Note that in Eq. (0.3), the coefficients of B depend on f(x)eN.

The homogeneous tangent mapping f,:IR™— N is also harmonic, but with
respect to the Euclidean metric on R™ If we write Af:= —D,D, f for the standard
Laplacian, then the equation satisfied weakly by f is

Lf0:=4f0+B(Daf07Daf0)=0'

In addition to Simon’s result stated above, there is an earlier method developed
by Allard and Almgren in [AA] in the context of minimal varieties, which requires
an additional hypothesis but yields a stronger conclusion. The analogous proof in
the context of harmonic mappings has been carried out by Simon in [S2]. Given a
harmonic mapping f,: S™~ ' — N, that is, one whose homogeneous extension to R™
satisfies Lf, =0, a vector field ¢: S™~ ' — TN along f, is called a harmonic-Jacobi
field if Lf, vanishes to first order in t for any family of mappings f,: ™~ '— N with
df,/ot=¢ at t=0. Equivalently, ¢ is a solution of the linearized equation

A¢p+2B(D,¢",D,f)+DyB(D,f,D,f)=0, (0.4)
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where DB is the covariant derivative with respect to ¢ of the second fundamental
form as a tensor with values in IR¢, and using the natural connection DT of TN for
its arguments. For example if f,: S™~ !> N, —g <t <g, is a one-parameter family of
harmonic mappings, then it follows that ¢ = df,/0t is a harmonic-Jacobi field; in
this case, we may say that ¢ is integrable.

Theorem (Almgren-Allard [AA]; cf. [S2]). Let fe H'(M, N) be a harmonic mapping
which minimizes energy on some neighborhood of O € M.

Let foe C*(R™\{0},N) be the weak limit of some blowup sequence f;;(x)
= f(A(})x) where A(})—0. Assume that f, satisfies the following integrability
hypothesis:

There is a k-parameter family f:(UCR¥ xS" !N of

harmonic maps such that f(0, -)=f, and such that each 0.5)
harmonic-Jacobi field ¢ along f, is equal to ’

%f(tv, )(t=0) for some velR¥.

Then f, is the unique homogeneous tangent map to f at 0, and
Ifi— Jollcasm-1y+ 1Dy fill crsm-1 = CA* (0.6)

for some C and o.>0 depending on N and on f,.

Remark 0.1. As stated in [S2, pp. 272-273], this theorem requires N to be analytic.
But in the proof there, analyticity is used only to conclude (0.5) from a weaker
integrability hypothesis. (cf. [S2, pp. 271-272]). Thus with (0.5), analyticity is not
needed. []

It might appear likely to a casual observer that the two theorems are but special
cases of a stronger result, as yet undiscovered, that concludes the A* convergence
but does not require the strong hypothesis (0.5). However, as we shall show

(Section 1) the A* convergence does not hold in dimensions m, n=3 for stationary
harmonic mappings in the absence of the integrability hypothesis;

and, on the other hand:

(Section 2) the integrability hypothesis (0.5), and therefore A* convergence, always
hold when the domain M has dimension 3 and the target manifold N has dimension 2.

It is interesting to note that this universal integrability holds precisely in the
first dimensions in which regularity fails. In fact if n=1, with any m, then we are
dealing with weak solutions of a single uniformly elliptic equation, which are as
smooth as the coefficients allow (for reference see [G, p. 53]). If the domain
dimension m =1, then harmonic mappings become geodesics with constant speed
parametrization, and weak solutions are again smooth [M, p. 28]. In the case of a
two-dimensional domain, we may refer to Morrey’s result on general variational
problems [M, Theorem 1.10.4(iii) and pp. 34-37], from which it may be seen that a
weakly harmonic mapping is as regular as the target manifold N.



542 R. Gulliver and B. White

Itis also interesting to note that the method of [S1] requires analyticity of N to
conclude uniqueness of the limit map f,, whereas the method used here gives
uniqueness and fast convergence without assuming analyticity.

