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In [13] Rankin introduced a new method into the theory of automorphic forms
which he used to determine the analytic properties of Z 7(n)>n"° where 1 is the

Ramanujan function. We can reformulate his results as follows Let n, be the
automorphic representation of PGL,(Q,) associated with 4. Let L(s, w,r) be the
L-function associated with an automorphic representation = of G, where G is a
reductive algebraic group over the base field k, and is a finite dimensional
representation of the L-group “G. Then Rankin proved that

s L(s, m 4, Sym?){(s)

where Sym? is the symmetric square representation SL,(C) and { is the zeta
function of Q (including the archimedean factor), has an analytic continuation as a
meromorphic function into C. It is invariant under the replacement of s by 1 —s.
The poles of this function are located at s=0,1 and are simple.

The same method was rediscovered shortly after Rankin’s work by Selberg
[14] and is usually called the Rankin-Selberg method.

At the Antwerp conference in 1972 Shimura [16] described a variant of the
Rankin-Selberg method which yielded the Dirichlet series Y t(n*)n”", ie.

nx=1
L(s,m4,Sym?) which he showed to be holomorphic. This was a significant

sharpening of Rankin’s result and had important consequences — see, for example,
[4].

The method of Rankin-Selberg can be generalized very substantially; see [9,
12] for more details. In particular, if 7 is an automorphic representation of GL,(k,)
with central quasicharacter y one has an Euler product L(s, = x «) which has an
analytic continuation as a meromorphic function into the entire plane. If x is
unitary then s=1 is a simple pole of L(s,mxm) if and only if w4, the
contragredient of z; still assuming 7 to be unitary the function L(s,n x ) is
holomorphic except possibly at s=0, 1, and there is a functional equation relating
L(s,m x n) and L(1—s, 7 X 7).
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Since L(s,n x )= L(s,n, Ten?) where Ten? denotes the tensor square of the
standard representation of GL,(C), and since

Ten? =Sym?@ 4>

(Sym? =symmetric square, A*=alternating square) gives the decomposition of
Ten? into irreducible representations we have

L(s, 7t x )= L(s, m, Sym?) - I(s, m, A?).
In particular, when r=3 we have moreover
L(s,m, %)= L(s, t®y)

where L(s, n) is the L-function of [8].

Since the analytic continuation and functional equation of I(s, t®my) are also
known we deduce the analytic continuation as a meromorphic function, and the
functional equation of L(s,z,Sym?). What does not follow from this is that
L(s, m, Sym?) should have only finitely many poles. This has, however been proved
by a different method by Shahidi [15]. Indeed if = is cuspidal one might expect
L(s, m, Sym?) to be entire, but this is not the case for the following reason. Let 7, be
a cuspidal automorphic representation of GL,(k,) with central quasicharacter y,;
let 7 be the Gelbart-Jacquet [4] lift of @, to GL,(k,). Then = is cuspidal and

L(s, m, Sym?) = L(s, m;, Sym*) - L(s, %)

which has a pole at s =1if y? = 1. In fact L(s, = x ©) has a pole at s =1 precisely when
n>7; see [9, p. 368]. The condition y?=1 ensures that the condition =7 is
fulfilled. Conversely, by a theorem of Flicker’s [3, II, Theorem 2.9] this condition
implies that 7 is a lift of an automorphic representation n; with y3=1. Thus the
only case in which L(s,m,Sym?) can have a pole is that which we have just
discussed.

It is the objective of this paper to give a integral representation of L(s, 7, Sym?)
analogous to the one given by Shimura in the case of GL, in [15, 17] (see also [4]
for an adelic representation-theoretic account of Shimura’s method). Shimura’s
method is based on the consideration of the Rankin-Selberg convolution of an
automorphic form of the representation n with a theta-function. Here we shall do
the same, although the theta-function can no longer be constructed using the Weil
representation but by the technique of Eisenstein series used in [10]. The integral
representation is given in Proposition 3.2 and Corollary 4.2. A peculiarity of our
method is that we exploit the fact that the representation to which the theta-
function belongs is degenerate i.e. it has no Whittaker model.

From this integral representation we would expect to be able to deduce that
L(s, m, Sym?) has only finitely many poles. Unfortunately we do not reach this goal
in general. Let L(s, #, Sym?) denote the v'* factor of L(s, n, Sym?). We shall be able
to limit the poles of a function

H M',(S) : H Lv(S’ 7, Symz)
veS vé¢S

where M, runs through a certain vector space. Unfortunately we have not been
able to show that for a archimedean v this space has no common zeros in the half-
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plane Re(s) =4. The “local integrals” M, have a more complicated structure than is
usual since they involve three representations, all of which are infinite dimensional.

It also follows from our method that when the characteristic of k is neither 0 or
2 that L(s,n,Sym?) has a pole at s=1 if and only if

[ o(g)0,(g)0,(g)dg +0

G1\GA [ZA

where ¢ is some automorphic form of = and 6,, 0, are certain “theta functions,”
albeit not ones arising from a Weil representation. In view of the discussion above
this integral is not identically zero when = is a lift of an automorphic representation
of GL,(k,) for which y?is the fourth power of a GréBencharakter. We presume that
the same holds when the characteristic of k is O but we have not been able to
overcome the technical difficulties (see Proposition 5.3 and the remarks following
it).

For our construction we shall have to make use of the theory of Eisenstein
series. In Sect 2 we shall recall those facts which we shall need. In Sect. 3 we shall
construct the Rankin-Selberg integral which is the central subject of this paper. In
Sect. 4 we shall evaluate the local integral at a generic place. In Sect. 5 we prove the
appropriate local functional equation. Finally in Sect. 6 we shall summarize our
results.

We should note that Shahidi has given in [15] a quite different approach to the
investigation of L-functions of the type considered here. He derives these results
from the theory of Eisenstein series, and he proves results which are much more
general than ours, and in this special case, more precise [15, Corollary 6.7].
Nevertheless the method described here is interesting in itself and may well have
applications which the method of [15] cannot have.

In this paper k will denote a fixed A-field of characteristic +2. We shall denote
for an algebraic group G defined over k the group of k-points of G by Gy, of
k,-points by G, where v is a place of k, and of k ,-points by G, where k, denotes the
adele ring of k. Let Z(k) denote the set of places of k; let (k) (resp. 2 (k)) be the
subset of archimedean (resp. non-archimedean) places.

