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I. Introduction
1.1. General Introduction

One of the primary goals of this paper is to study various models of stochastic
control problems involving constraints on the state of the system (state con-
straints). And by following the dynamic programming approach this is equivalent
to study some nonlinear second-order elliptic equations. Then, the state con-
straints lead to highly singular boundary conditions. A typical example would be:
let Q be a bounded, smooth domain in R", we look for a solution ue C*) of

—Aut|VulP+Iu=f in Q 1)

where p>1,1>0, fis a given smooth function in £2, and the boundary condition is
given by

u(x)—»>+oo as dist(x,0Q)—0, 2

(in fact, this boundary condition will correspond to the case 1 <p=<2).

We will show in this paper how such nonlinear, boundary value problems
(1)2) can be solved and we will thus obtain existence, uniqueness and comparison
results leading also to a complete solution of the stochastic control problem we are
considering. It turns out that many cases have to be investigated and the results
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differ somewhat from one case to the other: typical behaviours involve the cases
1<p=2, p>2, f blowing up near 0Q, A going to 0. Let us also mention that the
methods introduced below allow us to treat more general nonlinear second-order
elliptic equations, like more general quasilinear elliptic equations, Hamilton-
Jacobi-Bellman equations, semilinear elliptic equations, first-order Hamilton-
Jacobi equations, Monge-Ampére equations: in all those examples, singular
boundary conditions may be encountered (and are even of a fundamental use) and
we refer to Brézis [6], Crandall and Lions [7], Urbas [30], Simon [26-28], where
such boundary conditions appear. And, our methods enable us to treat these
equations with boundary conditions like (2).

1.2. Description of the Stochastic Control Problems

The basic model problem we are considering is a stochastic control problem where
the state of the controlled system is a diffusion process and a typical example is the
solution of the following stochastic differential equation

dX,=adt+dB,, X,=xeRV, 3)

where B, is a standard Brownian motion [in some probability space (2, F, F,, P)...]
and where a, is the control process i.e. a progressively measurable stochastic
process that we may choose as we wish (taking possibly into account restrictions
on the controls such that, for instance, a, takes its values into a given set 4...). A
very important, particular class of controls is given by the so-called feedback
controls i.e., given a function a(-), one looks for a solution of

dX,=a(X)dt+dB,, X,=x. )

This general class of problems occur in many contexts: however, depending on
the particular examples of applications, it is possible to classify those problems in
the following categories. For some problems, the state process X, may take its value
in R¥ without any restriction while in other problems the state X, should remain in
some given region Q. In the latter case, the model is to be complemented with
boundary prescriptions in case the process reaches or crosses the boundary 0Q. Let
us immediately mention that if Q is bounded, and a, or a( - ) are bounded then for
all t>0 P(X,e 02)>0. The most usual models in stochastic control theory yield
the following boundary prescriptions: in the case of the so-called exit problems, one
considers the first exit time of X, from Q (or the first hitting time of X, on Q) and
the process is stopped at this time. The other standard model consists in a
boundary mechanism which prevents the state process from escaping from Q; the
simplest of which is the reflecting boundary condition.

Now, at least for deterministic problems, it is well-known that another way to
enforce state constraints (i.e. X, e Q) is simply to restrict our attention to controls
such that X, remains in  or in Q. In the case of (nondegenerate) stochastic models
like (3) or (4), this possibility does not seem to have been explored. And this is
precisely the type of problems we have in mind. In view of a remark made above, it
is clear enough that in order to constrain a Brownian motion in a bounded domain
Q we need to use unbounded drifts a, or a( - ): in other words, we will have to choose
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feedbacks controls which, roughly speaking, push back the state process inside Q2
when it gets near dQ and with an intensity which blows up at the boundary. To be
more specific, we will consider the class &/ of feedback controls i.e. of, say,
continuous functions on €, a(-) such that the solution X, of (4) stays in Q with
probability 1 for all t=0, (and for all initial points x € Q).

Once, admissible control processes and thus state processes have been specified
we may now describe a typical example of the optimal control problems we want
to study. For each a € o/, we will consider for example the following cost function

J(x,0)=E [ { FX)+ % Iatl“} e~ Mdi, VxeQ, )
0

where g>1, f is a given function on Q say bounded from below and A>0is a
given parameter — the so-called discount factor, and where we denote by
a,=a(X,). Let us emphasize that this particular form of the running cost

1. . . . .
g(x,a)=f(x)+ a |a]? is by no means essential for the analysis which follows: it just

provides a simple but general enough model problem. Let us also mention that
this choice of cost functions corresponds to the so-called infinite horizon
problems and that other cases are considered in this paper.
Finally, we wish to minimize J i.e. we want to determine the value function (or
Bellman function):
u(x)= inf J(x,a), VxeQ ©6)

aced

and optimal (feedback) controls a such that u(x)=J(x, a).

I.3. Description of the Associated Boundary Value Problem

We want now, in this section, to follow the heuristic dynamic programming
approach to such optimal stochastic control problems: the dynamic programming
argument (which can be viewed as a modern, extended version of Hamilton-
Jacobi-Carathéodory theories for problems in the calculus of variations), leads to a
nonlinear partial differential equation. More precisely, the dynamic programming
principle, due to R. Bellman, indicates that the value function u given by (6) should
satisfy the following second-order, quasilinear, elliptic equation

1 1
-—EAu+E|l7u|"+lu=f in Q, (7

where p is the conjugate exponent of gi.e. p= q—qj_ In fact, such a claim, even if we
forget the heuristic aspect of Bellman’s derivation of (7) is by no means obvious
here, in view of the restriction to feedback controls and of the state constraints. But
nevertheless (7) is to be expected for the value function u. This equation is a very
particular case of the so-called Hamilton-Jacobi-Bellman equations. And at least
for problems like exit problems or the ones corresponding to reflecting boundary
conditions (as described in the preceding section), a rigorous derivation of the
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Hamilton-Jacobi-Bellman equation and the analysis of such nonlinear p.d.e. are
now available: see Fleming and Rishel [8]; Bensoussan and Lions [2,3]; Krylov
[11, 12]; Lions [16-18]; Lions and Trudinger [24, 25] and the bibliography
therein.

Let us add to this general description that the exit problems lead to Dirichlet
type boundary conditions like

u=¢ on £, (8)

where ¢ is the exit cost i.e. the price to be paid for hitting the boundary at a point x
of 0. On the other hand, reflecting type boundary conditions lead to Neumann
(or oblique derivative) type boundary conditions like for instance

du

- = 0Q, 9

5 =¥ on )
where n is the unit outward normal to 022 and v is the reflection cost i.e. the price to
be paid for reflecting on the boundary dQ at the point x.

Finally, let us mention that another aspect of Bellman’s dynamic programming

argument is a rule for finding an optimal feedback control which in the case of (7)
reduces to the choice

a(x)= —|VulP~2Vu(x) for xeQ. (10)

Now, we go back to the state-constraints problem described in the preceding
section and we ask ourselves the following question: what is the boundary
condition (or any other characterization at 0Q) we may expect for the value
function u given by (6)? From the above considerations it is tempting to say that to
discourage hitting the boundary we should impose an infinite exit cost or reflec-
tion cost i.e.

u(x)—>+oo as dist(x,2—-0 (11)

or
Ou .
n (x)»>+o0 as dist(x,0Q)—0 (12

[where n(x) is defined near 0Q by — V(dist(x,d2))]. More sophisticated formu-
lations, which are also very natural from the control viewpoint, are: u is the
maximum solution (or even subsolution) of (7); or: u is the upperenvelope of
bounded solutions of (7).... Finally, for readers experienced with viscosity
solutions, a possible form of the boundary condition could be

u—¢ achieves its minimum over (13)

for all peC*Q) [or C*'(Q), or C}Q), or even C*>}Q)]: this “viscosity
formulation” will be explained below in Sect. IVV, see also Lions [17, 29] for the
deterministic case.

It turns out, and the precise results are given in the next section, that if the latter
formulations are always true, the choice between the boundary conditions (11) or
(12) requires some careful analysis and will in fact depend on the behaviour of f
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near 0RQ and on q. This can easily be “justified” by a vague economical argument: if
f blows up fast enough near 0Q of if g is large (remember that a has to blow up near
0Q) then the cost functions will blow up at 692 and so will u. Then, we should expect
(11). On the other hand, if £, say, is bounded and if ¢ is near 1 then it does not cost
much to drive the state off 02 and we may expect now u to be bounded on Q. On
the other hand, recalling Bellman’s rule (10) for the optimal control and the fact
that a cannot remain bounded if we want X, to stay in 2, we should expect that
some condition like (12) holds. Of course, the reason for which we insist on
conditions like (11) or (12) compared to a “maximum solution” characterization is
because of the specific information contained in those formulations (which could
turn out to be crucial for numerical purposes). Finally, note that p=1 is excluded
in the p.d.e. results (see next Sect.l.4). This corresponds to the fact that it is
impossible to force state-constraints with bounded controls. All these heuristic
considerations will find their mathematical counter parts in the results presented
in the next section.

1.4. Short Review of the Results

In this section, we present some of the results obtained in this paper on the simple
example of the model equation (1) [equivalent to (7) after an obvious scaling]. In
doing so, we follow the order of the sections below. To simplify the presentation we
will always assume at least that f e C1(Q), is bounded from below. We will denote
by d(x)=dist(x, 8Q) for all xe Q.

We begin with the case when the running cost f'is not too large, while the other
term in the cost function is quite large since we will assume 1<p<2ie. g=2.
Theorem L.1. Assume that 1 <p=2 and that f satisfies

lim { f(x)d(x)?/d(x)—>0,}=C, 20. (14)
Then, there is a unique solution ue C*(Q) of (1) such that u(x)— + oo as d(x)—0,.
In addition, any solution ve CXQ) of (1) satisfies: u=v on Q. Finally, if C, is
—p\? 2
the unique positive root of H Cc?— G’—_S—Z Co—C,=0if p<2, C3-C,
—C,;=0if p=2, then u satisfies

]im{u(x)d(x)zzr-;f/d(x)—>0+}=C0 if p<2 5

lim{u(x) |Logd(x)|~ /d(x)—»0,}=C, if p=2.| O
We now turn to the case when both terms in the running cost are not too large:
in particular we assume that p>2ie 1<g<2.
Theorem 1.2. Assume that p>2 and that f satisfies
lim{ f(x)d(x)/d(x)—>0,}=0, for some Be(0,p). (16)

Then, all solutions veCz(_Q) of (1) bounded from below are bounded and may be
extended continuously to Q. And there exists a maximum solution ue CXQ) of (1). In
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addition, u satisfies
liminf {u(y)—u(x)}|y—x|"*<0, forall xedQ 17)

ye,yox
where a=(p—2)/(p—1).
Furthermore, if liminf{ f(x)d(x)"/d(x)+0,}>0 for some ye(q,p), then (17)
holds with a=1—7y/p. O

Also, if additional assumptions on @ or f are made, we are able to sharpen (17)
or prove (12) [or even sharper estimates then (17) and (12)...].