The first author would like to thank the Consiglio Nazionale delle Ricerche for
its hospitality at the University of Trento. The second author would like to
acknowledge the support of the Institute for Mathematics and its Applications at
the University of Minnesota, and of the Alfred P. Sloan Foundation.

1. An Example of Logarithmic Convergence

We begin by presenting an example of a stationary harmonic mapping f: M3 — N3,
having a single point of discontinuity, where the domain M and the target
manifold N each have dimension three. Once this example is constructed, it may be
extended to form examples f;: M7T—N] of harmonic mappings for arbitrary
dimensions m=3 and n=3, having the same rate of convergence to their
homogeneous tangent mappings. In fact, we may choose M, :=M x (S)"~ 3 and
N,:=NxR""? as Riemannian product manifolds and then define f;(x,6)
=(f(x),0)e N,, where (x,0)eM x(S)""3, 6=(b,,...,0,) and where (u,t)e N
xIR"73, t=(t, ...,t,). Then the logarithmic convergence of f to its homogeneous
tangent mapping f, will imply a similar property for f; (although the homog-
eneous tangent mapping for f; will have a singular set of the form R™ 3 CIR™; see
Remark 1.1 below).

We choose M3 = B3 CIR?, the unit ball with the standard, Euclidean metric,
and refer to standard coordinates x=(x!,x% x%)=ow, weS?, 9=0. The target
manifold N* shall be a hypersurface of revolution in IR*, generated by the curve
r=1y(z) in the (r, z)-plane:

N={(v,z)e R*xR:|v|=T(z)}.

We shall also write v=rweR?> where w e S%,r20. For simplicity, we may replace
the coordinate z by the arc-length parameter u=u(z) for the generating curves:
(du/dz)*>=1+(dIy/dz)?, and define I'(u) such that I'(u(z)):=Iy(z). Then the
coordinates (w, u)e S? x R may be used to describe the Riemannian metric of N
induced from the Euclidean metric of IR*:

ds? =TI (u)?ds¥(w)+du?,

where w e S?, ueR and ds? is the canonical metric of constant Gauss curvature 1
on the sphere X =52 We consider the O(3)-equivariant mapping f(x)= f(ow)
=(w,u(g))€ N in terms of the coordinates (w,u)e S> x R for N, determined by a
real-valued function u=u(g) of one real variable. Then the energy of f may be
computed in terms of u(g):

E(f)= | [(du/de)* +2(Tw/e)*1e*de dvoly(w)
— 47 | [oX(du/de)? + 21w )de. (1.1)
0

as follows from (0.1). The Euler-Lagrange equations may be computed directly
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from this formula for E(f), to show that a continuous mapping f: M — N of the
form f(ow)=(w, u(p)) is stationary for E if and only if u(p) is a weak solution of

d ( ,du ,
& (Q %> =2I(u(@)I"(u(0)- (1.2)
The reader will observe that the ordinary differential Eq. (1.2) has a singular point
at 9=0.
Let us consider in particular the family of functions

1

u(Q)= ———,
@ |/C—2loge

for various constants C=0. As ¢—0, u(g) converges to zero more slowly than any
positive power of g. A direct computation yields d(¢*du/dg)/dg = u® + 3u® for each
value of C. This computation and (1.2) lead us to consider the specific function

rw=)/T+u*/4+u°2. (1.4)

This choice for I" leads to I'(u)=Iy(z), via a hyperelliptic integral, defined for all
—00<z< . In other words, (1.4) corresponds to a complete hypersurface of
revolution N3 CRR*.