We shall work with GL,, GL; and subgroups of these. Let P (resp. Q) be the
standard (2,1) (resp. (1,2)) parabolic subgroup of GL;. Let N denote the upper
triangular unipotent subgroup of GL; or GL, (it will be clear from the context
which is meant). Let M(P), M(Q) be the standard Levi factor of P, Q; let N(P)
= M(P)nN, N(Q)=M(Q)nN. Let U(P), U(Q) be the unipotent radical of P, Q. Let
H denote the diagonal subgroups of GL, or GL5; again it will be clear from the
context which is intended. Let M be the normalizer of H, W= M/H. Let Z be the
centre of GL, or GL;. Let B=H - N.

Over alocal field F let p (resp. (P), u(Q)) denote the square root of the modulus
of the adjoint action of H(F) (resp. M(P) (F), M(Q)(F)) on the Lie algebra over F of
N (resp. U(P), U(Q)). This also yields positive quasi-cahracters u, of H,, pp 4 of
M(P), and P,, pg 4 of M(Q), and Q,.

Let 1, = { +1}. Let us denote by G the 2-fold metaplectic over of G when this is
defined; if G, C G is such that there exists a natural splitting of this covering then we
denote by G* the corresponding isomorphic copy of G, in G. We shall take those
facts which we need concerning metaplectic groups from [10].
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We recall here briefly the description of the metaplectic covers of GL, over local
fields and rings of adeles. These covers are characterised by their restrictions to the
diagonal subgroup H. Let F be a local field and let (-, -); be the 2-Hilbert symbol on
F. Let diag(a, ..., a,) be the diagonal matrix with g, as the ii*™ entry. The function
c:F* x F*—{+1} given by

odiag(ay, ...a,), diag(@, ..., @)= ] (@, @)
i<j

defines a 2-cocycle on H which extends to a 2-cocycle of GL,(F). The centre of the
covering group is the lift of Z; where

Zy={zI|ze F*} (rodd)
and
Zy={zI|ze F*?} (reven).

In the case of GL; we can identify M(P)(resp. M(Q)) with GL,(F). Z by embedding
GL, in the upper (resp. lower) 2 x 2 diagonal block. As the lift of Z is the centre of
GL4(F) thelifts of the two factors commute. This carries over to the adelic case. The
covering groups are therefore given by 2-cocycles and are so endowed with a
section which we shall denote by s.

Finally we shall write = (or a similar letter) for a class of representations. If x is
automorphic we shall write n,, for the local component at v. We shall often choose a
representation space V of «; on this we shall write the action of G on V as left-
multiplication; i.e. G x V—V; (g, v)—gv. We shall take an automorphic represen-
tation to be irreducible unless the contrary is stated.

2. Eisenstein Series

We shall be concerned here with Eisenstein series associated with representations
of the two-fold covers of P, and Q, induced to that of GL,(k,). Let V be an
automorphic representation of GL,(k,) and let L: V—C be a GL,(k)*-invariant
linear form. Let

A(f)= (| Linf)dn, feV
NiNR

be the corresponding N*-invariant linear form. This is identically zero if (¥, L) is
cuspidal, otherwise not. Let x be a quasicharacter of Z,, trivial on Z¥ and such that
x| 11, is non-trivial. We shall also assume that y, acts non-trivially on ¥; we say then
that ¥ and y are “genuine.” Considering GL,(k,)Z, as M(P), or M(Q), as above
we construct two new representations, which we denote by ¥, and ¥, of M(P), and
M(Q),. The vector space is the original ¥, the action of GL,(k,) is the original one,
the action of Z, is by y. The linear forms L, A yield linear forms on V yield linear
forms Lp, Ap (resp. Ly, Ag) on Vp (resp. I7Q). Note that Ly (resp. Lg) is M(P)§- (resp.
M(Q)f))-invariant.

Let Qp (resp. ) be the group of quasicharacters of M(P), (resp. M(Q),) which
are trivial on M(P),Z,) (resp. M(Q),Z ,). Recall that 2, and 2, have the structure
of complex manifolds. For we Q, (resp. we Q) the real number o(w) by |w(x)|
= up(x)™ (resp. |w(x)| = pp(x)"). This is well-defined. For w e Qp (resp. Q) we
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define V(o) =V,@(0pp), ¥ o(@)=V,®(@pg). We regard Vy(w) and V y(w) as the
fibres of holomorphic vector bundles ¥, and VQ over Qp and Q, respectively. We
regard V,(w) and I7Q(a)) as representation spaces of P, and 3, on which U(P)¥ and
U(Q) act trivially. We define Fp(w) to be the space of functions f : GL(k,)— Ve(w)
satisfying

f09)=4(g), veP,, geGLyk,),

and which satisfies the usual smoothness conditions (cf. [10, IL.1]). This is, by right
multiplication a representation space of GL3(k,). We can construct Fy(w), we 2,
analogously. Note that for f € Fy(w) the map

S=Lp(f(2)

is a linear form left-invariant under M(P){ U(P)¥. The spaces Fp(w) and Fy(w) are
the fibres of holomorphic vector bundles Fp and F, over Q2 and ,. We represent
sections f € Fp(U), U an open subset of Qp, by g f(g, w), g€ GL4(k,), e U and
analogously with Q instead of P.

There exists ¢(V)eR so that over the open sets {weQp|a(w)>c(V)} and
{weQg|a(w)>c(V)} we have maps

EP:FP_’(OP and EQ:FQ"")COQ

where Op (resp. 0) is the structure sheaf of Qp (resp. Q). The maps Ep and E,
(Eisenstein series) are defined by

Ee(fo)= ¥ Lf(po)
yePR\GL3(k)*
and

Efffw)= ¥  Lolf(y,w).
7€ QE\GL3(k)*
Let 4 (resp. .4 ,) be the sheaf of meromorphic functions on Qp (resp. 2y). Then E,
(resp. E,) can be continued to maps (over Qp (resp. Q)

EP:FP—N/”P, EQ:FQ—')J%Q.

This is one of the central results of the theory of Eisenstein series (see [11, p. 276]).
One can also give a functional equation for the Ep, E, and describe the
singularities. This we shall now discuss.

We fix an additive character e, of k, which is non-trivial but trivial on k. We
shall assume that measures on k, (or k,) are self-dual with respect to e, (resp. e, ).
In particular the measure of k,/k is 1.