The next case concerns the situation when the running cost f is blowing up
near the boundary very fast. We have the

Theorem L.3. Assume that f satisfies
liminf{ f (x)d(x)f/d(x)>0,} >0, for some B=max(p,q). (18)

Then, any solution ve C*(Q) of (1) bounded from below converges to + oo as d(x)
goes to 0. In addition, such a solution is unique if (18) is replaced by

lim{ f(x)d(x)*/d(x)>0,}=C,>0, for some f=max(p,q) (18)
and this solution, denoted by u, satisfies
lim {u(x)d(x)*/d(x)—>0,} =C,, (19)

1/p
where d(x)* is replaced by |Logd(x)| ™ if f=p=q; o= —g —1and Cy= (%) if
B>max(p,q); Co=Ci” if B=p>2 Co=(1+Cy)"? if p=p=2. [

Roughly speaking, the combination of Theorems 1.1-1.3 cover all possible
situations. One way of unifying the above results is by the use of the viscosity
formulation of the various boundary conditions encountered above namely

u—¢ achieves its minimum over Q, for all @eC*Q). (20

Theorem L4. Assume that p>1 and >0 and that either f is bounded or f(x)d(x)?
converges to a positive constant as d(x) converges to 0O,. Then, there is a unique
ue CX(Q) solution of (1) satisfying (20). [

This is a nonexhaustive list of results since we will consider below many
related questions like the stochastic interpretation of the above solutions, the
existence of optimal controls, the ergodic problem, i.e. A—0_, the approximation
of such solutions, extensions to more general data f or Hamiltonians. Finally, we
will also briefly explain how the techniques we introduce allow us to treat similar
boundary conditions for other types of nonlinear equations.

L.5. Organization of the Paper

As usual in stochastic control problems, various strategies are possible. One can
use p.d.e. methods to derive the existence of a smooth solution of the associated
HIB equation — here a second order quasilinear elliptic equation with strong
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nonlinearities in the gradient and singular boundary conditions. The uniqueness
question may be solved directly by p.d.e. methods or by checking that any solution
is the value function. Finally, one builds an optimal control using, whenever it is
possible, the solution of the HIB equation. This is why some sections below deal
with purely p.d.e. questions while others are concerned with the stochastic
interpretation. Another distinction is made below between what we call the model
problem (1) and more general equations. This artificial distinction is made only to
simplify the exposition. In fact, in all sections below, we adopt a layered
presentation with gradual generalizations where we just explain the required
modifications of proofs.

II. Subquadratic Hamiltonians
We will be dealing here with (1) in the case when 1 <p<£2.

11.1. Bounded Data
We begin with the case of bounded data i.e. we assume that f e [°(Q).
Theorem IL1. There is a unique solution ue W2 ’(Q) (Vr<o0) of (1) such that

u(x)— + o as d(x)—0_. In addition, if Co=(p— 1)p 1(2 p)~ ! when p<2, Co=1
when p=2, then (15) holds. Finally, let ve L},(Q) satisfy

—Ao+plEP 2 Vo+ WS f+(p—DIEP in P'(Q), VieR" (21)
then v<u a.e. in Q; in other words, u is the maximum L, , subsolution. []

Corollary IL1. Let f,, f, € L*(Q) and let u,, u, be the corresponding solutions of (1)
which go to + o0 on 0Q. Then, we have

1
sup (u; —uy)* < 7 sup (f;—f2)". O
o o

1
Proof of Corollary I1.1. u,— 5 sup (fi—f»)* is a subsolution of (1) with f
Q

replaced by f, so by Theorem II.1 u; <u, + %sup (i—f)t 0O
2]

The proof of Theorem II.1 is unfortunately a bit longer and we split it into
several parts. First (step 1), we compute the explosion rate of such a solution and
this trivial computation leads to families of super and subsolutions. Next (step 2),
we build a minimum and a maximum “explosive” solution which have the same
leading behaviour near the boundary. Then (step 3), we prove the uniqueness and
(15). Finally (step 4), we prove the “maximal subsolution” property.

Step 1. It is reasonable to try to obtain the leading term in an expansion of a
solution of (1) blowing up at the boundary by the following ansatz near the
boundary: u(x) =~ Cyd(x)”* The most explosive term in [ — du+ |Vul? + Au— f] is

then
—Coa(a+1)d >~ 2+ ChaPd @+ 1ip
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where we used (twice) the fact that |'d| =1 near the boundary (in fact, as it is well-
known: |Fd|=1 at each differentiability point of d, and d is smooth near the
boundary if Q is smooth). This leads to the choices

a= 12-’—”, Co=a~ ' a+1)1~Y if p<2.
Of course, if p=2 one replaces Cod ™ * by —C, Logd and one finds C,=1.

In order to use in a meaningful way the above formal consideration, we build
two families of “approximations of Cyd™*”, each of which is a two-parameter
family, where we first denote by d any smooth function, say C*(Q), on Q equal to
dist(x, 0Q) near the boundary, say for dist(x,0Q)<J, with 6,>0. Then, we

introduce for £,6 20

c,6=(C0+8)(d_5)_u+Ce} (22)

7

W, s=(Co—&)(d+0)*—C,
for some large constant C, to be determined. Of course, if p=2 then (d+J) “is
replaced by — Log(d + 0). Notice also that if w, ; is defined and smooth on 2, w, ,
is only defined on Q;={x €, dist(x, 0Q) > d} at least for é <J, (d, to be choosen
small enough; 0< 6 < 4§, will always be assumed in this proof). In fact, it will be
handy to consider d as a smooth function on R?, say C*IR"), such that: d(x)
=dist(x, 0Q) if xeQ, dist(x,0Q)<dy; d(x)=0, if dist(x,0Q)=d,, x€Q; d(x)=
—dist(x,09Q) if x¢Q and dist(x, 0Q)<8y; d(x)< —3, if dist(x, )=, x¢Q.
Observe of course that |Pd|=1 in {dist(x,02)<d,} and that d(x)=—0
=dist(x, 08,) if dist(x,0Q)<d, while d(x)+6=dist(x,0Q°) if dist(x,dR)<do,
where

Q° ={xeR¥,dist(x, ) <6} = {xe RN/d(x) = — 5} .
So that, we may consider w, ; to be defined on ©°. (Notice that such a function d

exists as soon as Q is open bounded and has a C*-regular boundary 9Q.)
We conclude these preliminaries with the following computations

_Awe,5+|l7ws,é’p+lws,é_f
= —a(a+1)(Co+e)(d—06)"* 2|Vd|*+a(Co+¢)(d— )" 14d
+aP(Coy+e)P(d— 0) P VIVdP+ ACo+¢)(d— ) *+AC,— f .

Recalling that «+2=(a+1)p and «?C§=a(x+1)C,, we deduce easily for e<1,
8=9,

— AW, 5+ |V W, oP+ AW, s— f Zve(d—8) "2+ AC—C(1+(d—08)™*7")
for some v>0, C=0. And we can choose C, large enough in order to find

— AW, 5+ VW, 4P +AW, 5= f in Q. (23)

Similarly, one shows that C, can be choosen large enough to have:

— AW s+ VW, off +Aw, ,Sf in Q. (24)
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Step 2. Building a minimum “explosive” solution is easy in the subquadratic case.
Indeed, one solves

—Aug +|VuglP+dug=f in Q, uzeW?'(Q) (Vr<o) (25)
with boundary conditions going to infinity (as R— co) like for instance
ug=R on 0Q (26)
or
ug=w, g on 09, foranyfixed &>0. 27)

Since p<2, the existence follows from standard results on subquadratic quasi-
linear equations (see for example Amann and Crandall [1]). In view of the
maximum principle (we have to use here the slightly more general form of
maximum principle in Sobolev spaces — see for example Bony [5] and Lions [23])
we deduce in the case of (27) for example

W, 1 rSUpSug =w, if O<R<R', V>0

and where w,=w, ,. The last inequality of this string comes from the maximum
principle provided we observe that ugz <w, near Q2 since w, blows up at the
boundary.

Hence, uy is bounded in L. This combined with (25) implies that ug is
bounded in W2;"(Q) (Vr < c0): this can be deduced either from [1] using again the
fact that we are dealing with a subquadratic Hamiltonian or by using the gradient
estimates of the appendix (see Lions [16, 19]) which yield bounds in W}, *(22) and
then using (25). Anyway, uy converges (as R— o0) to a solution u of (1) in W;%"()
(Vr < o0) which also satisfies w,<u<w, Ve >0. Next, we claim that u=w,. for all
¢'>0. Indeed for any R’ >0, we can find R such that w,. ;g <w, ; and letting R’
go to + oo, we conclude easily.

We now claim that u is the minimum “explosive” solution of (1). Indeed, let u be
another solution of (1) in W(R2) (Vr < o) such that u— + oo as d(x)—0.. then by
maximum principle u = ug in Q and thus passing to the limit we obtain u=u in Q.

To build a maximum explosive solution, we consider the preceding minimum
explosive solution u; in Q; and we let 6 go to 0. Recall that we have

(Co—s)(d"‘a)—a—C£§y5§ws’5, V8>0

and clearly enough u; > u; if 0 <’ <. Therefore, passing to the limit, exactly as
above we find a solution @ of (1) such that

w,Sasw, in Q.

The fact that @ is the maximum explosive solution is proved by using again the
maximum principle to show (with the above notations)

usu;—i as Jgoesto0.
In conclusion, we found solutions u, @ e W2;"(Q) (Vr < o0) of (1) such that
w,Sususasw, in Q, forall &>0, (28)

where u is any solution of (1) in W;%"(€) (Vr < o) such that u— oo as d—0,.
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Step 3: Uniqueness. It is of course enough to show that u= i in Q. We first observe
that (28) implies that (x)(u(x))~* converges to 1 as d(x)—0.. Therefore, if we
denote by m= igf f(x), we deduce that for all 8&(0,1)
u(x)>0u(x)+ (1 —0m/A in a neighbourhood of éQ.
In addition, w=0a+ (1 —8)m/A satisfies in Q
—Aw+|PwP+AwS0f+(1—O0m=f.
Therefore, we deduce easily by the maximum principle
wsu in Q
and we conclude letting 6 go to 1.

Step 4. We wish to prove that the unique explosive solution u of (1) that we built

above is also the maximum L} subsolution. Let v e I} () satisfy (21). In order to

avoid some rather unpleasant technicalities, we begin with the case f e C(Q): in
that case, we smooth v by convolution i.e. we consider v, =uv * g, where g € Z(R"),

1
0<¢, | gdx=1,supp(¢)CB, and ¢,=n"p(n"). Then, if 5 > 7 we find easily
RN
—Av, +|Po,|P+Av, < f*xg, in Q
and f *g,< f+e¢, where ¢,+0. Therefore, we deduce
&, . 1
(v,,— T) Su; if 6> p

n

and we conclude letting n go to + oo and then é go to 0.
If f e L*(Q), we obtain by the above proof that v, <u} where uj is the explosive

solution in Q; corresponding to f * g, (sull ifo> ;). In addition, the proof made

above also shows that uj is bounded in L, (€2;) and thus in W;2;"(2;) (Vr < o) since
f *g, is bounded in [°(R): in fact, one may even choose C, such that

(Co—8)(d—0) "~ C,Su;=(Co+e)(d+6)*+C,
(with the usual modifications if p=2). Then, we may pass to the limit as n goes to
+ o0 and uj (or subsequences) converges to a solution of (1) in £, thus below u, (in

fact it is u; because the above inequality shows it blows up at 09;). Therefore, v <u;
in ©; and we conclude letting 6 go to 0. []

Remark 11.1. One may deduce from the above arguments the “continuity” of the
explosive solution with respect to @, p or f (for the weak L *topology).

Remark 11.2. By a convenient (and technical) variation of the above method one
can show that it is possible to replace f € L°(Q) by f € I%,.(2) ( p> %), f bounded

from below and f bounded near JQ.
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11.2. General Data
We now wish to allow some data f which may not be bounded near 6Q.

