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1. Introduction

Throughout the paper X denotes a locally compact Hausdorff space and
Coo(X) (Cgo(X)) denotes the set of all complex-valued (nonnegative) continuous
functions on X having compact support. The support of a function f is denoted by
supp(f). Our main result is the following:

Theorem 1. Let I be a mapping from Cgo(X) into [0, c0) and suppose that for all
1,2€ Cgo(X) the following relations hold:
(i) I(/)ZI(g) whenever f<g (I is monotone);
@) I(pf)=pl(f) if peR and p=0 (I is homogeneous);
(i) I(f+2)ZI(f)+1(g) (I is subadditive ),
(iv) I(f +g)=1(f)+I(g) whenever supp(f)nsupp(g)=0.
Then I is additive, i.e., I(f +g)=I(f)+1(g) for all f,ge Cgo(X).

We shall prove Theorem 1 in Sect. 3. This theorem enables us to give a short
proof of a general result concerning the existence of invariant integrals in Cgo(X)
(Theorem 2). For the proof of the existence we use Weil’s method which is usually
applied for construction of the Haar integral on locally compact groups [2,3].

Theorem 2 is the analogue of a result of Banach [1, p.239]. Banach considered
an equivalence relation = between subsets of X and showed that if =~ satisfies
certain conditions then there exists a regular measure u on X such that u(4) = u(B)
whenever A= B. Our concern will be with the existence of an integral I on Cgo(X)
for which I(f)=I(g) whenever f=~g, where = is a certain equivalence relation in
Cgo(X). The Haar integral on locally compact groups will be obtained as a special
case.

We remark that Theorem 1 remains true in a more general setting (see Remark
in Sect. 3). An application of this Remark will be given in Sect. 4.

2. Existence of Invariant Integrals

A mapping I : Cqo(X)— [0, co) will be called an integral on Cgo(X) if I is additive,
homogeneous and not identically zero. It is well known that for any such I there
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exists a nonnegative regular measure x on X for which the equality I(f)= j fdu
holds for all feCgy(X) [3].

We shall use the notation || f|| =supp{f(x):xe X}, fe Cgo(X). Let = be an
equivalence relation in Cgo(X),i.e, f=f; f~gifand onlyif g=~ f; f~gand g=h
imply f=~h. An equivalence relation = is called a congruence relation if the
following conditions (2.1-2.3) are satisfied:

f=g implies |If]=llgl; 2.1

if f, ge C¢o(X) and g +0 then there exist a positive integer n, real
numbers c; >0, functions g; € Cgo(X) such that g;~g(i=1,...,n)

2.2)
and <} cig;;
1
if f~gand f< 7Y ¢f; (c;>0) then there exist g;e Cgo(X) such
1
that g;~ f; and g< ¥ c¢;g;. (2.3)
1

Theorem 2. Let = be a congruence relation in Co(X) and let { f,:0.€ I'} CCgo(X) be
a net of nonzero functions satisfying the following condition:

if f, geCqao(X) and supp(f)nsupp(g)=0 then there exists
B(f,g) el such that for any a=p the relations h= f,, supp(h) 2.4)

nsupp(f)+0 imply supp(h)nsupp(g)=0.

Then there exists an integral I on Cgo(X) for which I(f)=1(g) if f =g and I(f)>0
whenever f=+0.

Proof. Choose a fixed nonzero function f € Cgo(X). For every f e Cgo(X) we set
J,(f):=inf{z . f£Y ef, fizf, ¢i>0, i=1,...,n}.
1 1

If f#0, then J,(f)>0. Indeed, if f=< ic,-f,. and f;~f, then by (2.1) we have
1

Ifll= (; c,~> | £.! and hence J,(f)= l‘:/’: ||||' Let
J(f) .
I(f):= 7 (fo) feCgo(X).

It is immediate that I, is monotone, homogeneous and subadditive and that
I(fo)=1. Moreover, we have:

if fx=g then I(f)=1L(g); (2.5)
I(f+g)=I,f)+1(g) whenever
supp(f)nsupp(g)=9 and a2p(fg);

if f#0 then there exist positive numbers c(f), C(f) for which @7
(f)SI()SC(Sf), ael. )

2.6)
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Property (2.5) follows from (2.3) while (2.6) is a consequence of (2.4). In order to
show (2.7) choose f; f{ € Coo(X), ¢ ;>0 (i=1,...,n; j=1,...,n) so that fi=f,,
fi=f and

fos ; afl, fs éc,-ﬁ.

Using the properties of I, we get

L{fo=1= (,.; C}> I(f) and I(f)< (i ci>,

from which (2.7) follows.