We shall assume first that ¥ is cuspidal — we shall later assume that it is
exceptional, that is, that ¥ is a cuspidal Weil representation (see [5, 3.31; [6, 4.4]).
Let

0 0 1 010
Wi3= 1 0 0 N Wiz = 0 0 1
010 1 00
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so that
Wi sM(Pwi5=M(Q), w3, MQ)w5=M(P).
We define Qp—Q,; w— @& where
A(X)=w(Wy3,xW155)

and analogously Q,—Qp; w—®. Note that &= w. Also o(w)+ o(®)=0. There are
intertwining operators defined if o(w)> (V)

Ing: V o) = Vp(); fior (gH ob S Wisang, w)dn)
Iop: V(@)= Volw); fi (g'—> U(;} - S(Wi23ng, w)d")

and one has the following standard evaluations of the constant terms:
j EP(nf; w)dn = LP(f(L w)) >

UPE\UPRK

] Ep(nf, w)dn= LQ((I pr Y, w)),

()AL ()
Eo(nf, w)dn=Ly(f (1, w))
(AN T

| Eqnf,o)n=LIpof)(I,)).

U(PY\UMP

and

The study of Eisenstein series reduces to a large extent to the study of the I, and
Igp. If Vi ®V, then the operators [ po and Ip are determined by their local
analogues. In partlcular this allows us to regularize the I o and I ,p, as we shall now
describe.

Although one can do this without restricting ¥ further we shall assume that ¥ is
exceptional as well as being cuspidal. This means that there exists a
GroBencharakter o of k¥ so that:

i) if a,(—1)=1 then ¥, = V(a¥) with

o¥(s(h?*) = p(h)x(det(h)  (heH,)

where V,(a*) has the meaning of [10, 1.2]. This means that Vy(o*) is the irreducible
quotient of a principal series representation (of @(ot/?[|1*, oy 1*||Y*) in the
notation of [ 5, Sect. 2]). The covariants of V(a*) with respect to the lift of the upper
triangular unipotent group is an irreducible H,-module on which s{h*|he H,} acts
by a*u 1. This suffices to identify Vy(a*) with the r, of [5, Sect. 2].

ii) there exist places v such that «,(— 1)= —1; at such places ¥, is cuspidal if v is
non-archimedean and square-integrale if v is archimedean. Here V, is again r, (see
[5, Proposition 3.3.3]).

The construction of the global V is given in [5, Sect. 8].

WH, v(wv) = {f ’G\LB(kv)—’ 17vl f(’)"g) = wv(‘)))ﬂﬂ, v(y) ' (Yf(g))’
yell,, geGL,(k,), and f locally constant},
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where II1=P or Q. Then we have maps
Lop: Wp, (@,) > Wy, (@)
defined as the regularization of
Uorf) (@)= u<£ . f(wy3ong)dn

and
IPQ : WQ, u(wv) - WP, v(wv)

defined as the regularization of
(IPQf) (8= [ flwiy3ng)dn.
uP)
These are the local factors of the global intertwining operators defined above. If
vy € Wy, (w,) is such that
vy(gk)=0v(g) for keK}

where this is meaningful, and normalized by

v, ()=v;

where 19 is the standard K*-invariant vector of ¥, (see [10, 1.2]). This defines the
family of vectors with respect to which the tensor product of the Wy (w,) can be
taken. One has then at an unramified place that ([10, Proposition 1.2.4])

Lo Lot )
T Lot 21

and
6.,—3.,211—1/2
IPQUB= L(wvgv—gvzllvs 2 ) 3-
L(a)va!] x!)l If)/ )
where
2e(x) = 1,(s(x1))
and
10 0 1 0 0\!
w,(X)=w,|0 x 0, resp. o (x)=w,|0 x 0
0 0 1 0 0 1

It follows from this and [10, Proposition 1.2.3] by the usual techniques of the
theory of Eisenstein series

Liw°a®y 2] [IZ)Ep(f; w)
L%~ y?| I)Eo(f, )
are holomorphic in w. Moreover one has the functional equation
Liw®a [ 1Z*)Eq(f, ») o
=s(0® ") |5 )L™ 2 (3D ( T 3;’2 ””"“A.ii,ﬁ) Irof, w)

and
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and an analogous one with P and Q interchanged. Here L and ¢ are the usual Tate
functions; see [11, pp. 110, 111]. Note that if f = ® f,, f,=0v? almost everywhere,
then

6,—3,2 3/2 6,—3,.21(3/2
L((D (1— X ” ”A )IP f= ® L(Covcx—v XUH_v ) I f;;
L% 32 117 77 S (Lwde, 31y 1) 7
and almost all factors here are equal to v?. _
This suffices for the discussion of the case where V is cuspidal. The case where ¥

is an exceptional non-cuspidal representation is similar although a little more
complicated. In this case we see that

L@y ™| RP)EHf, )

L3 I13)Eo(f, w)

have at most simple poles where

and

WSy = [ 527 resp. o = |2,
One has the same functional equation as before. These assertions follow from the
general results on Eisenstein series [10, I1.1]; [11, p. 278].

3. The Rankin-Selberg Integral

In this section we shall prove the central global result needed for our investigation.
It is a formula of Rankin-Selberg type which we now formulate.

Let W be an irreducible cuspidal representation of GL4(k,) and let Ly, : W—C
be a non-trivial GL;(k)-invariant linear form. Let 6 be an irreducible automorphic
representation of GL;(k,) with genuine central quasicharacter x; this is to be an
exceptional representation of the type of [10, Theorem IL.2.1]. Let Ly:0—C be a
non-trivial GLy(k)*-invariant linear form. We recall that it follows from [10,
Theorem 1.3.5] that if e is a non-degenerate character of N trivial on N} then

[ Lym)enydn=0, veb.
NENZ
Let x be the central quasicharacter of W. Let V be an irreducible exceptional
automorphic representation of GL,(k,) (possibly cuspidal) and extend it to P, and
Q4 with central quasicharacter (y5)~'. Let L: V—C be a non trivial GL,(k)*-
invariant linear form. We form the corresponding series Ep( f, w) and Ey( f, ) as in
Sect. 2. We shall now prove:

Proposition 3.1. With the notations above one has for w with o(w) large enough,
weW, tel, feFp(w), f'eFy(w) the integrals

Ly (gw)L(gt)Ep(gf;, w)dg
GL3(k)\GL3(ky)/Z,

Ly gw)Ly(gt)Eo(gf”, w)dg

GL3(k)\GL3(kA)/ZA

and
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converge absolutely. Define for a non-degenerate character e of N, trivial on N, the
following functionals

Ay(w)= [ Lylnw)é(n)dn, weW
Ni\Na

A )= f Ly(nt)e(n)dn, teb
UP)AUP)A

A30(0)= ) Ly(nt)e(nydn, teb
V(@U@

Ap(f(g, @)= ) L(nf (g, w)e(n)dn,  (f €Fp(w))

(NAM(P)\(NaM(P) A

Ao f (g, )= I L(nf(g, 0)dn,  feFyw).