Theorem I1.2. Let felf (), assume that f is bounded from below and that f
satisfies (14). Then, Theorem I1.1 still holds provided one replaces C, by the unique

2—p\* 2
positive solution of the equation (pr> c5— i Co—C,;=0ifp<2,C3—C,

1 (p—1)?
_Cl =0 ifp=2.

Proof. We only present the main modifications in the preceding proof. With the
above new value of C,, one builds exactly as in the proof of TheoremIIl.1 a
maximum explosive solution # of (1) such that

(Co—e)d *—C,<iS(Co+8)d™*+C, in Q, Ve>O0. (29)

The above equation for C, comes into the picture when making the formal
computations of Step 1 and balancing the various leading terms in d * " 2=d %
The only modification in the proof of Theorem II.1 consists in proving that there
exists a minimum explosive solution ¥ which also satisfies (29). To this end, we
observe that w, ,is a subsolution of (1) when Q is replaced by ©° and f is replaced
by

fy=min(f,C,+C5d+0)"Y) in Q, =C,+C;d+)1 in QP —Q,

where C;, C, are positive constants such that C;>C,, C,+C3d™ 9> f in Q.
Obviously, f;e L°(Q2). Therefore, by TheoremIL.1 and its proof, there exists a
unique explosive solution u; of (1) with f replaced by f;, [obtained by an increasing
limit of solutions of (1) with finite boundary values] and u;=>w, ;. Since f = f;, any
explosive solution of (1) is above u [use the maximum principle with the
approximating bounded solutions of (1)] and thus in particular & >u; From this,
we deduce easily letting J go to O the existence of a minimum explosive solution of
(1) u satisfying (29).

Remark 11.3. The analogues of Remarks II1.1-I1.2 still hold: notice only that the
stability with respect to f holds with respect to the weak * L topology provided
the data f are uniformly bounded from below and, satisfy (14) with C, bounded
and f(x)=<Cd™ %+ C for some C=0.

Remark 11.4. The proof also shows that if w is a supersolution of (1) which blows
up on 0Q i.e.

—AW+|PWP+Aw=f in Q, w-0 as d(x)-0,
then w=>u.

Remark 11.5. If we allow f to go to — oo near 09 (or some points of 6R2) then the
situation is a bit more complex. Let f € LY, (), if we assume (14) with C, =0 then
the above result is no longer true. In that case, there still exists a maximum
explosive solution which behaves as C,d ™ * and is the unique solution going to
+ 0 as Cyd % However, in general, there may exist other solutions going to + oo
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less rapidly: indeed, consider

Ad |\Vd)? |vdP
f(x)=7— 7 + L —ALogd.

If 1<p<2, f behaves like — dl—z near 092 and thus satisfies (14). And notice that
u(x)= — Logd(x) is then a solution of (1) which goes to + oo as d(x) goes to 0.

If we assume (14) and C, >0, then f is bounded from below and Theorem I1.2
applies. Now, if we assume (14) and C, <0, then there are two positive solutions C,
of the equation stated in TheoremI1.2 say 0<Cy <Cg and Cq =0, Cg »C, as
C,—0_. Again, there exists a maximum explosive solution of (1) behaving near 0Q
as Cy d~*and itis the unique such solution. But there also exists in general another
explosive solution of (1) behaving near 0Q2 as Cy,d~*: for instance, consider
f=—Aw+|Vw]P+Iw where w=Cqyd™* [

11.3. Asymptotic Expansions Near the Boundary

In this section, we want to precise a bit the behaviour near the boundary of
solutions which blow up at the boundary. Even if we will not present a complete
asymptotic expansion near the boundary (which should include [g]—1 singular
terms plus a bounded term where [g] denotes the integer part of g), the methods we
use should give it and we leave the awful computations to a courageous reader.
We will only prove the

Theorem I1.3. Let f e L2 (Q) be bounded from below and assume that
lim { f(x)d(x)*~"/d(x)>0, } =0. (30)

We denote by u the unique solution of (1) in W*"(Q)(Vr < 00) which goes to + oo
C

on 09Q. Then, if pe3,2] i.e. qe[2,3), u— d—f is bounded on Q when p <2 while

u+logd is bounded on Q when p=2. Next, if pe(1,3] we set

1 o . 3
Cilx)=— 5 —— Codd(x) i p<s3,
) 3 (31)
Ci)=—75Coddx) i p=73,
and we have
{u— %0—} & 1-C, as d—0, if p<%,
(32)
CO _1 . 3
u—— logd|~'-C, as d-0, if p=75-

Proof. We begin with the case 1<p<3. In view of the results of the previous
sections, it is enough build appropriate sub and supersolutions which blow up
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near 09Q. To this end, we consider

wi=Co Ctd oG (G0 oy 3
T & & 2

c c 3 (33)
w;=j’-—(C1+s)Logd+C“ w;=7°—(CI—S)Logd—C£ if p=>3,

where C, is a positive constant to be determined. Tedious computations show that,
provided C, is given by (31) and C, is large enough, w, (resp. w,) is a
supersolution of (1) [resp. subsolution of (1)]. Therefore, w, Su<w; in Q for all
¢>0 and (32) is proved.

Next, if 3< p<2, we also want to build convenient sub and supersolutions.
However, in this case, the choices are not straightforward as above. Indeed,

. 2—
recalling that a= —i’ we choose

C C
wl = ?l-"o— —(Cy+e)dt*+C,, w = E”ﬂ —(Cy—¢)dt*—C,, (34)
where
Com— % Codd if p<2, Ci=—iad if p=2
1= T 51 "0 I p<sz, =73 n p=2.

Again, one can check that w,, w, for conveniently large C, are sub and
supersolutions of (1) and since they go to + oo at 92 we deduce that w, Su<w, in
@ and we conclude. []

Remark I1.6. In the various bounds on the behaviour of explosive solutions near
the boundary, it may seem strange that the leading terms are not continuous with
respect to p (as p goes to 2 for example). Similarly, in (34) the term d' ~¢ vanishes
and could seem to be irrelevant. However — and this fits well with the stochastic
control interpretation — these questions disappear if we look for formal expansions
of the gradient obtained by differentiating these expansions for the solution:
indeed, in Theorem II.1, u behaves like
p-2 2-p

2 g -2
(=177 3= d)

s0 Vu(x) should behave like —(p—1)"*~Dpd(x)d~1?~1 and when p goes to 2
this quantity goes to —Fd(x)d~! which is precisely the gradient of —logd. A
similar explanation holds for (34).

IIL. Infinite Boundary Conditions and Blowing up Data

In this section, we consider the case of data f blowing up at the boundary fast
enough to force solutions of (1) bounded from below to blow up at the boundary.
This also will yield some uniqueness results. The results of this section correspond
to Theorem 1.3.
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111.1. Forced Infinite Boundary Conditions

Theorem IIL1. Assume that fe Ly () satisfies (18). Then, any solution u of (1)
WZ(Q) (Yr < o0) which is bounded from below converges to + oo as d(x) goes to 0.

loc

Remark 111.1. The proof below may be adapted to treat the case of fe L, ()
satisfying (18) with r> N.

Remark 111.2. In general, there may exist solutions of (1) which are not bounded
from below. For instance, take

aCodd  Coofa+1 _ _
fog=— %00 4 SN g 4 cpampapa-o o acod=

. Co . . . . .
with a, C;>0, u(x)= — d—f is obviously a solution of (1) and f satisfies (18) with
p=max((a+1)p,x+2). And it is easy to check that any f>max(p,q) can be
reached with a convenient « [in fact even f=max(p, g)] may be reached provided
we replace —Cyd ~* by Cylogd for f=p=q. It is also worth noticing that such

solutions may exist for linear equations like

—Autu=f in Q
. . Cy o
provided f behaves like E;— with f=2 near the boundary.

Proof of Theorem111.1. Even if the arguments are very much similar, we will have
to consider two different cases namely f=p>2 and f=q=p. In both cases, the
strategy of proof consists.in picking a point x, at a distance 2r of the boundary,
working in the ball B(x,, ) rescaling the equation conveniently in order to deduce
that lim inf {u(x)| d(x)—0, } is more than a fixed constant K and then reiterating
the argument to show that lim inf {u(x)|d(x)—0,}=nK, for all n=>1.

Without loss of generality (add a large constant to ) we may assume that >0
in Q and that f = C,d* for some C, >0, with f=max(p, q). Next, let >0 and let
X, be any point in Q such that d(x,)=2r. Clearly, we have

—Au+|VulP +Au2Cyr™® in B(xo,),  lopuon=0, (35)

where C;=C,27%. Using the existence results of Lions [16], we deduce that
u =i, (x —x) in B(x,,r) where &, e C%(B(0,r)) solves

—Ad,+ Vi, P+ A, =Cyr™" in B,r), illypo,,=0. (36)

Next, in the case when 1<p<2=<q=p, we introduce u,(x)=r",(rx) for
x € B(0,1) where =(2—p)/(p—1) so that u, solves

"Au’+|Vur|p+Ar2u'=C3 in B(O, 1), u,|35(0,1)=0. (37)

And using the estimates of [21], one checks easily that u,, as r goes to 0, converges
uniformly to the solution u, of

"Au0+|Vu0|p=C3 il‘l B(O, 1), u0|55(0,1)=0. (38)
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Observing that uy, >0 in B(0, 1) (strong maximum principle) and so uy(0)>0, we
deduce easily that if p<2 <g=f then u blows up at 0L and lim inf {u(x)d(x)* | d(x)
-0,}>0.

Now, if p=2=g=p, the above argument only shows

liminf {u(x)|d(x)—»0,} = K,>0, 39)
where K, =1u,(0).
In the other case i.e. 2 < p=f, we introduce u,(x)=1,(rx) for xe B(0, 1) so that

u,€ C%(B(0, 1)) solves
—rP 72 Au, +|Vu, P+ ArPu,=C; in  B(O0,1),  ulsp0,1,=0.

And using the results of Lions [21], one sees that u, converges uniformly to the
unique viscosity solution u, in C(B(0, 1)) of

VuolP=Cs; in B(0,1),  uolsp0,1,=0

which is in fact explicitely given by
ug(x)=C3"(1 —|x]).

Therefore, in this case also, we prove that (39) holds with K,=C}/.

In particular, for any &> 0, there exists s, >0 such that for xe Q, d(x)<s, then
w(x)=K,—e. Then, we go back to (35) replacing the boundary inequality by
Ulap(xe.rn = Ko—eif r<s,/2. And we go through the above proof to deduce finally

liminf {u(x)|d(x)>0,} 2 K,+Ko—e=2K,—¢
for all ¢>0: indeed, the limit functions u;, now satisfy the boundary conditions
uo=Ko—eondB(0,1)i.e. up=u,+ K,—e. Letting ¢ go to 0 and iterating the above
argument, Theorem IIL.1 is proved. []

Remark 111.3. Considering w, 4(x)= —e&log(d(x)+ J)+ o logd(n)— C, we see that
u=w, s near dQ2 and this proves Theorem IIL.1 even if f22>p>1.

111.2. Uniqueness Results

Theorem IIL.2. Let f € LY, () satisfy (18). Then, there exists a maximum solution of
(1) in WZ"(Q) (Vr < o) which goes to + oo on 0Q and any ve L, () satisfying (21)
satisfies v<u a.e. in Q. Among all solutions of (1) in W;%,"(Q) (Vr < c0) which go to
+ 00 on 0, or equivalently that are bounded from below on Q, there exists a
minimum one which is the increasing limit of sequence of subsolutions of (1) (i.e.

satisfying (21)) in W*"(Q) (Yr < o).
If we impose further restrictions on f, when we have the

Theorem I11.3. Let f € L5, (2) satisfy (18'). Then, there exists a unique solution of (1)
in WA"(Q) (Vr< o) bounded from below. In addition, this solution satisfies (19).