The homogeneous tangent mapping f,:IR*—N is given by fy(ow)=(w,0),
which is an isometric parameterization of the totally geodesic sphere
2o={(w,u)e N:we S?,u=0} at the narrowest point of N. Recalling the Allard-
Almgren theorem stated above, it is of interest to consider whether harmonic
Jacobi fields ¢ : S?— TN along the restricted mapping f, : S>— N are integrable. In
fact, any harmonic mapping f:S?>— N must have its image in X,. Namely, the
parallel sphere 2y :={(w,u) e N: we S%,u= K} has principal curvature vectors, as
a submanifold of N, with negative or positive component in the direction of d/0z,
-when I'y(z)is positive or negative, respectively. With I" asin (1.4), we have ul"(u) >0
for u=0. It follows that [u| may not have a positive local maximum along a
harmonic mapping, and in particular, u=0 for any harmonic mapping g:S*—N,
by compactness of S%. On the other hand, I'"(0) = 0 implies that f(w):=(w,t)e N is
harmonic to first order at t=0, which means that J/0z=df(w)/0t, at t=0, is a
harmonic-Jacobi field along f;. In particular, the integrability hypothesis is
violated.

It is apparent that the mapping f:B,—N we have constructed is not
continuous at 0; for this reason, we have yet to show that it is a weak solution of the
Euler-Lagrange Egs. (0.3). To show that f'e H'(M, N),itis enough to show that the
energy integral (1.1) is finite. But odu/dg = u? for the family of functions (1.3), which
implies that the integrand of (1.1) is uniformly bounded on 0=< ¢ <1. Next, recall
that f is a weak solution of (0.3) provided that for all he C*(M,IR*) with compact
support, there holds

<e=1, (1.3)

! YD, f, Dgh>+(B(D, £, Dy f), hy)dvoly =0. (1.5

Write h="h, + h,, where h,(x)=0 for |x|<e. Then it follows from (1.2) that (1.5)
holds with 4 replaced by h,, since f is smooth on suppt(h,). By choosing h, to be h
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times a standard cutoff function, we may achieve that hy(x)=0 for |x| = 3¢ and that
|Dhol <|Dh| + |h|/e. Since h is uniformly bounded, we have ||| 2,, < Ce*'?, and in

particular, hy—0 in H'(M,RR*) as ¢—0, implying that | <D,f, Dsho»dx—0.
M
Meanwhile, since fe H'(M, N), we have B(D, f, D, f)e L'(M,IR*) and hence
AI{(B(Daﬁl)/jf), ho>dx| = ||| Bf IB(D, [, Dy f)ldx—0.

This shows that f is a weak solution of the Euler-Lagrange equations. We have
proved the following

Theorem 1. Given any m,n =3, there is a real-analytic Riemannian manifold N*, and
a harmonic mapping f:B7—N" with a discontinuity at O€ M, such that f(ow)
- fo(w) and oD, f (ew)—0, as ¢—0, uniformly in C*(S?), both more slowly than any
positive power of o.

Remark 1.1. As observed above, for m>3 the example leads to a homogeneous
tangent map with singularities on an R™~3. The analysis of [AA] and of [S1] is
problematic in this case. However, we may modify the example to construct an
isolated singularity, by defining M =B} CIR™ and N ={(v,z2)e R™ x R : |v| = [}(z)}
in close analogy to the example above. Let f: M—N be the O(m)-invariant
mapping f(ew)=(w, u(g)) where u(g) belongs to the one-parameter family (1.3).
Choose the hypersurface of revolution N so that

[(u)= [/1 n 2;:'"*_2]) ut+ m1_1 us, (1.6)

in terms of the arc-length parameter u. Then f: M™— N™is a stationary harmonic
mapping as in Theorem 1, which moreover has an isolated singularity. This carries
over to any dimensions n=m= 3.

Remark 1.2. It might be noted that both theorems on convergence to the
homogeneous tangent map, as stated in the introduction, require f to be locally
mimimizing, while our examples are only stationary (see however Remark 2.1
below). In fact, it is a rather nontrivial exercise to prove that any specific
discontinuous mapping minimizes energy. Recently, Schoen and Brézis-Coron-
Lieb have announced independent proofs that the mapping f(x)=x/|x| from the
Euclidean ball to $? has minimum energy. In analogy with these results, we expect
that the examples with isolated singularities just constructed have minimum
energy with respect to their Dirichlet boundary data.