(NOM@)\(VAM@)a
Then A3 (resp. A3°) is U(Q)4- (resp. U(P),-) invariant. One has

Ly (gW)L
GLsNGLa(kAYZa w(gW)L(gt)Ep(gf, w)dg

= [ Aplgw)45 (g)Ap(f (g, w))dg

NAZA\GL3(ka)
and

LyAgw)Ly(gt)Eo(gf’, w)dg

GL3(k)\GL3(ka)/Za

= [ Aylgw)45°(g) (S (g, w))dg

NAZA\GL3(ka)

Proof. We shall deal only with the integral involving P; the one involving Q can be
treated analogously. We shall first consider the integrals formally leacing aside
questions of convergence.

The usual Rankin-Selberg transformation shows that
Lyw(gw)Ly(gt)Ep(gf, w)dg

GL3(k)\GL3(ka)/Za

is equal to

Ly(gw)Lo(gt)L(f (g, w))dg .
Pi\GL3(ka)/Z

Now we have the Fourier expansion

Ly(gw)= Y  Aylpgw)

peNiZi\Py

since Wis cuspidal. Using this the integral becomes
Aw(gw)Ly(gt)L(f (g, w))dg

NiZA\GL3(ka)

= ) §  Awl(gw)Ly(ngt)L(f (ng, w))e(n)dndg .

NAZA\GL3(ka) Nk\Na

The inner integral can be written as

Ay(gw)Lo(n n,gt)L(f (n,8, w))e(n,)e(n,)dn dn, .
(NOM(P)i\(NNM(P))a UP)\U(P),
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Since 6 is exceptional the (NnM(P))~invariant function

ny— ] Ly(nin,gt)e(n)dn
U(P)\U(P)A

is constant (otherwise there would be a non-trivial non-degenerate Fourier
coefficient); thus our integral becomes

Awlgw) [ Ly(n,gt)e(ny)dn, ) L(nyf (g, w))e(nz)dn,
RN (NOME)ANAMPYA

which is
Ay(gw) 49 (@) Ap(f (g, ).

This yields the equality asserted in the proposition. The convergence of the latter
integral follows from [7, Sect. 2] and the intermediate ones follow from this.
From Proposition 3.1 we deduce now:

Propeosition 3.2. The functions

Zplw; w,t, f) =L@ 222 132 | Ly(gw)Ly(gt)Ep(gf, w)dg
GL3(k\GL3(kp)/Za
and
Zo(w;w,t, f') = (w322 72| 11377) | Ly{gw)Lo(gt)Ey(gf ", w)dg
GL3(k)\GL3(kA)/ZA

where a is derived from V as in Sect. 2 have analytic continuations as meromorphic
functions to Qp and Q, respectively. If V is cuspidal then Zp and Z, are
holomorphic; if V is not cuspidal then Zp has at most simple poles where

WS =) 15
likewise Z, has at most simple poles where
wba T2 T = A

One has the functional equation:
ZQ(CU; w, i, f')=8(w6“_3x—22—2” I« 1/2)ZP(0)§ w, 1, TPQf,)
where
TPQ= L(w:“:x:z:z” ”%Z) PQ:
L™ x ™ %21 14"
This follows from Proposition 3.1 and the results recalled in Sect. 2.

We shall next derive alternative expressions for Zp and Z, as Euler products.

For this we need some preparations.
Recall that if we represent W as ® W, then each W, has a unique Whittaker

model; thus we can represent 4,(®w,) as [] 4,, ,(w,) where A4, , is a Whittaker

functional of W, and the product is over all places of k.
Consider next the function P,—»C

g { Ly(ngt)dn.
UPAUP)A
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This is Pf-invariant and is an automorphic form belonging to a automorphic

representation 8 of P,. As 6 is given as the residue of Eisenstein series [10,

Theorem I1.2.1] it isimmediate that 6, is too. It follows from studying the constant

term that 6, is irreducible. By [10, Theorem 11.2.5] each local factor has a unique

Whittaker model and the global Whittaker functional is non-trivial as the

representation is genuine. Thus if 8= ®48, and t= ®t, it follows that
Ly(ungt)due(n)dn

(NOM(Pi\(NAM(P))a U(Pn\U(P)a

can be factorized as [] 44%(g,t,). The functional 436 is determined up to a scalar

v
multiple by its transformation property under N,
As V is exceptional we can represent V as ®V,. One has again that
L(nf)e(n)dn

with (NAMP)ANOMP)A
=&/,
can be expressed as [] 4,(f,). Note that f € Fy(w) can, as usual, be represented as a

finite sum of such primitive elements and that at almost all places the factor f,is
v)(w). One demands that A,(v%(w))=1 for almost all v.
One now has:

Proposition 3.3. With the notations above
ZP((D; ®ww ®tw ®f;;)

is equal to
[TE@° NP | Ay [gw)458t,) - Ap J(f(g, w))dg)

NuvZ,\GL3(ky)
where L () is the v™ factor of L(¢), and Ap , is the extension of A, to Fp (0,).
Likewise
ZQ((D; ®Wm ®tw ®fv)
is equal to
[TE® 32872 [ A (8w 4558t A o filg, ©))dg)

NuZAGL3(ky)
where Ag , is the extension of A, to Fg (w,).

This is immediate from Proposition 3.2.