Proof of Theorem I11.2. Let C>0 be a constant such that
fx)zCdx)~"-C,

where f=max(p,q). Then, we set wy,=—MULog(d+d)—K if p=2=q,
w=M(d+96)"*—K if p<2<gq, where a=(q—p)/p, M, K are positive constants
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chosen in such a way that for § small enough w; is a subsolution of (1). In fact, we
may find R(d)| + co as 610, such that (with a A b=inf(a, b)):

+Aw, w7+ A, S fARG) in €.

Then, using the existence results of Lions [16, 19] we deduce that there exists
use W2r(Q) (Vr < o) solution of

—Aus+|VuslP+Aus;=f AR(O) in Q, wu;=w; on 0Q;

and by the maximum principle u;=w; in Q.

The remainder of the proof consists in passing to the limit as é goes to 0in order
to build the minimum solution. To do so we need local upper bounds on u;: we will
achieve this by building a supersolution. We first observe that it is possible to find
@ e C'(0, ) such that @(t)— + oo as t—0,, ®'()<0if >0, d(t)>0 if >0 and

(P11 >0 as t—0,, f(x)SPd(x) a.e.inQ.
Now let R= sup d, C,= sup (®~'/9). We denote by
) [0,R]

R
T1=ﬂ¢1/pa q’(t)= j. qll(s)dsa
t

where u is a positive constant to be determined. We finally set
w(x)=P(d)+ K

where K is a positive constant to be determined. We claim next that for large u
and K, w is a supersolution of (1) which of course blows up at 4Q. Indeed, we find,
denoting by C=||4d||,, that if d(x) < d,

— A+ WP+ A5 = — P(d)— C|P(d) + | P ()
1

= ¢3_1¢'_C#(p1/p+ﬂp(p

L 1y

1
> puPd— Cud'’? —p Co or ' pa
P

C
= <u"—u —p—") d—Cud'’”2 f,

if p is large enough, say u= u,>0. We then fix u=p, and we consider on the set
d(x)>d,

— AW+ |PWP+ AW — M+ 1K

) 1
for some constant M, and choosing K= 1 (M + sup |f]) we conclude.
(27}

In particular, we see that u; <w and thus u, is bounded in L, (2). Furthermore,
by the bounds proved in the appendix, this implies that u; is also bounded in
Wil ®(82) and thus in W;%"(Q) by elliptic regularity. And, letting § go to 0, u,
increases to a solution of (1) ¥ which is above w. The fact that u is the minimum
solution of (1) which goes to + oo on 0L is an easy consequence of the fact that any
such solution is above u,; by the maximum principle.
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To prove the existence of a maximum solution of (1) going to + oo on 9Q, we
first observe that wy;=¥(d(x)—J)+ K is also a supersolution of (1) with Q
replaced by Q;. Therefore, by maximum principle, any solution of (1) is below w
and, passing to the limit in §, thus below w.

To build the maximum solution, several arguments are possible. One way to do
it consists in maximizing u(x,) for some fixed x,eQ among all solutions of (1)
bounded from below on @ (or equivalently going to + co on d€). Then, observe
that if u,, u, are two such solutions then there exists another one, say u;, above u,
and u,: indeed max(u,, u,) is a subsolution of (1) and we may solve for

— A+ V)P +ul=f in Q;, ui=max(u;,u,) on 0Q;

the existence follows from [19]. Then u} <w; and thus is bounded in W2;"(Q) by
arguments we already made several times. Using several times the maximum
principle, we see that u$ converges (and increases) to a solution u of (1) which is
above u, and u,. This observation implies that there exists a maximizing sequence
(u,) of solutions of (1) which maximizes u,(x,) and which is nondecreasing. Then,
since u, < w, u, converges (use again the a priori estimates) to a solution & of (1)
which is bounded from below on 2 and thus blows up at 6Q. Furthermore, the
above construction of u; shows that the fact that # maximizes u(x,) among all
solutions implies in fact that # is the maximum solution of (1).

Proof of Theorem I11.3. Using the results of Theorem III.2 and their proofs, it is
now easy to mimick the proofs of Theorems II.1-I1.2 in order to obtain the
uniqueness. Indeed, if we use (18’), we may replace the functions w;, w; built above
by the ones given by (22) provided one takes the values for C, « which are given in
Theorem 1.3. Then, this implies that, by the same proof as above, the minimum
solution ¥ and the maximum solution # of (1) going to + oo on 012 satisfy

(Co—ed(x) *—=C.Sfux)Su(x)Z(Co+e)d(x)"*+C, in Q
and we may now conclude using the same proof as in Theorem L.1. []

We now conclude this section with an improved uniqueness result where
however no precise behaviour of the solution is given.

Theorem II1.4. Let f € L, () satisfy
Cd?P-C<f<CdP+C forsome C=C'>0, pf=max(p,q). (40)

Then, there exists a unique solution of (1) in Wi2,"(22) (Vr < o0) which is bounded from

loc

below. Denoting by u this solution, we have for some M =1
% d*—~M=ZusMd™*+M in Q,
where o= g —1if B>p, and d™* is replaced by |Logd| if f=p=q.

Proof. By similar arguments to the ones given above, the maximum solution # and
the minimum solution u satisfy for some M > 1

% d*—M=susMd *+M in Q.
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Without loss of generality (adding a large constant to f, u, #) we may assume that
uzu=1, f =1 a.e. in Q. Therefore, there exists 6 (0, 1) small enough such that
u=0u in Q. Let then 6,=sup{6e(0,1]/u=6u in Q} — we follow a uniqueness
argument which was introduced in a different context by Laetsch [14]. If8,=1, we
are done. We thus argue by contradiction and assume that 8, <1. Of course, we
have u=6,u in Q. We then consider z=¢d ™ * and we observe that z satisfies

—Az+|Vz|P+Az<ePd P+ C,dPH!

and this is less than f for ¢ small enough say ¢<¢,. We choose e=¢,. In fact
zs=¢(d+ )™ * also satisfies

—Azs+|VzyP+Az;< f in Q.
And we consider w, ;=(60,—y)i+(1—0,+7)z;; w, ; satisfies for y <6,
—Aw, s+ |Vw, P +Aw, 50—y f+(1—0+y)f=f in Q

and since u, @ blow up near the boundary we have w, ;<0,i<u near the
boundary. Therefore, by the maximum principle, w, ;<u in Q. We now let y go to
0, and then 6 go to 0, to find

Ogi+(1—0p)z<u in Q
but we obviously have z = vii for some v>0. Hence,
@y +(1—0va<u in Q

and this contradicts the definition of 6,. [J

IV. Superquadratic Hamiltonians
IV.1. Interior Gradient Bounds and Maximum Solutions

We begin with a result which gives interior gradient bounds for solutions of (1):
similar bounds were first derived in [16, 19] and the proofs are recalled in the
appendix. We only remark here that a sharper form of these bounds may be
obtained by a simple scaling argument.

Theorem 1V.1. Let f €L}, .(2) be bounded from below on Q and satisfy

IfGN<Cyd(x)™*  for some pz0, C,20. (41)
Let ue W,2"(Q) (Vr < o) be a solution of (1) satisfying
Auz—C, forsome C,=0. 42)

Then, we set y = p%iifﬁgq,yarbitraryin(g,l) if f>qandy= giffe Wl *(Q)
and |V f(x)|d(x)"#~ ! € L*(Q). With these notations and assumptions we have

Vux)=Cad(x)™? in 2, O (43)
where C, only depends on C,, C,, 7, f and the diameter of Q.
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Remark IV.1. The bound is optimal as it may be easily checked on simple

examples like % if p<2 (—Logd if p=2) with C,,a given as in Theorem I.1 or
-2

Theorem 1.3, or —Cyd®* if p>2 with a= E——lifﬁgq, a=1—f/pif f<pand C, is

a convenient positive constant. [] -

Exactly as in [19], this implies of course the following result

Corollary IV.1. Let f e L, (R2) be bounded from below on Q and satisfy (41). Then,
any solution ue W2;"(Q) (Vr < o) of (1) which is bounded from below belongs to
WLs(Q) with s<p—1if p>2 and B<q, s<p/Bif p>B>q (and thus p>2). In
addition, any such solution may be extended continuously on Q and ue C*%Q) with
0=p—-2)/(p—Dif p>2,<q,0=1—B'/pif p>p>pf'q and 6=1—B/pif p>f>q
and f e Wk ®(Q) satisfies |[Vfld " 1e*(Q). O

We now just sketch the proof of Theorem IV.1: let x, € Q, set r=14d(x,) and
consider v(x)=r"" "Yu(x,+rx) for xe B(0,1). One checks easily that v solves

—r?Av+|VolP + Aru=r""f(x,+rx) in B(0,1) 44)
with e=(p—1)y—1, v=(p—1)y+ 1. Next, observe that
[FP7f(xo+rx)|<C, on B(0,1),

where C, depends only on Cg and f. And if f=g, then 6 =0, v=2 while if f>gq,
v=6+2and 6>0.If B<qorif B>qgand d e W™, |Vf|d~#~ ! e [*(Q), interior
estimates are available (see appendix) and we deduce from this
Vo) =C,
which of course yields (43). [J
In the last case, we observe that
Cl
140] 1m0, 0,10 —(:"—k) forall m>1, ke(0,1).

But then, recalling the following “standard” inequality for all m> N
1-X N
I Vv”Lw(B(O,a})) =C| VU“L"'(';(O.*H) {“ AU“L"'(B(O,%)) + Vv”Lm(B(O.%))}m

we finally obtain
[Po(0)| £ Cmyr N/ for all m>N.

And this yields (43). O

Next, using these estimates and Corollary IV.1, we may now deduce easily the
following

Corollary IV.2. Let p> 2, let f € L, (€) be bounded from below on Q and satisfy (41)
with B<p. Then, there exist solutions u, i of (1) in W;%;"(Q) (Vr < c0) bounded from
below such that if v is a solution of (1) in W"(Q) (Vr < 00), respectively W,%;"(Q)
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(Vr < o0), then u2v in Q, respectively i =v in Q. Furthermore, if ve L1 (Q) satisfies
(21) then v<1 a.e. in Q. And if 4;, u; denote the corresponding maximum solutions
of (1) with Q replaced by Q; then

Uy 2ug=dg2us=uzu in Q; for 0<6<d 45)
and u; decreases to # as 6 goes to 0. []

Remark IV.2. A consequence of the results we will prove in the following sections
is the following: assume that f e L°(R") and denote by @’, u’ the corresponding
maximum solution of (1) with Q replaced by Q° then

Uy St SusSig<uy in Q for 0<dé<d (46)
and u,; increases to u as J goes to 0.

Remark 1V.3. We will show in Sect. V that if f behaves like C,d”# near the
boundary with 0 f<p [f=0 means feL*(Q)] then y=# in Q.

Proof of Corollary IV.2. The existence of the maximum solutions y, # is exactly the
same as in Theorem IIL.2. Next, the string of inequalities in (45) follows from the
definitions of u, u. Finally, 4, decreases to a solution of (1) in W2,"(Q) (Vr < o) in
view of the estimates given by Theorem IV.1. Therefore, the limit is below #. Since
on the other hand, by (45), #; =1, we conclude easily. []

We conclude this section by a property of @, u which will be useful later on.