Remark 1.3. Suppose that the function I'(u) is an arbitrary real-analytic function
which assumes its positive minimum value at the unique critical point u =0, which
is degenerate: "(0)=0. Let k+ 2 = 4 be the order of the first nonzero derivative of
I' at 0 (k must be even). Then there are solutions of the ordinary differential
Eq. (1.2) with u(g)—0. Specifically, these solutions have the asymptotic behaviour
u(0)(C—kalogp)'’*—1 as ¢—0, for some real constants a and C. This behavior
may be proved by first finding an invariant manifold of the form gdu/do = ®(u),
where @ is a function of the form ®(u)=au** ! + O(u**2), and where 2I'(u)I"(u) has
the same leading term.
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2. The Integrability Hypothesis for m=3 and n=2

As observed in the introduction, a harmonic mapping: M™— N" must be smooth if
the target dimension n=1, if the domain dimension m =1 or if m= 2. On the other
hand, if m and n are both = 3, then as we have just seen, there are discontinuous
harmonic mappings with only logarithmic convergence to their homogeneous
tangent mappings. This leaves exactly one pair of dimensions to be investigated:
m=3 and n=2. In these dimensions, the homogeneous tangent mapping is a
harmonic mapping from S2 into N2, which may be expected to show a rigidity not
apparent in higher dimensions. In fact, we have the following

Theorem 2. Let M* and N? be Riemannian manifolds of dimension 3 and 2,
respectively. Let f: M*— N2 be a locally minimizing harmonic map near O € M. Then
f converges to a unique homogeneous tangent mapping f, at a rate controlled by a
positive power of the distance ¢ from 0, as in inequality (0.6). Moreover, if f has a
discontinuity at 0, then N has the topological type of the two-dimensional sphere or
projective plane.

In order to apply the Allard-Almgren theorem stated in the introduction, we
need the integrability hypothesis for an arbitrary harmonic mapping f,:S?2— N2
First, we shall observe that f, necessarily enjoys a much stronger property than
harmonicity, as is widely known. We write g in place of f, for the three lemmas.

Lemma 1. Let X%, N? be two-dimensional Riemannian manifolds, N>CRY, and
ge H'(Z, N) a harmonic mapping. If X has the topological type of S* or of RP?, then
g is a conformal mapping. If moreover N is not of the topological type of S* or RP?,
then g is constant.

For completeness, we give a proof for Lemma 1. Let z € € be a local conformal
parameter for 2: that is, z=x+ iy where ds? = A(z)*(dx?+dy?), and A(z)>0. The
existence of z follows from the uniformization theorem. Then as a mapping into
RY g has the differential

dg=g.dx+gdy=g.dz+g.dz,

where the subscripts denote partial derivatives, and the complex partial deriva-
tives are defined by g, = (g, —ig,)/2 and g, = (g, +ig,)/2, as usual. Let the Euclidean
inner product ¢, ) of R? be extended as a complex-bilinear form on €¢, and
similarly, let the second fundamental form B of N, as a submanifold of R be
extended as a symmetric bilinear tensor on the complexified tangent bundle to N,
with values in its complexified normal bundle. We may compute 124,;g= —4g,,
and A*y*B(D,g, Dyg)=4B(g., g;). The Eq. (0.3) for a harmonic mapping becomes

g:2=B(g8:). 2.1)

As noted in the introduction, since X has dimension 2, a weak solution g e H'(X, N)
must be of class C2.