4. The Generic Case

In Sect. 3 we have shown how the functionals Zp(w; w, ¢, f) and Zy(w; w,t, f) can
be represented as Euler products. In this section we shall develop the local theory
at a generic place. We shall consider a non-archimedean local field F with odd
residual characteristic. Let V(w) be a principal series representation of GL4(F) with
unramified quasicharacter w. Let w, be a K-invariant vector of V(w) where K is the
standard maximal compact subgroup of GL;(F). Let e: N(F)—C be an unramified
non-degenerate character. Let 4: V(w)—C be the Whittaker functional for e such
that A(wy)=1.
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Next let V(@) be an exceptional representation of 5L3(F ) in the sense of [10,
I1.1]. Suppose that & is unramified so that V(@) has a K*-invariant t,. Let ep (resp.
eg) be the character of N(F) so that

egN(F)nM(IN(F)=1,  ey|U(IT)(F)=e|U(II)(F)
where IT=P or Q. Let A,: Vy(@)—C be the unique linear form so that

Ap(nv)=2epn)Apv) veVy(®), ne N(F)*
and ~
Aplto)=1.

That is the first condition defines a one-dimensional space of functionals follows
from [10, Theorem 1.3.6] since A, factors through the Jacquet map. That the
normalization is possible then follows from [10, Theorem 1.4.2]. Henceforth we
shall write N for N(F) etc.

Analogously to A, we can define Ay Next let V() be an exceptional
representation of GL,(F) where Q is again unramified. Let v, 40 be a K*-invariant
vector in V(w), where K now refers to the standard maximal compact subgroup of
GL,(F). We define the character y of the centre of GL4(F) to be
(w|Z(F))"'-(®|Z(F))~'. Then we can regard V(@) as a P or a § representation
with central quasicharacter y. Define the function fF: GL,(F)— V(&) by

fEgug) =g fl(eupg) & €GLy(F),ge P,ueUP)*,

fo(k)=v,.

and

We can define f2 analogously.

There is a unique Whittaker functional on V() with respect to e|(NNN(Q)),
taking the value 1 on v,. Denote this by A, (resp. 4g).

Our main result is then:

2
Proposition 4.1. If Q (s (7;) ?)) is small enough (7 being a uniformizer of F)
then

A(gwo)Ap(gto)Ap(f5(2))dg

NZ\GL3(F)

converges. We suppose the measure on NZ\GL;(F) to be right-invariant measure
giving the open subset NZ\NZK measure 1. Let

n 0 0 1.0 0 100
w;=w|0 1 0|, w,=w|0 n 0|, w;=w(0 1
0 0 1 0 0 1 00
be the Satake parameters of V(w). Let
1.0 0

X=&|s|0 1 0 -Q(s(’g ?))m.

0 0 =2
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Then the integral is equal to
(1 —(@,0,0,)’ X*)/(1 -0} X) (1 —0iX)(1— 03 X)(1 —0,0,X)
X(1—w,0;X)(1 —w;0,X).

One can give a very similar evaluation of the corresponding integral with Q
instead of P but we shall not formulate this explicitly.

Proof. The convergence of the integral will become clear during the proof. By
splitting the integral into a sum over right K-cosets we see that it is equal to

A(nwo)Zp(nt o Ap(foMu(n)~?
neH/Z(HnK)
where H is the diagonal subgroup of GL;(F). There are explicit formulae for each of

the terms here, as we shall now explain; the proposition will then follow from
carrying out the summation. We shall take # to be of the form

0 0
0 2 0
0 0 =

As the summand is zero unless f; > f,2 f; we shall assume this henceforth. By
Shintani’s theorem, [18], we have

w{‘” w2+l w{3
A(neo)u(n) ™' =det w{‘” wf*! w{-” [(@ —wy) (@, —w3) (0 —w3).
w£1+2 wgz w£3

Next A, factors through the Jacquet map for § and so we see that

> 0 0
W) pnt)=a (s 0 a2 0 ||if f,=f; (mod.2)
0O 0 =
=0 otherwise.

This follows from [10, Theorem 1.4.2].
The same result shows that

nf2—71s 0

AP(JB"(n))u(n)“=x(S(nf’I))'Q<S< 0 n,l_,s)) if fi=1, (mod. 2)

=0 otherwise.

Next observe that as w is exceptional
a3 0 0 1 0 OQf\r1+r2+03)2

@ls| 0 w2 0| =|n"*"""a(s|0 1 0
0o 0 =t 0 0 =*
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and as Q is exceptional

ql2—f3 0 a2 Q\\V1t+S2-213)/2
— ||~ 1= f2)2
Q(S< 0 nf‘“fs)) i ‘2(5(0 )

Let us take f, =0 to fix the representative modulo Z.
The integral then becomes

ot ot |
XUHID2 det| fi*2 @fa*l 1]-471

S12f220
1+2 w£z+1 1

I1.72=0(mod. 2) w}

where 4 =(w; —w,)(w, —w3)(w; — w;). This we can write formally as

(Xl/za)l)f‘ . w% (Xl/2w1)f2 ‘o, 1
O det| (X'"w,) -0} (XYw,)* w, 1| 471
1=J2=

J1:42= 0mod. 2) X'"Pol) -0} (X'Pw3) w0, 1

The summation over f; can be carried out; it yields
X)) (1 - Xol) o(Xo)? 1
Y det| 03X w,) (1 - Xw?) w0 (X?w,)* 1|47,
ftmenn  \ X P01 — X)) wyfXPa) 1

On multiplying this out and evaluating the sum over f, we see this isequal to 4!
times the alternating sum over all permutations of w,, w,, w; of

wiwy/(1—Xof) (1 - X’wiw)).

Itis now an exercise involving the invariant theory of the symmetric group of order
6 to simplify this sum. After a rather long calculation one finds the result quoted in
the statement of the proposition.

This can now be applied to the Z, and Z,,. We find:

Corollary 4.2. Let, in the notations of Sect. 3, v be a place so that
i) v is non-archimedean with odd residual characteristic,
ii) the character e is unramified at v,
iil) w, is unramified.
then the v™ favtor of Zp(w; ®w,, ®t,, ® f,) with w, t,, f, the standard unramified
vectors is equal to

L (00 )0, () )
sigjs

where w3 is the Gréfencharacter
1 0 O
@3(x)=a|s|0 x* 0
0 0 1
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and o, ,, @, , O, are the Satake parameters of W,. Also the v® factor of
Zyw; ®@w,, ®t,, ® f,) under the same assumptions is
- 1 2 - ~ -
(1 _(wi,ij, v) 'wv(nv) : av(nv) lw%,v(nv) ! |nulu/2) !
15ij<3
Proof. The formulae here are direct consequences of Proposition 4.1 when one

compares the corresponding notations. The one point which one needs to verify is
that

Q, (T: ?) |7, |1 20, (%)t ().