Proposition IV.1. Let @ be a bounded smooth domain such that @CQ. Let
ve W (w) (Vr < 00) (resp. W2 (w)nC(®) (Vr < o0)) be a subsolution of (1) with
replaced by w. If v<u (resp. v<1) on dwNQ then v=u (resp. v=u) in . [J

Proof. Let >0, v,=v—¢ satisfies the same properties than v. In one case, we just

consider _. _ .
w,=# in Q-w, =max(L,v—e) in

and we observe that w, is a subsolution of (1) [in W!;*(Q)]. Therefore, by
CorollaryIV.2, w,<# and thus v<# in w by letting ¢ go to 0.
In the other case, the above construction has to be modified a bit since w, does

not belong to W27(Q) (Vr< o0). We then consider (t)=¢f (é) where ()=t if
t20, Be C*(R), B is convex, 1= f(t)=0 on R, B(t)= —1 if t< —2. And we now
introduce _ . _ o
z,=# in Q—-w, =id+pfv,—%) In o.

Now, z,€ W>'(Q) (Vr < o0) and we claim that z, is a subsolution of (1). We only
have to check this claim inside w where we find

Vz,=B.Vv,+(1—B)Vi,
— Az, = B(— 4v)+(1 = B) (— 4w)— B;|Vv,— Vil*
SB(—4v)+(1—B)(— 4u),
z, S+ v, — 1)

and our claim follows easily from these inequalities.
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We may now complete the proof of Proposition I'V.1 since, by definition, z, <u
in Q and letting ¢ go to 0, remarking that B, converges uniformly to ¢ *, we obtain
v=uinw. [

Remark 1V4. The expert reader will notice that this result is one form of the
dynamic programming principle for the associated stochastic control problem!

1V.2. An Estimate on the Boundary Behaviour

We want to show in this section some properties of @, u like (17). We will be always
dealing with the case p > 2, f € L, .(€2) bounded from below and satisfying (41) with
f < p. Hence, Corollary IV.2 and Proposition1V.1 apply. In all the results which
follow in this section and in Sect.IV.3, we will not recall these assumptions.

Theorem IV.2. The maximum solutions @, u satisfy (17) with a= — % In
addition, if f satisfies P—
lim inf { f(x)d(x)?| d(x)>0,} >0 for some 0€(q,p] 47)

then u, u satisfy (17) with a=1—6/p. [

Remark 1V.5. Again, this result is rather optimal since if f satisfies (41) with §<gq,
we already know that ue C%*%Q)and — C,d* gives a simple example (for the ad hoc
C,>0) which shows the sharpness of (17). Similarly if f(x) behaves like C,d(x)~#
for some g < f < p then we already know that ue C>*%Q) and again — C,d* shows
the sharpness of (17). The only improvement we could think of would be to show
(and we were unable to do it)

liminf {u(y)—u(x)}|y—x|"*=—-C,, forall xedQ,
yeNR,y—>x

p—2

where Co=(p—2)"'(p—1)P~! if f<gq, solves Cha?—Coo(1—a)=C, if f=gq,
1 . .
Co= o Cl? if g< B<p at least when f behaves like C,d~* near the boundary.

Proof of Theorem IV.2. The proofis rather delicate so we will begin with a simpler
claim than (17). But let us first give the idea of the proof: we just observe that (17) is
equivalent to say that for all x,€0Q, u(=u,i1) —¢&x—x,|* cannot have a local
minimum in Q at x, for ¢ small enough. To prove this fact, we will argue by
contradiction and we will do so by building a subsolution on a neighbourhood of
X, such that on the boundary of the neighbourhood it is below u while it is above u
at x,. This will contradict PropositionIV.1 proving thus our claim.

To explain how this strategy works, we will begin proving that if ¢ e C**(Q)
then u— ¢ cannot have a local minimum on Q at x, € Q2 where u=uy or 4. Assume
by way of contradiction that x, is a local minimum of u— ¢ for some ¢ € C'*(Q).
Then, denoting by &, =V ¢(x,), there exists C=0 such that

u(x) Zu(xp) +(Egy x—xo)— Clx — x> forall xeQ. (48)



604 J. M. Lasry and P. L. Lions
We then consider the following function defined on & where w={x € £, d(x) <}
where 0 >0 will be determined later on

w(x) = u(xo) + (&0, X —Xo) = Clx —Xof* + p(d* ~d*), Vxed 49)

. -2 . .
with a= p—l’ for some u >0 to be determined. In view of (48) and (49), we have

wSu on JonQ,  w(xe)>u(xg). (50)
Hence, Proposition IV.1 will yield the desired contradiction if we show that wis a

subsolution of (1) in w. Therefore, we compute in @

— AW+ VWP + Aw— f =2NC+apud* ™ 'Ad — (1 — )d2 -

va |p
F +/1W—~f

1 1
<C (1"‘ ?——7) *ﬂOt(l-—-(Z)F +

where C denotes various constants independent of §. Recalling that |[Fd]=1,
(1 —o)p=2—u, we see that if § is small enough and (au)? ~* <1 —a [depending only
on u, |&), C in (49), a lower bound on f and Q] w is a subsolution of (1) in w.

We now show (17): it is enough to show that the following inequality cannot
hold

+

vd |P
i

U(X) Zu(xo) —eolx —xo* = Clx —xo|*,  VxeQ (51)

for small ¢,, >0 and for some C =0, where a= B_f or a=1—0/p if f satisfies
(47). Indeed, if (51) holds, then we introduce
w(x) = (X0) — eoBo(1X —Xol) = Clx —xo|* + p(0" —d*) in @

where o= {xeQ/d(x) <8}, B,(t) is the function defined by

t|2 2 L L . 1
po=2" RS i gsde, = iz

In view of (51), (50) will hold if

LS (52)

ué* >
Next, we compute for x in w the following quantity

—Aw+|PwP+Aw— f=2NC+(N — 1)soﬂ |+£0B” uo(1— a)dZ —

% _2C(x—xq)—ap

1 vd |P
+oay —— Ad+ eoﬁ 7i-e +Aiw—f

dla I
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(in fact this equality holds a.e. in w), and this yields

—Aw+|l7w|"+Aw—f§C—f+soN%+C,u — (1 — ) =

1
ET:; d2 o

p

vd
o |+2C(x Xo)+op g4l -

Now, if we begin by the case where we do not assume (47), then we just bound f by
a constant C and we deduce

+ soﬂ

+ po(1 —o)

1 1
—Aw+|l7w|"+/lw—~f§C+aON%+CuF pra

1 1\
+ (8o 1= +CHou 7= i)
82—1

2—a
We then choose e = (tud%, ') * withO<t<

2
T so that (52) holds and we obtain

2—a 2-a

—Aw+|PwP+Aw—fSC+Cu +Nt * op @ §2 02

1
di—e

1 _1lze _1-e 1 \?
+—ua(1—cx)d7_7;+<at « 5=y e glley Croap F) .

1
Next, if we fix ¢ in (0 2 ) and pin (0 (to)P~ Lo~ ‘) recalling that d(x) <4, we see

that for ¢, small enough (depending only on N, t, u, ) we may bound the above
terms by
1 1
(:4‘(jﬂ Eii:; —K aif:;
for some K >0, and then we conclude choosing 6 small enough.
In the other case, that is when we assume (47), we obtain

1 1 \?
—Aw+|PwfP+iw—fSC— d— +N80 (socx —+C+ou i a)
82—a

v a o LAV
§C—?+Neog+<c+aeo *Paud P>

2—a 2
and again writing e = (tud%ey )« with 0<t< e so that (52) holds we deduce

_2-a 2-a 2

—Aw+|PwP+Aiw— fSC— 36 +Nat = §7@ "9y "= g

+(C+at" “ oy & Peyoud P

1—-a 1-a 0 1 O)p
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And, if we choose t in (0, 52_a>’ win (0, v'"Pa~ ') we see that for ¢, small enough the
above terms may be bounded by

v

d°

therefore w is a subsolution in  for  small enough and we conclude. []

C—

We, in fact, proved the
Corollary IV.3. The maximum solutions u, 4 satisfy for all xe o
liminf {u(x)—u(xe)} |x — x| *< —K <0 (53)

xXeN, x—Xx
where K=K(p,N) and a=1-1/(p—1).
Andif f satisfies (47), then (S3) holds witha=1— gand K=K(p,0,N, C,)where
C, =liminf { f(x)d(x)?/d(x)—0 }.

IV.3. Infinite Neumann Conditions

Our goal in this section is to investigate the behaviour of the maximum solutions
near the boundary. We suspect that the results given in Proposition IV.3 hold in
full generality but we were unable to prove it.

We will first sketch the proof of

Proposition IV.2. Let fe W *(Q), p>2.
i) If Qis a ball (or if Qis an half-space), the maximum solutions of (1) are
Lipschitz tangentially i.e. if Q= Bg then

lu(y)—u(@)|£Cly—x| Vy,xeQ with |y|=|x| (54)
and if Q={xy>0} then
lu(y) —u(x)| SCly—x| Vy,xeQ with yy=xy (55)

for some C=0, where u=u or .
ii) If Q is convex, then u=u or i satisfies

Vu—Vux) n()nx)|<Cd~1? in Q (56)

Jor some C=0, where n is any smooth vector-field equal to the unit outward normal
near 0Q (i.e. n=—Vd near 0Q). And if 2<p<3, this yields

u(x) —u()| S Clx —y|*~2ICP=D vy, xeQ with d(x)=d(y).  (57)

Remark 1V.6. Itis proved in Lasry and Lions [15] that if Q is convex, f is convex
(€ C(£2)) and satisfies (41) then u and # are convex. In addition, if (41) holds then

_ 1 . . . .
u, we C17(Q) with y= pTl if f<gand y= g if B> gq. This Holder continuity
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combined with the convexity then implies
Vu—Vu-mn|£Cd~"? in Q. (58)

This improved bound on the tangential gradient enables us, in that particular case,
to follow the arguments given below. []

Proof of Proposition IV.2. i) In the case of the half-space, one simply remark that
u(- + he;)) (for 1 <i<N—1) is the maximum solution of (1) with f replaced by
f(- + he;) hence, using as in Corollary IL.1, the maximality

1
lu(- +he)—u( o= 7 /(- +he)=f () o = Clh
and (55) is proved. One proves (54) similarly replacing the tangential translations

by rotations.