Recall that a conformal mapping g:X—N is one which preserves the
Riemannian metric up to a variable factor o: ¥—[0, 00), that is, such that g*ds?
=0(z)ds;. For a conformal parameter z=x+iy, this is equivalent to |g,|?
=|g,|*(=0A? and <g,,g,>=0. These two equations may be written in complex
notation as {g,,g,>=0.
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We shall first show that <{g,, g,> is locally holomorphic, or equivalently, that
(8- 8:0:=0. But g, g,>,=24g,, 8.2) =2<g;, B(g., 8&:)> by Eq. (2.1). On the other
hand, the real and imaginary parts of g, are tangent vectors to N, while B(g,, g,)isa
(real) normal vector, so this last quantity vanishes identically. This shows that
{g.,g,» is holomorphic on the domain of definition of the parameter z.

Now if X has the topological type of RP?, then we may compose g with the
covering projection from the Riemannian universal covering space of 2. Thereby,
we may assume that X has the topological type of S2. It follows from the
uniformization theorem that X is conformally equivalent to the standard
S2=CP!, and in particular, we may cover X by two conformal coordinate charts
z:C-2X and {:C—Z satisfying z{=1. By the chain rule, we obtain z?{g,, g,>
=(*<g,, &>. Now {g,,g;> is a holomorphic function at { =0, which implies that
1<{g,»g.>| £ C|z|~* for |z| sufficiently large, and hence {g,, g,> =0 by the maximum
principle. This shows that g is a conformal mapping (some readers may prefer to
invoke the Riemann-Roch theorem here).

Finally, if N2 is not topologically a sphere or projective plane, then its universal
cover N is conformally the disk or the plane, and g lifts to a conformal mapping
g :5%— N. But a nonconstant conformal mapping must be an open mapping, which
would imply that g(S?) is both compact and open as a subset of N, a contradiction.
Therefore § and g must be constant mappings. This finishes the proof of
Lemma 1. []

In analogy with harmonic-Jacobi fields along a harmonic mapping, we may
define a vector field ¢: Z— TN along a conformal mapping g: 22— N? to be a
conformal-Jacobi field (or infinitesimal conformal mapping) if it satisfies

{p,,8.>=0. (2.2)

This is immediately seen to be equivalent to the vanishing of the first variation of
{8, 8,> when g is varied in the direction of ¢.

Lemma 2. Let Z, N be two-dimensional Riemannian manifolds, g: £ — N a harmonic
mapping, and ¢ : 2 — TN a harmonic-Jacobi field along g. If X has the topological
type of S* or of RP?, then g is a conformal mapping, and ¢ is a conformal-Jacobi
field.

We shall show that {¢,, g,> is a holomorphic function on the domain of any
conformal parameter z. Lemma 2 will then follow as in the proof of Lemma 1.
We may rewrite (0.4) in the form

¢..=B(¢l,8,)+B(g., ¢7)+D,B(g.,8). (23)

Observe that ¢, is the same as D, ¢, since ¢ is a vector field along g. The
component of ¢, normal to N is therefore ¢;=(D, @) =:B(g,,¢)=B(¢,8.)
=(D,g.)". Further, since the values of B are normal vectors to N, we have
{g,, B(g,,g,)> =0. Differentiating this last expression in the direction of ¢ yields

<gz9 Dth(gz’ g2)> == <D¢gz7 B(gz9 g2)> = <(pz: B(gz’ gt)) .
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Using twice more the fact that B has values normal to N, we obtain from (2.3) that

<gza (pz2> = <gza D(pB(gza g2)> =- <(Pz’ B(gz’ g2)> .