In this we are comparing an exceptional representation as constructed in [10, 1.2]
with a Weil representation. The equation above follows on comparing the
Whittaker models, i.e. [10, Theorem 1.4.2] with [5, Proposition 2.3.3].

Before leaving this result we remark that

72(x)=03(x)’e(—1,x)

where (, ), is the adelic Hilbert symbol of order 2 and &: u,(k)->C™ is the unique
injective homomorphism.

5. The Local Functional Equation

The results we have already proved allow us to prove the local functional equation
for our situation. Let F be a local field of characteristic & 2. Let W be a irreducible
admissible representation of GL;(F). Let e: N—C be a non-degenerate character
and let 4: W—C be a non-trivial Whittaker functional. Let § be an exceptional
representation of GL,(F) as constructed in [10,1.2]. Let A°! : 6—C be a linear form
so that A°'(nt)=ép(n)A°!(t)(ne N) where ep: N—C is that character for which
ep| M(P)AnN =1 and ep|U(P)=e|U(P). Likewise we choose 4'° so that A'%(nt)
=¢¢(n)4'°(t) and e, is defined as e, but with Q replacing P throughout.

Let ¥ be an exceptional, possibly cuspidal, representation of GL,(F). Thenlet x
(resp. 7) be the central quasicharacters of W (resp. 0). Let us extend ¥ to M(P) (resp.

M(Q)) by requiring that Z acts through (y7) ~!. Let Q, (resp. Q,) be the complex

manifold of quasicharacters of M(P) (resp. M(Q)) trivial on Z. Let for we Qp (resp.
weQg) Fp(w) (resp. Fo(w)) be the space of locally constant functions f(yug)
=w()upy)f(8), veM(P), ucU(P), geGLy(F) (resp. f(yug)=a(ug(y)f(g),
7€ M(Q), ue U(Q), ge GL,(F)). Then Fp and F, are holomorphic vector bundles
over Qp and Q, respectlvely

Let us realize ¥ as r, as in [5, Sect. 1]. Then we can construct mtertwmlng
operators Ipgy: Fo(w)—F P(w) and Iyp: Fp(w)—Fy(w) where o has the meaning
ascribed to it in Sect. 3. Let us also write for we Qp (resp. we Q)

100 1 0 0!
ox)=0|0 x 0], resp. o(x)=w| |0 x 0
0 0 1 00 1
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Then (Ippf)(g) is the regularized value of
L3 2117

T VI T Wy3ang)dn.

L) 21l 7)ol T 1778

Let 4,: V—C be a non-trivial Whittaker functional for ¥ considered as a M(P)-
representation with respect to &| M(P); we choose ZQ analogously. Let for we W,

IEO, ferm(FP)7 flerm(FQ)
Zplw; w,t, f)=Lie° 7| [3?) N I n A(gw)A°! (g0 Ap(f (g, w))dg

Z\GLs(

and

Zo(w; w,t, f) =L@y 27727
NZ\G

Ls(

" Algw)A (g Ao(f (g, w))dg .

Here if F is archimedean I (F;) (resp. I (F,)) denotes the space of meromorphic
sections of Fp (resp. Fy). If F is non-archimedean then I,(Fp) (resp. I,,(F,)) denotes
the space of rational sections of Fj (resp. F,), where “rational” has the usual
meaning in this context. Likewise we let I'(0, 2p)) (resp. I'(0, €2y)) be the ring of
holomorphic functions (if F is nonarchimedean) on @, (resp. 2,). Let I,(0, 2p) and
I,,(0,Q,) denote the corresponding rings of meromorphic or “rational” functions.

Let us call an admissible irreducible representation W of GL;(F) relevant if
there exists a global field k, a place v of k with k,~ F and an irreducible cuspidal
representation 7 of GL4(k,) with 7, = W. Only relevant representations play a role
in any global applications which may arise. Note that a square-integrable
representation is relevant by [2].

Theorem 5.1. Let F be alocal field and let W be a relevant representation of GL4(F).
Let 0, V be as above. Then one has:

i) The integrals defining Zp(w; w,t, f) and Zy(w; w,t, ') converge if o(w) is
large enough and represent elements of I,(0,Qp) and I,(0, Q) respectively.

ii) There exists y(W, 6, V) e I,(0, Qp) so that

ZP(O); w, t:f)':y(w; VV, 6’ v)ZQ((D; w, ta IQPf) .
iii) There exists ¢pe I'(0,Qp)™ so that
TPQTQP=¢.1d‘

Remarks. 1. Note that this does not allow us to compute the y(w; W,0,V); the
theorem merely asserts their existence. The proof of the theorem will suggest the
correct form of the y(w; W, 0, V). Indeed it may be possible to actually prove this
using an asymptotic analysis of Z, and Z,, (cf. [8, Sect. 5]) as w becomes highly
ramified. This we do not undertake here.

2. It is unfortunate that we have no local proof of Theorem 5.1(ii) even in the
case of W a principal series representation. It would also be very desirable to have
independent proofs in the archimedean case.

3. The results of Sect. 4 allow us to find p(W,0, V) and Lp, L, in the “generic”
case.
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Proof. (i). That the integrals converge if o(w) is large enough follows from the
analysis of Sect.2. That they represent “rational” functions when F is non-
archimedean follows by a standard argument — cf. [8, Sect. 1]. An archimedean
version of this, as in [8, Sect. 9] shows that the Z, and Z, have analytic
continuations as meromorphic functions. We shall not give these arguments in
detail as they are now standard and fairly lengthy.

i) Let us define for an admissible representation n of GL;(F) and a
quasicharacter o of F*

L(a, m, Sym?) = L(0, (t®) x m)/L(0, #® xo1)
where y is the central quasicharacter of n. Here L(s, 7, X m,)isasin [7,9] and L(s, 7)
is as in [8]. Likewise we define
e, m, Sym?, e) = £(0, (@) x 7, €)/e(0, T @y, €)

where e is an additive character of F.
Note that if 7 is an automorphic representation of GL5(k,) and if « is a
GroBencharakter then