. . C L = 1
ii) Let y be an arbitrary point in Q, we set u,(x)= - u(y+t(x—y)wfor0<t<1,

1 -2
xey+ n (2—y)=Q, with a= I;:-_—l Observe that QCQ, and that u, solves

—Au +|Vu |+ itzut =t? T4f(tx) in £,
Therefore, we have for some C=0

—du,+|\Vu P+, < f+C(1—t) in Q,

and u,— % (1 —t)is asubsolution of (1); hence u, <u+ % (1 —1). But this inequality
immediately implies

(x—y,Pux)=—-C, V(x,y)eQxQ, (59)
which in turn yields (56) and (57). O

The improved Holder continuity of u, # in the tangential directions enables us
to obtain the

Proposition IV.3. Let fe W' *(Q), p> 2. Assume that either Q is a ball, or Q is an

-2
half-space, or Q is convex and p < 3, then o = p_1 the maximum solutions u, i satisfy
p —

t™u(xo—tn(xo)) —u(xg)} > —Co as t—0,, uniformlyin x,€0Q (60)
Vu(x)d(x)! *—>Cqoon as d(x)-0,, (61)
where Coy=(1—a)'/®~ Vg1,

Proof. We just sketch it. Let x,€0Q, we introduce the blown-up-functions u,
defined by u(x)=1t"*{u(xo+tx) —u(x,)} defined on Q,= (2 — x,)/t. We want to let ¢
go to 0. We first observe that by Theorem I'V.1 and Corollary IV.1 u, is bounded
in L°(Q,nBg) (VR < o0). In addition, u, solves

— Au,+ [Vu P =127 f(xo+1x)— Au(xo +tx)} in Q,.
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And we obtain easily a priori bounds from the interior gradient estimates:
therefore u, is relatively compact and any convergent subsequence u, converges
uniformly on compact sets, as t, goes to 0, to a solution ve W,3,"(IT) (Vr < o0) of

—Av+|PolP=0 in II, 0u(lxe)=0, [X)|=C|x|* in II,

where IT={xeR"/n(x,) - x<0}. In addition, using Proposition IV.1, we deduce
that v is above any function we W;2;"(w)nC(@) [resp. W?'(w) Vr< oo if we are
dealing with u] satisfying

—Aw+|FwP<0 in @, w=v on JdwnIl.

Finally, the estimates (54), (55) or (57) imply that » depends only on the variable
x - n(xg) i.e. v(x)=@(—x - n(x,)) where ¢ solves

—@"+|@'|P=0 for t>0, ¢@0)=0, ¢@eC([0,0)C*0,0).
Hence, ¢(t) <0 or ¢(t)=CyA*—Cy(t + 4)* on R, for some 1=0. But, since v is “a
maximum solution” we deduce that ¢ =y on [0, L] for all L>0, ye C?([0,L])
satisfying

)=o), —y"+P=0 in (0,L).
And this implies by Theorem IV.2 and its proof that
liminf ()t~ *<0

t—0 4+
therefore ¢(t)= — C,t* and we conclude easily. []

We conjecture that if p > 2, f € L*(Q) then (60) and (61) always hold. Of course,
in view of the preceding argument, it would be enough to prove that |u(x)—u(y)|
<Clx—y|° for some f<a if x,yeQ, d(x)=d(y) but this type of estimate seems
rather difficult to obtain in general.

V. Viscosity Formulation of the Boundary Conditions
V.1. Uniqueness Results

If we accept the stochastic control interpretation of the solutions built in the
preceding sections, one is led (see [20] for more details) to the following
formulation of the boundary condition

forall @eC*Q), u—¢ achieves its minimum over €. (62)

Or course, an equivalent formulation in the case when u € C(Q) is to impose that
u— ¢ never has a local minimum on Q at a point x, € Q forall ¢ € C*(Q).It is quite
clear that solutions considered in Sects. IT and III satisfy (62), even with ¢ € C({),
since they blow up at Q. Similarly, the maximum solutions built in Sect. IV also
satisfy (62), even with ¢ e C*%Q) for 6> «, since they satisfy (17): indeed, assume
for instance that #— ¢ does not achieve its minimum over Q. Since u, ¢ € C(Q),
there is a minimum point x, over Q of u— ¢ and x, € Q. Then, we have for xe Q

u(x)—u(xo) Z @(x)— (xo)
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therefore

liminf {u(x)—u(xe)} |x—xo|™* = liminf {@(x)—@(xo)}|x—xo|*
XeR,x>x0 xXeR,x—*xg
and the right-hand side is O since ¢ is smooth and «€(0,1). And we reach a
contradiction with (17). In other words, any solution of (1) satisfying (17) does
satisfy the boundary condition in “viscosity form” given by (62).

Our goal in this section is to prove, under quite general assumptions, that there
is a unique solution of (1) satisfying (62). In particular, when this holds, this will
imply that with the notations of Sect. IV the maximum solutions # and u are equal.

We may now state our main result.

Theorem V.I. There exists a unique solution of (1) in W;%,"() (Vr < 00) satisfying (62)
under one of the following three sets of assumptions
) 1<p=2, [ e} (Q) satisfies (14) and is bounded from below.
i) 1<p, feL} (Q) satisfies (40).
iii) 2<p, felL? (Q) satisfies (41) with B<p and is bounded from below.

Corollary V.1. Let p>2. Let f € L}, () satisfy (41) with B < p and be bounded from
below. Then, the maximum solutions built in Sect. IV are equal. Furthermore, if
feC(Q) orif feC(Q)and f(x)d(x)°—C, as d—0, with 0<0<p, they coincide
also with the envelope of all C*(Q) subsolutions of (1).

Remark V.1. Actually, (62) can be proved to be equivalent to
u— ¢ achieves its minimum in Q for all quadratic functions ¢. (62"

Indeed, suppose (62') holds and let e C%(Q). Let x,eQ be a minimizing
sequence for u— ¢ converging to some x, € Q. For C large enough we have y(x)
<@(x)Vx#+x, where 1w is defined by p(x)=0(x,)+Vo(xe): (x—x0)
—Clx—x0*Vxef. Hence, y is quadratic and u(x)—p(x)>u(x)—@(x)
=min(u — ¢)=min(u—1p) for all x+ x,. Hence from (62') x, lies in Q.

Proof of Corollary V.1. As we already said, %, u satisfy (62) and so are equal by
Theorem V.1. In addition, if we denote by i the envelope of all C*(Q) subsolutions
of (1); we first claim that by the same arguments as in Sects.III and IV u is a
solution of (1) in WZ"(Q)NC(Q) (Vr<wm). If feC>*Q) for some y>0, the
arguments indeed adapt without changes. If f e C(Q), we just approximate f by
f.e C{(Q) such that f, < f ﬂ, f uniformly on Q. If f e C(Q) satisfies (63), we first
observe that g(x)= f(x)d(x)’ may be extended continuously to Q by giving it the
value C,; on 0Q then we approx1mate g by g,e C}(Q) such that g,<g, g,¢
uniformly on &, g, is constant on 9Q and we consider f, x=g,(d(x)"® A R). And
these approximations easily yield our claim on .

Next, we observe that Proposition IV.1 and Theorem IV.2 may be applied or
more precisely that their proofs are immediately adapted to the case of #<0 that
i satisfies (17). Hence, # satisfies (62) and Corollary V.I is proved. [J

V.2. Proofs

We begin with the proof of Theorem V.1 in the case i ). We denote by i the unique
solution of (1) in W;2;"(2) (Vr < 00) which blows up at (see Theorems II.1 and 11.2)
and we consider another solution u of (1) in W;%"(Q) (Vr < o) satisfying (62). We
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obviously have u<u by Theorems I1.1 and I1.2 and we want to show that the
reverse inequality also holds. The strategy of proofis quite simple: we just observe
that if ve C*(Q) is a subsolution of (1) then u—v achieves its minimum over Q2 at
some point x, because of (62) and by the maximum principle we deduce
(u—1)(xo) =0 hence u=v. Therefore, if we are able to approximate i by C*(Q)
subsolutions of (1), we complete the uniqueness proof. Now, if f e C!(Q) such that
fi2 f, fn= —C for some C independent of n and f, converges uniformly to f on
compact subsets of Q. We next denote by i, the corresponding unique solutions of
(1) (with f replaced by f,) which blow up near the boundary (Theorem II.1) and as
remarked in Sect. II we know that iz, converges uniformly on compact subsets of Q
to #and of course #, < #. Since we know now by the proof of Theorem I1.1 that i,, is
an increasing limit of C%(Q) (use the smoothness of f,) solutions of (1) (with f
replaced by f,), the desired sequence of subsolutions of (1) in C*(Q) is built.
However, this argument does not work as well if we only assume (as we did in
Theorem V.1) that fe LY (Q), satisfies (14) and is bounded from below. In this

loc

general case, we approximate f by f, given by
fi=f in Ql/n’ =—C, in Q_Ql/na (63)

where C,=0 is any constant such that f = —C, in Q.

Again, we consider the solutions @, of (1) (with f replaced by f,) which blow up
near Q. We know from the proof of Theorem I1.1 that there exists foreachn=1, a
sequence (i, ,)m>; satisfying

—Aﬁn,m+lvan,mlp+j’ﬁn,m=f;t in Q’ an,me Wzyr(Q)(Vr<oo)9
i, n=m on 08 (64)

and @, , T4, uniformly on compact subsets of Q.

Therefore, we obtain: u>1, ,, and, passing to the limit in m, u> 4, And we
recall from the results and arguments of Sect. I that i, increases to i and thus u = i,
completing the proof of Theorem V.1 in casei).

The proof of case i) is almost trivial: indeed, we apply (62) with ¢ =0 to deduce
that any solution of (1) satisfying (62) is bounded from below on Q. Thus, by
Theorems III.3 and IIL.4, the uniqueness is proved.

Unfortunately, the proof of case iii) is much more complicated; in order to
keep the ideas clear (or to try at least) we will begin with the case when f e C'(Q)
and Q is starshaped (step 1), then we will treat the case when fe C}(Q) but Q is
arbitrary (step 2) and we will conclude with the general case (step 3).

Step 1. feCY(Q), Q is starshaped.
Without loss of generality we may assume that Q is starshaped with respect to
0. Again, we denote by @ the maximum solution of (1) in WZ'(Q) (Vr <) or
equivalently in C*(Q2) in view of the smoothness of f —see Sect.IV. And we denote
by u any other solution of (1) [in C¥()] satisfying (62). Recall that e C(Q) (cf.
Sect.IV) and observe that applying (62) with ¢ =0, one deduces that u is bounded
from below and thus u may be extended continuously to € (cf. Sect. IV). Finally,
u<d and thus we want to show the reverse inequality.
We then introduce for t€(0,1)
p—2

v ()=t P Tu(tx) for xeQ/t>Q. (65)
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Obviously, v, satisfies
v Vo=t f(x) in U, b,eCHQONCQ)  (66)
and thus in particular v,e C*(Q) and satisfies
A Vo P40 < f()+C(1—1) in @ 67)

for some C=0 independent of t. In other words, v,— %(1—0 is a CXQ)

subsolution of (1) and our strategy applies: u>v, in Q and thus passing to the limit
as t goes to 1 we conclude u>u in Q.

Step 2. feCY(Q), Q arbitrary.

We first observe that by the maximum principle the minimum of u—i is
achieved at the boundary. Furthermore, if 8 €(0, 1), we may still assume that the
minimum of u— 0 is still achieved at the boundary. Indeed, if u—0,u has an
interior minimum over Q say at x, e Q for some sequence 6,1, then observing
that 0,u satisfies

— 40,3+ VOwP+A8,u<0,f < f+C(1-0,)

we deduce from the maximum principle
. _ C
min (u—0,0)= — — (1—6,)
2 A

and we conclude letting n to to + co.

Therefore, let fix 6 e(0,1), we assume that u—60i has a minimum over Q at
Xo € 0Q. Then, we remark that u— 0 +(1 — 0) |x — x,|? has a unique maximum over
Q at x,€0Q and, denoting by i =0ii+(1—60) |x —x,|?, that @ satisfies

—Ai+|ViP+s0f+C1—-0)< f+C(1-0), (68)

where C denotes various nonnegative constants independent of 6.