Recalling (2.1), we conclude that {g,, ,, =0, so that {g,, ¢, > is holomorphic. This
completes the proof of Lemma 2. []

Lemma 3. Let g: X — N be a nonconstant (branched ) conformal mapping of degree
d, where X is topologically S* and N is topologically S* or RP2. Then there is a
(4d + 2)-parameter family

f:(UCR**2)x 3N

of conformal mappings with f(0, -)=g(-) such that every conformal-Jacobi field
along g is equal to

d
5/ ) (=0

for some velR*4+2,

To begin the proof of Lemma 3, we may assume that N is topologically S?
(otherwise lift g to the universal cover). Recall that ¥ and N are conformally
equivalent to €:=Cu{w}; we write conformal diffeomorphisms T, :C— 2 and
T,:€— N. Then g is represented by a (branched) conformal mapping w,: €C—€
(Thatis, T, o wy =g o T7). The conformality relation {g,, g,> =0implies that wy, =0
or wo,=0. We may orient X so that wy, =0 holds. Then as is well known, w, must
be a rational function: wy(z)=P(z)/Q(z) for some polynomials P,Q having no
common factor other than constants. Since g has mapping degree d,

max {degP,degQ}=d.
Suppose that wy(o0)= 00, or equivalently,
deg(P)=deg(Q)=4d
(otherwise modify T;). Note that w, belongs to the (4d +2) parameter family
_P+4
Wyq,B= éﬁ’

where A and B are polynomials with degree (4)<d and degree (B)<d—1. Each
w, g corresponds to a conformal map g, 5, and g, o=g.
Now let ¢ be a conformal-Jacobi field along g. If wy(z) # oo, then for some real

a(z) and B(z)
T, (9(Ty(2) = 1(2) D (wo(2)) + B(2) D (wo(2)) ,

where w=u+iv and {D,, D,} is the coordinate basis of vectorfields on C. Write
7(z):=a(z) +if(z). The equation {g,, ¢,> =0 for a conformal-Jacobi field becomes
0, U, + .00, =0 where wy(z):=uy(z)+ive(z). This is immediately equivalent to
y,=0 since w, has only isolated branch points. Thus ¢ is represented by the
function 7, which is holomorphic except at the poles of wy,.
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We need some information about these singularities. Near any pole z, of w, (so
Wo(z;)=00) we may consider the conformal parameter w:=1/w. Then g is
represented by the meromorphic function w, with wy(z,) =0. The vector field ¢ is
represented in terms of D, and D, by a locally holomorphic function §(z). It follows
from the chain rule that y(z)= —w(z)?$(z). Therefore, y has at most a pole at z,,
whose order is at most twice the order of the pole of w,,. It follows that y(z) may be
written globally as

1(2)=R(2)/Q(2)*

for some complex polynomial R(z). Also, since wy(00)= 00, y(c0)=co and thus
deg(R) < deg(Q?) =2d. Now we must show that for some polynomials 4 and B with
degA<d and degB<d—1,

d
P=7 8ea,8(t=0)
e,
d AQ—BP
ie.,

R=AQ—BP.

Now since the complex polynomials form a Euclidean domain, and since P and Q
are relatively prime, there exist polynomials A; and B, such that

R=A4,0—B,P.
Now divide B; by Q to get polynomials S and B such that
B,=SQ+B
deg(B) <deg(Q).
Then, letting A=A, —SP, we have
R=AQ—BP.

Since deg(R)<2d and deg(BP)<deg(Q?)=2d, it follows that deg(4)<d. This
completes the proof of Lemma 3. []

Theorem 2 is a direct consequence of the three lemmas. In fact, since f is locally
energy minimizing, it has at least one homogeneous tangent map f, : R*— N [SU,
p. 314]1.If N is not S2 or R P, then f, is constant by Lemma 1, and therefore f is C*
(indeed smooth) in a neighborhood of 0 [SU, p. 315]. In particular, (0.6) holds.

On the other hand, if N is $* or RP? and f, is not constant, then by
Lemmas 1-3, it satisfies the integrability hypothesis (0.5) of Simon’s version of the
Allard-Almgren theorem. This completes the proof. []

Remark 2.1. Theorem 2 (as well as the theorems quoted in the introduction) also
apply to mappings that are harmonic but not necessarily energy minimizing. In
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that case, however, one must assume that at least one blow-up sequence f;
converges strongly (say in C* on compact subsets of R™\ {0}) to the homogeneous
limit f,.
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