L(o, n, Sym?) =[] L(2,, ,, Sym?)
and
&(ot, m, Sym?, e) =[] e(a,, 7., Sym?, e,)

exist, the first if o(x) is large enough. The function L(«, #, Sym?) has an analytic
continuation to the space of all GréBencharaktere as a meromorphic function and
satisfies the functional equation

L(a, 7, Sym?) = g(x, 7, Sym?, e)L(| [la~ ", n", Sym?)
—-[8,13.6],[9, 2.7]. Moreover in the product defining ¢ all but finitely many factors
are 1 and &(a, m, Sym?, e) is a monomial function.
Next we note that in the situation of Propositions 3.2 and 3.3 we have that if v is
a place so that the conditions of Corollary 4.2 can be satisfied then
ZP(wu; Wy tw f;)) = L((Dg, Cys w%, vI I'}/Z’ I/Vw Symz)
and
Zg(@,; W, f) = L@jay ‘03 3| 32, W,, Sym?)
where w,, t,, f,, f, take their standard values.
Let S be a finite set of places of k so chosen that the conditions of Corollary 4.2

may be satisfied outside S. We choose then for v¢S the standard vectors as
arguments. Thus we see that

Zp(w; @w,, ®t,, ® f,)/L(@*a@3|| |12, W, Sym?)
= I—[ ZP(wU; wv» tw j;))/L(wgav(bZ,vl ||§/29 va symZ) .
veS

The right-hand sides of these expressions are finite products and therefore are
convergent everywhere that the factors are finite. The left-hand sides of these are
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related by the functional equation. We thus obtain the following:

Zp(@y; Wis by, 1)
L Tta, 02 152 W, Sym?)
L HotP 2R 15 e) Zo(@,; Wyt Topf)
~ Ho%ad? | [ X7 W,Sym?, e) vk Lw, 2o, '@; 2| |, W,,Sym?)’

Consequently the trilinear functionals
ZP(wv’ *9 *’ *) and ZQ(O)U; *’ *9 IQP*)

are proportional. We note here that for no W with a Whittaker model can one have
that Z(*, *, *, *) is identically zero by a density argument. This then shows that a

function y as as~serted in (ii) exists. The argument used here also suggests strongly
that y(w; W, 6, V) is of the form

(monomial)- L(wZa,d3, /|42, Sym?, W,/ Liw; %a; 'd; 2 [V Sym?, ).

Note that it is immediate that if F is non-archimedean then p(W, 0, ¥') is “rational”.

This reasoning is valid as long as W occurs in some cuspidal automorphic
representation, that is, if W is relevant.

We shall now prove (iii). In the case that ¥ is a non-cuspidal exceptional
representation this follows from [10, I.2] and the realization of Vy(w) as a
subrepresentation of V' (*°w), [10, Theorem 1.2.9]. We let k be a global field and let «
be a GroBencharakter. Let S be the set of places where a,(—1)= —1. Let V%(a,) be
the representation denoted by r, in [5]. Then we consider instead of the local field

F the ring kg= [] k,. The same constructions can be made in this case. From the
veS

global theory (Sect. 2) and the results recalled above for the places outside S we see
that the analogue of (iii) holds for

7= ® V%a,) (tensor product over C[u,(k)]).

veS

Next note that if o, and «, satisfy a;(—1)= — 1, a,(—1)= —1 then there exists  so
that o, =, 8% and V(a,)= V°a,)®(B - det) in the case of a local field. Thus we
have only to prove (iii) over F for one quasicharacter o with a(—1)= —1. The
validity of (iii) is thus a property of F.

Consider first the case k= Q and p, g two rational primes. Then oc(x):—- (Pg,X)2.a
is as above with S={p,q} if p, ¢>0, p, g=1 (mod 4). Note that Ipy ,JJop ,=¢,1d

where ¢, is “rational in g, *”. We have just seen that [] ¢, is monomial. As p#q it
veS

follows in this case that ¢, and ¢, are monomial. This proves (iii) for Q,, p=1
(mod 4). Next let a(x)=(—p,x), 1, p=1 (mod4). In this case S={o0, p} and we
deduce the validity of (iii) for F=R. Starting from k= Q([/-——l) we deduce (iii) also
for F=C. To prove it in general using the same method we have only to show that
given F there exist a global field k, a place v of k with k, =~ F, a Gr6Bencharakter « of
K sothat o, (—1)= —1 with the property that if S={w|a,(—1)=—1} and we S,
w = v then the residual characteristic of w is different to that of v. This follows as we
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have shown that

[1 ¢, ismonomial

weS
wnon-arch.

To prove this fact let T be the set of places consisting of the archimedean places
and those with the same residual characteristic as v (but v ¢ T). Let S= {v} U T. Then
let U(S) be the group of S-units in kg . Let xe kg be that element so that x,= —1,
x,=1 (weT). Then we form the character f of U(S)uU(S)x by demanding that
BlU(S)=1, B(x)= — 1. This can be extended to a character f§ of kg and hence to a
GroBencharakter g of ki unramified outside S. This f will serve as the sought for o.

In the case of F of finite characteristic we have to modify this slightly. Letvbe a
place of a global field k and let ¢, be as above. Find m,>1 so that ¢ (w|;) isnot a
rational function of g, ™ for m=m,. Let w be a place of k with a residue field of g}
elements, m=m,. Then, as above, we can find a GroBencharakter « of kj
unramified outside {v,w} so that a,(—1)=—1, a,(—1)=—1. Hence ¢, ¢, is
monomial. As ¢, is “rational in g, ™" it follows that both ¢, and ¢,, are themselves
monomial. This completes the proof of (iii).

As we have remarked above we shall only need the assertion of the theorem
when W is relevant. We shall now extend this to cover the class of principal series
representations.

Corollary 5.2. Assertion (i) of Theorem 5.1 is valid if W is a principal series
representation.

Proof. For a representation v of H let W(y) be the corresponding principal series
representation. The W form a holomorphic vector bundle over the set of all
possible y with | Z =y. Let T be the set of all y for which the assertion is false. If
yp, € T then there would exist w,, w, € W(yp,) so that

Zp(w; wy,t, f) Zp(w; Wy, t, f)
ZQ((U; Wi, L, Ipr) Zo(w; wy,t, IQPf)

The set of p can be considered as the set of functions on an irreducible algebraic
variety. The subset of relevant y is Zariski dense — see [1, pp. 69-72]. On the other
hand the remark above shows that T is an open subset and by Theorem 5.1(ii) it
contains no relevant . It now follows that T is empty, and this is the assertion of
the theorem.