We next observe that for some small >0, the open set Q=(x,,d)NQ is
starshaped with respect to a point that we denote by 0 such that d(0)=~y >0 where
y, 0 are independent of x, and 6. We then consider as in step 1 the functions

p—2
v(x)=t P litx) for xeQ/t, te(0,1)

and we obtain exactly as in step 1 using now (68) instead of (1)

—Av,+ Vo P+ A, £f+C1—0)+C(1—t) in Q, ©v,eCH Q). (69)
Let X be a minimum point of u —v, on Q: because of (62), xe Q or x€ 60N Q. If x € Q,
we use maximum principle to deduce

mgn wu—ov)=— % (1—-6)— % 1-0

and thus in particular
p—2

— C
lxg)—t P02 ~ S (1-6)— S (11
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and we deduce letting t go to 1

1-6).

>0

m;n (u—0)=(u—0u)(xo)= —

The conclusion follows upon letting 6 go to 1.
In the other case i.e. if Xe dQNQ, we obtain letting ¢ go to 1

(u—1)(xo)Z min (u—ii)
0N

and this yields a contradiction with the fact that x, is the unique minimum point
of u—1ii over Q.

Step 3. The general case.

We begin by observing that if f e C(Q) or even if f is continuous near 6Q2 the
above proof is easily adapted: the only difficulty lies with the fact that i, i, v, do
not belong to C? in general. But this can be taken care of by observing that

1
Vo *05=1; [where 05= 5N 0 (5), 020, e 2(RY), RjN edx=1, SupngB(O,i):I

satisfies
— Ao, 5+|Vv, 5P+ Av, 5
Sf*0;+C(1—0)+o(1—1t) in {xeQ/t, dist(x,00/t)> 6},

where w is a modulus of continuity of f near the boundary. Taking é small enough,
we find that v, ;€ C*(Q) and

—Av, 5+ Vv, P+, s f+CA =0+ o(1-t)+w(@d) in Q

and we conclude as before letting 6 go to 0, then ¢ go to 1 and then 6 go to 1.

To obtain the uniqueness in the case of a general f, we approximate f by f,
given by (63) where C, =0 is any constant such that f = —C, in Q. The above
arguments show that u>u, where u, is the unique solution of (1) satisfying (62)
(with f replaced by f,). Obviously, # = u, and u, increases to a solution in W2"(Q)
(Vr < 00)nC(Q) of (1) and we just have to show that @<, where #i denotes the
limit of u,. To this end let 8€(0, 1), let ye (B, p), =1—1y/p and choose K>0,C>0
so that w= — C— Kd" satisfies

— AW+ |FPwP+AwL —Cy—vd™? in Q, forsome v>0. (70)
Then, we remark that z=60i+ (1 —0)w satisfies
—Az+|VzfP+AzZ0f —(1 —0)(Cy+vd™ ") =g.

But on Q,,

g=f—(1=-0(f+Co+tvd" = f
while on Q—@Q, ,

g=0C(1+d #)—(1—0)(Co+vd™?)
and thus, g< f, in Q provided n is large enough say n=ng(6). Hence,

i+(1—-0w=u, if n=ny0)
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and passing to the limit in n, we deduce
Ou+(1—0u=4q.

We may now conclude letting 6 go to 1. [

V.3. Applications

We want in this section to show that (17) is equivalent to (62) when p>2 (with
appropriate conditions on f) and that (62) is stable under some passages to the
limit. This together with the uniqueness proved in Theorem V.1 will yield a rather
powerful stability result. We begin with the relations between (17) and (62). Recall
that (17) implies trivially (62).

Theorem V.1. Let ue W2'(Q) (Vr<oo), let p>2, let f e L3 (2) be bounded from
below and let xq€ Q. Assume that ue C(Q) satisfies (62) and

—Au+|VulP+iu=f in Q, forsome A C=0. (72)
Then, u satisfies
liminf {u(x)—u(x,)} |x—xo|*<0, where a=(p—2)[(p—1). (73)

xeQR,x-xg
Proof. The proof is almost the same as the one of Theorem IV.2: with the
notations of Theorem IV.2, we just have to replace w by w" defined exactly as w

with d replaced by d+ % Then, w"e C*(®) is a subsolution of (1) and u=w" on

dwn Q. Therefore, by maximum principle, u — w" achieves its minimum on €2 and
we reach a contradiction. []

Remark V.1. Many variants of the above result and of its proof exist that we will
skip here.
We now present a stability result.

Theorem V.2. Let(F,), be a sequence of continuous functionson M® x R¥ x R x Q
where M denotes the space of N x N symmetric matrices, let u, € W;%;"(Q) (Vr < o)

satisfy for some C =0 independent of n
F,(D*u,,Du,u,x)=—C a.e.in Q. (74)

We assume that F (A, &,t,x) S F,(B,&,t,x) for all EeRY, te R, xe Q, A= B (in the
sense of symmetric matrices), F, converges uniformly on compact subsets to
—tr(A)+|&|" + At, for some p>2, A =0, u,, satisfies (62) and converges uniformly on
compact subsets of Q to some function ue C(Q), and that (u,—u)~ converges
uniformly to 0 on Q. Then, u satisfies (62).

Proof. Assume by way of contradiction that u— ¢ admits a minimum at x, € 0€2
for some ¢ € C*(Q), without loss of generality we may assume that x, is the unique
minimum point of u— ¢. By assumption, u,— ¢ achieves its minimum over  at
some point x,€ €. We remark that

min (4, — @) Su,(x)— @(x);>u(x)—@(x) forall xeQ
e}
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while
min (u"'_(P)g Hl_in (u_(p)_ “(un_‘u)_ Iloo 5
Q Q
hence u,(x,)— ¢(x,) converges to u(xo)—@(x,). Now if x, (or a subsequence)
converges to X e (2, then
(%) — (%) Z U(x) — (X)) = (| (11— 1) ™ || o 7 U(X) — (%)

and thus X=Xx, by the uniqueness of the minimum.
Next, by maximum principle, we have

Fn(Dz(p(xn)5 D(p(xn)a un(xn)7 xn) % -C
and passing to the limit we find
— Ap(x0) + |V o(xo)|” + Au(xo) = — C. (75)

and we observe that we may replace ¢ by @+ c(6*—(d+J)*) where 6>0,

-2 . . . ..
o= p—I, ¢>0, since u— @ + c((d + 5)*— 6%) admits also a unique minimum at x,.

Therefore, we deduce from (75)
—Ap(xo)+ cad ™ P Ad(x) — coa(1 — )6~ D+ | p(x) —cxd! ~*Vd|P = —C

and if we choose ¢ in such a way that (ca)? ' <(1—a), we easily reach a
contradiction letting d go to 0. []

From this stability result, we deduce the
Corollary V.2. Let p>2, let f, e LY () satisfy
f,z—C, f,£Cd™* ae in Q, forsome C=0, Be(0,p). (76)

We denote by u, the unique solution in W2,"(Q)nC(Q) (Vr < o0) of (1) satisfying (62)
and we assume that f, converges to f weakly in L3, . — *. We denote by u the unique
solution in WZ'(QNC(Q) (Yr<o) of (1) satisfying (62). Then, u, converges
uniformly on Q to u.

Proof. By Theorem IV.1, u, is bounded in C%?(Q) for some >0 and in W%"(Q)
(Vr < o0). Then, we may assume (up to subsequences) that u, converges uniformly
on Q to a solution u of (1) [in W%(Q)NC(Q) for all r<oo]. By Theorem V.2, u
satisfies (62) and thus u=4 by Theorem V.1. []

VI. The Ergodic Problem

In this section, we want to study the questions associated with the so-called ergodic
stochastic control problems with state constraints. From the p.d.e.’s viewpoint this
amounts to study the behaviour of Au and u as 4 goes to 0 where u is the solution of
(1) considered in the preceding sections. We will perform such an analysis in the
three different cases studied above. The typical result we will obtain is that Au,
u—u(x,) converge uniformly on compact subsets of Q to u,€IR, v solution of

—Av+|VolP+u,=f in Q, v(xy)=0 77



Nonlinear Elliptic Equations. 1 615

with the same boundary conditions for v than for u. And these will uniquely
determine (u,, v). In the preceding statements and below, x,, is any fixed point in Q
and we assume that Q is connected.

VI.1. Subquadratic Hamiltonians

Whenever it exists, we will denote by u, the solution of (1) with appropriate
boundary conditions and if x, is any fixed point in Q we will denote by v,(-)=u,(-)
—u,(xy). We assume throughout this section that 1 <p<2.

Theorem VL1. Let fe L3 () be bounded from below and satisfy
lim { f(x)d(x)~%/d(x)—0,}=0. (78)

Let u, be the unique solution of (1) in W,2,"(Q) (Vr < c0) such that u,— + o0 as d—0,..
Then, Vu, and Au, are bounded in L5, (£2) and Au,, v, converge uniformly on compact
subsets of Q to ugeR, ve W2"(Q) (Vr < o) such that v(x,)=0, v satisfies (15) and

—Av+|VofP+uy=f in Q. (79)

In addition, if (iiy, 7) e R x W;2:"(Q) (Vr < 00) satisfies (79) and § goes to + co as d goes
to 0, then lig=u,, =v+C for some CeR.

Proof. The proof involves several steps, we first obtain some bounds and we pass
to the limit (Step 1). Then, we show that for any solution (i, ) as above & blows up
at the boundary like C,d™* (Step 2). Next, we show the uniqueness of u, (Step 3).
Finally, we conclude with the uniqueness (up to constants) of 7 (Step 4).

Step 1. Goingthrough the proofs of Theorems II.1 and I1.2, we see that u, satisfies
for all ¢>0, 1€(0,1]

CO —& Ce CO + & CE
— <L < =

da A = ul = da + l (80)

for some C, =0, with the usual modifications if ¢ =0 (i.e. p=2). In particular, Au, is

bounded from below and in Lf,.. Then, using Theorem I'V.1, we deduce that Vu, is
bounded from below. Therefore, v, is bounded in W%, *.

We next want to show that v, satisfies

—L _Cgv, in Q, forsome C,e€(0,C,), C=0. (81)

Observe first that v, satisfies
—Av, +|Vu,P+ v, + duy(xg)=f in Q.

. . . C
And if we choose C, in (0, C,), we obtain denoting by z= —~

da
—Az+|VzlP—Az< f—Auy(xg) on Q—Q;
if  is small enough, say 6 £d,. Now, there exists a constant M >0 such that

0 2M on Q.
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Hence, adapting the comparison results proved in Sect. II, we deduce
C
0, =M+ d—; on Q.

Extracting subsequences if necessary — the convergence of the whole sequence
will follow from the uniqueness —, we may now pass to the limit Au,(x,) converges
to a constant u,, v, converges to a solution v of (79) satisfying (81) and such that

Uxo)=0.

Step 2. Let (ily, D) eR x W2"(Q) (Vr < o) be a solution of (79) such that # goes to
+ o0 as d goes to 0. We want to prove that & satisfies (15). To this end, we recall

that w, ;= 50_—;)8« satisfies
— AW, s+ VW, 5P = f—il, in Q;,—Q; if 0<5<Iy=0le).

Then, let M,=sup{|i(x)/xeQ, d(x)=0,(c)}, we deduce from the maximum
principle that

0<W,s+M, on Q;—Q;
and letting  go to 0, we deduce
—C=ZP=(Cy+e)d™*+M, on Q. (82)
Next, we simply observe that 7 satisfies
— AT+ |ViP+d=¢g in Q, ©T—-+4+oc0 as d-0,
where g = f —ii, + D e LY, () satisfies (78) because of (82). Therefore, Theorem I1.2

loc

yields the desired behaviour of & near 0€2.