The set of all mappings J : Cgo(X)—[0, c0) with J(0)=0 and (/)< J(f) = C(f)
for nonzero f is compact in the topology of pointwise convergence (by Tikhonov’s
theorem). Consequently there exists a subnet of {I,} converging to a mapping I. It
is clear that I is monotone, subadditive, homogeneous and I(f)=1I(g) whenever
f = g. Moreover, (2.6) implies that I(f +g)=1(f)+I(g) if supp(f)nsupp(g)=90. It
follows from Theorem 1 that I is additive. This completes the proof.

Examples. Let xoe X and let {W,:ael'} be a neighbourhood basis at x,. We
introduce a partial ordering = in I' by setting a = f8 if W,C Wj. For each aeI” we
choose a nonzero function f, such that supp(f,) C W,. Suppose that H is a group of
homeomorphisms of X onto itself satisfying the following conditions:
(J h¥=X for every nonvoid open set VCX; (2.8)
heH
for each pair of compact disjoint sets F, and F,, there exists
B(F,, F,)eI such that hW,nF, +0 implies hW,nF,=0 for all ~ (2.9)
heH and a = B(F,F,).
Setting f =~ g if f(x)=g(h(x)) for some h e H, we see that = is a congruence relation
in Cgo(X) such that the net {f,} satisfies condition (2.4). [Relation (2.2) follows
from the fact that, in view of (2.8), the set supp(f) can be covered by a finite number
of sets of the form hV (he H) where V= {xeX:g(x)> @ .
Note that (2.8) is always satisfied if H is transitive, i.e., for any x,ye X there
exists he H with h(x)=y.
Plainly condition (2.9) is satisfied in the following cases:
a) X is metrizable, x,€ X is arbitrary, and H is the group of all isometric
homeomorphisms of X onto itself; or more generally
b) X is a uniformly locally compact uniform space, x, € X is arbitrary, and H is
a uniformly equicontinuous group of uniformisms of X.
Thus, as a special case, we obtain a theorem of Segal [4, p. 187] (see also the
remarks of Goetz in [1, p. 352]).
There are classical cases where conditions (2.8, 2.9) are satisfied. The symbol X
denotes a locally compact group and x, is always the identity of X. We list these

examples:
¢) H is the group of left translations x—yx (x,ye X);
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d) X iscompact or commutative and H is generated by the mappings x—x "%,
x—yx and x—>xy (x,ye X);

¢€) G is a compact subgroup of X and H is generated by the mappings x— yx
(x,yeX) and x—xg (xe X, ge G);

f) X admits a left invariant metric ¢ and H is the group of all invertible
isometric mappings h: X—X. If ¢ is also right (inverse) invariant then the
corresponding (Haar) integral will be right (inverse, respectively) invariant as well.

3. Proof of Theorem 1

To illustrate our method, we consider the case where X is discrete. Then any
function f e Cgo(X) can be written as f = Z f(x)d, (finite sum) where d,(x)=1

and 8 (y)=0 for ye X, y=+x. Using (ii) and (iv) in Theorem 1 we get
I(f+g)=1 ( Y (f(x)+g(x)d ) Z (f(x) +g(xI(3,)
= xgx JSO(6,)+ x)ef.x g(x)1(d,)
=1 <x§x f (X)éx) +1 (xgx g(x)5x)
=I(f)+1(g).

In the general case, we will construct continuous functions which will play the role
of the functions 6,. We will write

Coo(X)={he Cgo(X): H(X)C[0,1]}.
We write C5,([0,1]) as C.

The proof. Let feCjy(X) and denote by B, the set of all te[0,1] with the
following property: for every ¢> 0, there exists 6 >0 such that I(fh)<e whenever
he Clo(X) and supp(h)C f ~ ([t —6,t+5]).

We show first that the set D,:=[0,1]\B, is denumerable, so that B, is
everywhere dense in [0, 1]. Assume that D, is nondenumerable. Then there exist a

positive integer m, mutually distinct numbers t;e D, and ¢;> %(i: 1,2,...) such
that for every 6 >0 we can find functions h;e C}o(X) with supp(h)C f = ([t;—
t;+0]) and I(fh)=¢,> »rl'; Let N be a positive integer with N >mlI(f) and let
6=0(N) be a positive number for which

[t;—0,t;+0]n[t;—8,t;+0]1=0  (i%j;i,j=1,...,N).