We are indebted to the referee for pointing out this proof which yields a sharper
statement than our original discussion.

Theorem 5.1 asserts the existence of the trilinear functionals Z, and Z,, but
says nothing about the possible poles or zeros of these functions. In order to be
able to derive information about L(w,n,Sym?) from Proposition 3.2 we need a
“non-vanishing” about Zp. Proposition 5.3 below gives such a statement which
suffices for out purposes although it is rather unsatisfactory from an aesthetic
point of view.

Proposition 5.3. Let F be a non-archimedean field of characteristic +2; we retain
the notations of Theorem 5.1. Let QF CQp be a connected component of Qp. Then
there exist we W, te 0,5 € V and a compact open subgroup K, of K* so that if we Qf
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we define f(w)e Fp(w) by
0 U, w)=0

(ii) f is K,-invariant
(iii) f is supported on PK,
then
Zpw; w,t, f)=L@ 7| 7).

Proof. We have to show that

[ A(gw) A% (gt) Ap(f (g, w))dg=1.

The proof of this is now fairly standard, see, e.g. [8, Sect. 4], so we sketch only
the main points. Since W has a Whittaker model it follows from the Gelfand-
Kazhdan theorem that if ¢ : P(F)— C, ¢(ng) =e(n)p(g), n € N(F) and ¢(zg) = x(z)d(g)
z€ Z(F), and if ¢ has compact support modulo N(F)/Z(F) then there exists we W
so that

A(gw)=o(w), geP(F).

We choose a sufficiently small compact open subgroup K, so that e| N(F)nK, =1,
% X1 Z(F)nK, =1 and let ¢ be that function supported on N(F)Z(F)K , satisfying
the conditions above and ¢|K , = 1. We then find t € @ so that 4°'(t)+0,and 5 € V' so
that Ap(9) 0. We choose K, so that K, CK and w, t are K ,-invariant and f(w) as
in the statement of the proposition is well-defined. It is then obvious that

§ A(gw)4° (gt)Ap(f (g, w))dg

is equal to 4°!(t) - Ax(f(I, w)) - meas(K,). Since 4(f(I,w)) does not depend on
the assertion follows directly. This proves the proposition.

6. Global Results

We can now apply the results of the previous section to the study of the global
L-function. For the convenience of the reader we recall the definitions. Let k be a
global field and let n be an irreducible cuspidal automorphic representation of
GL,(k,). Let x be the central quasicharacter of n. Let a be a GroBencharakter of k,
ie. a quasicharacter of k, trivial on k™. Let

L(a, n, Sym?)=L(0, (n®a) x m)/L(0, F® x%) .
This is an Euler product of analogously defined local factors; it converges if o(«) is
large enough. Likewise we define the monomial function
&, m, Sym?) = &(0, (n®0) x 1)/e(0, #D (1))

which, given a choice of additive character, can be expressed as a product of
monomials over the set of places of k. All but finitely many are equal to 1. Then, as
we have already pointed out it is known that as a function of «L(, ©, Sym?) has an
analytic continuation as a meromorphic function to the complex manifold of all
GrdéBencharaktere. Moreover one has the functional equation

Lo, m, Symz) =¢(o, 7, Symz)L(” llac™ L, Symz) .
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We now have:

Theorem 6.1. Suppose k is of characteristic >2. Then L(a, n, Sym?) has a pole at o,
only if

TQu, =% or w®(xl 4=,
The corresponding pole is simple.

Remarks. 1. o, satisfies a3 =y "2 or ag=x 2| ||3. If one such «a, exists satisfying
a3 =y~ 2 then n®(xyy) has trivial central character.

2. The restriction that the characteristic be #2 is natural as the symmetric
square behaves quite differently in this characteristic.

3. That the case when the characteristic is 0 is not covered is a consequence
that no analogue of Proposition 5.3 is available in the archimedean cases. In fact,
as we shall see it would suffice to be able to show that when W, 0, ¥ are all unitary
then there is no w, satisfying o(w,) =% for which

ZP(a)l; w, taf)=0
for all w, t, f. Although this is very probably true we do not have a proof.
Proof. By renormalizing the representations W, 6, ¥ we may assume that they are
unitary. Here W will be a representation which realizes the class .
The fact that L(0,(r®a) x 7) has a pole at the stated points follows from [9,
p. 368]. Since = is cuspidal L(0, n® ) is finite and non-zero for such a. Hence

these poles exist, and there are no further poles of L(x, 7, Sym?) when a(2) 21 or
o(2) £0. Thus it suffices to show that there are no poles o satisfying

3So()=1.

If there are none then there are none in the region 0<o(x) <3 by the functional
equation and so we would have proved our assertion.
We have next, with the notations above for

w=®wv’ t=®tu’ f=®f;)
Zpw; w,t, f)=L(@*ad3] |X%, 7, Sym?)
X l_[ ZP,U(O)I); ww tva fu)/b(wf%d)z,d |l§/2’ ﬂ:v’ Symz) .
v
As we have already seen the second factor on the right-hand side is such that

almost all factors are 1. The left-hand side is holomorphic if 0<o(w)<% by
Proposition 3.2. It suffices therefore to verify that each factor

ZP, ,,((1),,; Wos tv’ fu)/L(wt%av(bZ, vl |t11/25 Ty Syml) 4

is, for a suitable choice of w,, t,, f,, non-zero for any such w.
That this is so for Zp (0,; W, t, f,) follows immediately from Proposition 5.3.
Write 8, =w?a,?,||3/*. Then the factor

1/L(B,, m,, Sym?)=L(O, 7, ®1,B,)/ L0, (m,®B) X ).
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Thus it remains to show that if o(B,) satisfies 1<o(f)<1 then L(0,(n,®p)
x 1)~ ' %0 when =, is unitary, irreducible and generic. If 7, is tempered then this
follows from [9, Proposition 8.4]. If x, is not tempered then it is a member of the
complementary series (see [8, Sects. 6.1-6.4]) and the computation of [9,
Proposition 9.4] (note the misprint!) shows that L(0, (r,® f) x x,)+0 in this case
as well. The fact that this argument does not hold when 4 is replaced by any smaller
number is the reason why we use the functional equation to make this deduction.
This now completes the proof of the theorem.
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