1
Choose h; e Co(X) so that supp(h;)C f ~'([t;— 9, t;+6]) and I(fh;))=¢;> —. Then
supp(h))nsupp(h;)=0 (i+j) and hence m

121 (ﬁ fh.-> ZI(fh >

[z
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contradicting the choice of N. Thus D, is denumerable. Now suppose that
feChy(X)and | f|| <1. We will show that I( f) can be approximated by sums of the

form Y t,I(h;) where h;e C}o(X) and supp(hi)msupp(hj)=(b (i=)).
1
Let £¢>0 be arbitrary and choose t,,...,t,€ B, so that

O0=:tp<ty...<t,<t,.,:=1 and max (t;,,—t)<e.

i=0,...,n

Note that trivially 1€ B, since | f]|<1. As t,.er, there is a >0 for which

5<1 min (¢,,—t;)and
21 0,...,n

I(fh)< ﬁ 3.1)

for every h;e Clo(X) with supp(h)C f~([t;—9, t;+45]), i=1,...,n+1. Choose
g;€ C' such that
gilt;+6,t;y 1 —06))=1 and g([0,1]\[¢;¢,+,1)=0,

i=0,...,n, and let ;e C' be the functions which are uniquely determined by the
relations it

supp(g;)C[t;—d,t;+0], i=0,...,n+1, and Zg,+ Z g:=1.

Weset h;:=g(f),i=0,....n; h;:=g(f),i=1,..,n+1, amdhO = xgo(f), where y is
a function in C}o(X) for which y(supp(f))=1. Write h = Z h;. Then we have ki, h,,
h €Co(X) (i=0,...,n; j=0,...,n+1). These functlons have the following
properties:

supp(h)nsupp(h)=9  (i+j;i,j=0,...,n);
supp(A)C f ™[t =0, t;+8);  f=f (; h,.+ﬁ>;

Yuh<f<x; fhoSex; Y hsSy;
1 0

and
0 fhi—th;<eh; (i=0,...,n).

The last inequality implies that I(fh)<(t;+¢)l(h;), i=0,...,n. From this and
properties of the functions h; and h;, we get

S td(h) =1 (z tihi) <I(f)=I (f (z h,.+ii>>

H/h)+1URS 3 6+l + 1)

I\

tid(h)+el (z h) I(fh)

It
~M=s =M= oM

lIA

td(h)+el()+I(fh). (3.2)
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In view of (3.1) we have
n+1 e
I(fh= ; I(fR)+1(fho)<(n+1) nrl +el(y)=e(1+1(x)).
Putting this in (3.2) we obtain
0=I(f)— X tl(h) (1 +21()).
1

We will now prove that I is additive. Since I is homogeneous, it suffices to show
that I(f +g)=1(f)+I(g) for all f,ge Cio(X) with | f|| <1 and |g| <1.

Suppose first that ¢ f < g < Cf, where ¢ and C are positive numbers, and choose
x € CLo(X) for which y(supp(f +g))=1. Let >0 be azbiirary. It follows from the
facts just proved that there exist functions h;, hj, h, e C{,(X) and numbers

t»t;€[0,1] (i=0,...,n; j=0,...,m) such that

ogz(f)—it.-f(h»gs, gh.-+ﬁ=1 on supp(f +g).

I(fM<e, ; <1

supp(hi)nsupp(hj)=@ (l =|:]’ i’j=03 ERRS] n)’
and g, b, i, and t; satisfy the same relations with m instead of n. We have
I(NH+1@)= Z tl(h)+ Z GI(h) + 2¢

t.l ( <Z h’+ﬁ)> + g 6l (h ( h,+l7)) +2¢
o(o(39) (o (50)

+1 (; t,.h,.ﬁ'> + (5':; z;h;ﬁ) +2e.
The sum of the first two term on the right is equal to

1 <.~=il P (t,--i—t})hih}).

- =

IIA

-
-

»—Ms

Since

> Z (L+Ohh < f+g,

i=1 j=1
we get S; < I(f + g). Let S, denote the sum of the third and fourth terms. From the
inequalities ). t;1,< f and ) t}h;<g, we obtain
1 1

Szél(fﬁ’)ﬂ(gﬁ)éI( ) +I(Cfh)< (% +c) P
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and so

1)+ @) <I(f +8)+ <2+ ! +c> ;.

This being true for all positive ¢, it follows that I(f+g)=1I1(f)+I(g).

Let now f, geCgo(X) be arbitrary. For >0, we set F:=f+¢(f+¢g) and
G:=g+&(f +¢). There exist positive numbers ¢ and C such that cF<G=CF and
hence the relaiton

I(f+8)+2el(f+8)=1(f +g+2&(f +g)=1(F+G)
=I(F)+1(G)z1(f)+1(g)

holds for every £>0. That is, we have I(f + g)=I(f)+ I(g). The proof is complete.

Remark. Theorem 1 is true for an arbitrary topological space X and for an
arbitrary family # of bounded nonnegative continuous functions on X having
the following properties:

(i) fg, af+bgeF whenever f, ge F and a, b=0;

(ii) if feZ, |fI|£1 and he C' then there exists ye€ # such that y=1 on
supp(f) and yh(f)e#.

Actually, it is unnecessary to require (ii) for every he C'. It suffices for example
to require (ii) for infinitely differentiable h e C*'. Consequently Theorem 1 holds for
the family of compactly supported nonnegative infinitely differentiable functions
on R".

4. Additivity of the Upper Integral

Let I be an integral on Cg,(X) and denote by .# * the set of upper semicontinuous
functions f : X —[0, co]. The characteristic function of a set A C X will be denoted
by x,. Define the nonnegative functional I on .# ™ by

I(f):=sup{I(g): g€ C5o(X), g f}.

The functional I is monotone, homogeneous and additive on . * [3, (11.12) and

(11.14)]. Let now h: X —[0, 0] be arbitrary and define I(h) be setting
I(h):=inf{I(g):ge 4" ,g=h}.

This functional is not additive in general but it is monotone, homogeneous and
subadditive [3, (11.17)]. Moreover, | (lim h,\ = lim I(h,) whenever {h,} is an

increasing sequence of nonnegative functions [3, (11.18)]. The set function
W(A):=I(y,), ACX, is an outer measure, which is regular on the o-algebra of
1-measurable sets [3, (11.34)].

Let %, denote the set of 1-measurable functions f: X —[0, co]. An important
property of %,, is that I is additive on %,. This can be proved for example by
showing first additivity for step functions and then approximating measurable
functions by step functions. To illustrate the Remark in Sect. 3, we give another
proof.
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Theorem 3. 1 is additive on %,,

Proof. Let # denote the set of all bounded functions f e %, with I(f)< oo and
(supp(f)) < co. Itiseasy to see that & satisfies conditions (i) and (ii) of the Remark
if X is replaced by X, the discrete version of X. Consequently, the additivity of I on
Z will follow from

I(fi+ f,)=1(f)+1(f,), whenever A,nA,=0, 4.1)

where 4;={xeX: f(x)>0}, fie Z (i=1,2).
To prove (4.1), let ¢>0 be arbitrary and choose compact sets F;C A; such that
| fill(ANF)<e (i=1,2). Then we have

f(fx) = f((XFi + X(A,\F,))fi) = f(XF,-fi) +e.

Since F,nF,=, there exist disjoint open sets U, and U, for which U, D F, and
U,DF,. Choose a function he .#* such that h> f, + f, and I(f, +f2)>1(h)——6
We then have yyhe . #" and y, h2 5 f;. Using the properties of I and I, we get

1(f, + f2)>T(h) — e (xu, + xu,)W) — =10y, W) + (xu,h) —¢

2 [Gtp 1)+ 1tp, f)—e> () +1(f5) - 3¢,

and hence I(f, + £,) Z I(f,)+ I(f,)- Relation (4.1) follows now from the subadditiv-
ity of I.

_Finally, consider arbitrary f;, f,€ %, If 1(f,)= o0 or I(f,)= oo then I(f; + f,)
=I(f)+1(f;). If I(f)<oo then u{xeX:f(x)=00})=0 and hence we may
suppose that f(x)< oo for all xe X (i=1,2). For each nonnegative integer n, we

set AV := {xeX' 1Sf-(x).<.n} and f\":=y,wf; (i=1,2). Then we have
"(x)— f{x) (xe X). Using the additivity of [ on # we obtain
i(fi+f)=1 (lim (f +f,.‘2’)> lm I+ £2)
= lim [{f")+ lim 1=(fnz)) () +11).

This completes the proof.

Addendum. We would like to thank the managing editor for bringing to our attention the
following results of J. R. Baxter and R.V.Chacon, related to our Theorem 1.

Let M be a metric space and denote by C"(M) the set of continuous real valued functions on M.
Let &:C"(M)—R be a functional such that:

(@) lim &(f)=0;
Iri—=o
(i) &(f +g)=2(f)+P(g); if fg=0;
(if) &(f +a)=D(f)+ (a) for all feC(M), xeR.

It has been shown in [J. R. Baxter, R. V. Chacon: Functionals on continuous functions, Pac. J.
Math. 51,355-362(1974)] that if M has dimension no greater than one, @ must be linear. In view of
Theorem 1 it is quite surprising that if M =[0, 1] x [0, 1] then there exist nonlinear functionals on
C'"(M) which are bounded, continuous, monotone, and satisfy conditions (ii) and (iii) [J. R. Baxter,
R.V.Chacon: Nonlinear functionals on C([0,1] x [0,1]), Pac. J. Math. 48, 347-353 (1973)].
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