Step 3. We first show that if (u,,v), (fly, ) are two solutions of (79) such that
v, 0— + o0 as d—0, then uy,=1,. To do so, we adapt an argument from Lions [16,
19]. Assume for instance that uy <i, and let £>0, 8€(0,1). Obviously, we have

— A(OD) + |V (0D)|P + 67 < 0f + 00— 0il
< f+C(1—0)+e05— 0, .
Next, since v, § behave like Cyd ™ * near 09, 05 <v+ C, in £; hence
— AOD)+ |V (6D)P + 00 < f + C(1 — ) + ev+eCy— Ol
S +ev—ug+(uy—0ii,)+eCo+ C(1—6)

while v satisfies of course
—Av+|VolP+ev=f+ev—u, in Q.

But u, <ii,. Therefore, for 8 near 1 and ¢ small enough (depending on 0) 67 is a
subsolution of the equation satisfied by v. By Theorem I1.2, this implies 00 <v.
Letting 6 go to 1, we find §<v. But, v+ C,, #+ C, satisfy the same problems for
arbitrary constants C;, C, and we reach a contradiction.



Nonlinear Elliptic Equations. 1 617

Step 4. Uniqueness of v, up to a constant.
Let C, €(0,C,), again we observe that

(@) (@)

for some small enough 6> 0. Therefore, if 8e(0,1), w=05+(1 —6) % satisfies

— AW+ VWP SO0(f —ug)+(1 =) (f —up)=f in Q-Q;.

14
<f—u, in Q—Q;

Co

a’

And since v, ¥ behave like (Ww—v)—> — o0 as d—0 .. Therefore, by the maximum

principle,

max (w—uv)= max (w—u).
2-Qs 005

Hence, if we let 6 go to 1, we find that

sup (f—v)= max (§—v).
2-Qs 0025

On the other hand, we also deduce from the maximum principle that

max (f—v)= max (i —v).
25 025

Therefore, any maximum point X of §— v on 92, is in fact a global maximum point
of i—v on Q. But, since §—v=1y satisfies the equation

—Ap+B-Vp=0 in Q

for some B L}, (2;R"), the strong maximum principle then yields
t—v={@—0)(X) in Q

and we conclude. []

We would like to conclude this section with a few remarks on the case p=2
which make a connection between our results and the interpretation of first
eigenvalues in terms of optimal stochastic control that was considered by Holland
[9,10].Indeed, if p= 2 and if v solves (79) with v— 0o asd—0 , then we may perform
the well known logarithmic transformation i.e. v= —Log¢ and we find

—do+fo=uqp in Q, >0 in Q, ¢->0 as d-0, (83)

or in other words u, is the minimum eigenvalue of the operator (— 4+ f) with
Dirichlet boundary conditions. And the uniqueness of u, corresponds to the
uniqueness of an eigenvalue with a positive eigenfunction, while the uniqueness of
v up to an additive constant corresponds to the uniqueness of ¢ up to a
multiplicative constant.

VI1.2. Forced Infinite Boundary Conditions

We will be now concerned with the case when f grows so fast at the boundary that
u, automatically has to blow up at 0Q. To simplify the presentation, we will only
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consider the case when f satisfies (40) and therefore, by Theorem I11.4, u, is the
unique solution of (1) which is bounded from below.

Theorem VI1.2. Let f e LY, (Q) satisfy (40) and let p> 1, we denote by u, the unique
solution of (1) which is bounded from below. Then, Vu, and Au, are bounded in L}, (Q)
and Au,, v, converge uniformly on compact subsets of Q to u,eR, ve W2"(Q)
(Vr <o) such that v(x,)=0, v satisfies (79) and

M- MZvEMd*+M in Q, forsome M=1,
where a=§—1 if B>p (84)

and d™* is replaced by |Logd| if f=p=q. In addition, if f satisfies (18'), then v
satisfies (19). Furthermore, if (i, ?)€ R x W%"(Q) (Vr < 00) satisfies (79) and # is
bounded from below, then @iy=u,, ?=v+C for some CeR.

Remark VI1.1. If we consider the special case p=2 and if we perform the same
logarithmic transformation as in the preceding section v= — Log ¢, we see that we
are dealing with bounded, positive solutions of (83) and that the very fact that f
blows up fast enough at 0Q2 forces ¢ to vanish on the boundary. Again, the
uniqueness part of the above result may be interpreted as a uniqueness for first
eigenvalues and eigenfunctions of the operator —A4+ f where no boundary
condition on ¢ is imposed except “¢ is bounded”.

Proof of Theorem V1.2. Most of the proof of Theorem V1.1 goes through in this
case except for the uniqueness arguments which use the precise behaviours of v, &
near the boundary. Of course, if we assume (18’) then the proof of Theorem VI.1
applies with some rather easy adaptations. In the general case, however, we have to
involve slightly more elaborate arguments to show the uniqueness part of the
above result. We only prove as in Theorem V1.1 that v, § both satisfy (84). Next, we
prove that uy,=1i,. We see that the corresponding proof (Step 3) in the proof of
Theorem VI.1 only uses the fact that 85 < v+ C, for any two solutions (u, v), (i, )
and for all 8 € (0, 1). But this can be deduced from Theorem II1.4: indeed w=071is a
subsolution of the equation

—Aw+|VwP+wZg=0f+0i—id, in Q.

But in view of (40) and (84) O0f + 605 —ii,< f+Co<f+v—uy+C, for some
constants Cy, C,=0. Therefore, by Theorem 111.4, we deduce

wsv+Cy in Q
and our claim is proved.
Finally, we have to show the uniqueness of v up to a constant. Then, we observe
that the proof given in Step 4 of the proof of Theorem V1.1 still applies provided we
take C, small enough, indeed the only difference comes into the verification that

w—v——o00 as d—>0, where w=00+(1— ) ¢, with 0 <6 < 1. But the inequality
we just proved shows that
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and taking C, small enough so that % = %0+C we find
140 1-46 6
ws (—;— + —4—-> v+Cy+C= 3: v+ Cy+C

therefore w—v— — 00 as d—0, since v—>+ o0 as d—0,.
Then, the proof of Theorem V1.1 applies and we may conclude the proof of
Theorem VI.2. [

V1.3. Superquadratic Hamiltonians

We now conclude this section by examining the remaining case namely the case
when p>2 and fel3 (Q), is bounded from below and satisfies (41) with f<p.

Then, we know there exists a unique solution u, of (1) satisfying (17) or (62). As A
goes to 0,, we obtain the

Theorem VL.3. Let p>2, let f € L7, (Q2) be bounded from below and satisfy (41) for
some B < p. We denote by u, the unique solution of (1) in W2,"(Q) (Vr < o0) satisfying
(62). Then, Vu, is bounded in I, (Q) and Au, is bounded in L°(Q). And Au,, v,
converge uniformly on Q to uge R, ve W2 (2)nC(Q) (Vr < o) such that v(xq)=0, v
satisfies (17) and (79). In addition, if (ily, D) e R x W2,"(Q) (Vr < 00) satisfies (79) and
if ¥ satisfies (62), then fig=u,, 1=v+C for some ceR.

Proof. Clearly, Au, is bounded from below. Then, we may apply the local gradient
bound given in Theorem IV.1: hence, Vu, is bounded in L, (). But this bound (see
Corollary IV.1) also implies that u, is bounded in C®%(Q) for some 0€(0,1)
independent of 1. Therefore, up to subsequences, Au, and u, converge uniformly on
QtougeR, ve WA (Q)NC(Q) (Vr < o) such that v(x,) =0, v satisfies (79). Next, by

Theorem V.2, v satisfies (62) and therefore, by Proposition V.1, v satisfies (17).
Notice also that v is the unique solution satisfying (62) of

—Adv—|VuP+Av=g, in Q,

where g,=f —u,+ Av.

Next, using Theorem V.1, the uniqueness of u, follows immediately as in Step 3
of the proof of Theorem VI.1 (§=1 is enough in this case).

Finally, we want to prove the uniqueness of v, up to a constant. Again, the only
fact we have to prove is the following

sup (f—v)= max (i—v).
N—-0Qs 026

To this end, we set a = ﬁ%? and we consider for 8 (0,1), w= 05— (1 —6)C,d* then
for C, >0, § small enough (independent of §) we have

—Aw+ VWP f—uo—1 in Q—Q,.
In particular, for A small enough, we have

—Aw+|PwP+iw=<g, in Q-Q;.
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We may now adapt without any real modification the proof of Theorem V.1 to
deduce

sup (w—v)= max (w—v)
2-9Q5 0Qs

and we conclude letting @ goto 1. []

VII. Optimal Stochastic Control with State Constraints

We now want to use the results obtained in the preceding sections in order to solve
some optimal stochastic control problems with state constraints: a rather vague
way to formulate our problem is to say that we want to “constrain a Brownian
motion in a given domain Q by controlling its drift”. More precisely, we consider a
system whose state is given by the solution of the following stochastic differential
equation

dX,=adt+]/2dB,, Xo=xeQ, (3)

where B, is a Brownian motion on a standard probability space (Q, F, F,, P) and
where g, is the control process i.e. a progressively measurable stochastic process
taking values in R" for instance. In other words

t
X,=x+ { ads+]/2B,
0

T
and we assume (at least) that { |aJds< oo a.s. (Vr < o0).
0

We will say that this control a is admissible if X, e Q V¢ =0 a.s. Even if we could
work with general controls of the above form, we will restrict ourselves to
feedbacks or Markovian controls which are defined as follows. Let ae C(Q;RY),
we may solve the stochastic differential equation

dX,=a(X)dt+)/2dB, for 0<t<rt,, Xo=x€Q, (85)

where 7, is the first exit time of X, from Q i.e, 7,=inf{t=0, X,¢Q} (t=+ o0 if
X,eQfor all t 20). Thus, a(X)) is really the control but we will ignore this minor
point of terminology and we will say that a(-) is the control (or control policy).
Next, we define an admissible control as a control a(-) such that

P(t,<o00)=0 forall xeQ. (86)

And we will denote by o the class of all admissible controls.
For each a, we define a cost function

J(xa)=E Z (FOX)+cla(X ) e ¥dt, 87)

where c=c(p,q)=q 'p~ "~ Y, 1>0 is the discount factor. Observe that the
running cost f(x)+ cla|? contains two terms: one which measures the cost for the
state to be at x, and the other measuring the cost for using the control a. All
throughout this section f e L3, (Q) is bounded from below so that J(x, a) makes
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sense even if it may be infinite. This is of course a very special example but we will
come back on part 2 on much more general problems for which similar results to
those which follow still hold.
Finally, we want to minimize J,. We introduce the value function
ux)= inf J,(x,a), VxeQ. (88)
acod

The typical questions that one wants to solve in such problems is to determine
u, and possibly an optimal control (here an optimal Markovian control or an
optimal feedback), i.e. some a in .o/ such that

u(x)=J,(x,a), VxeQ.

And this is precisely what we will achieve using the results of the preceding
sections. Let us also observe that it is not completely obvious that .7 %, let alone
that there exists a € &7 such that J(x,a) < oo for xe Q.

Finally, we will also consider the case of ergodic control which consists,
roughly speaking, in taking 1=0.

VII.1. Subquadratic Hamiltonians

Theorem VIL1. Let 1 <p<2,let feL} () be bounded from below and satisfy (78).
Then, the value function u, given by (88) is the unique solution of (1) in W%"(Q2)
(Vr < o0) such that u;— + oo as d—0,,.. Furthermore, ay(x)= p|Vu,|?~2Vu,(x) is the
unique optimal markovian control.

Proof. We denote by ii, the unique solution of (1) in W%"(€2) (Vr < o) such that
i, + o0 asd—0,. We are first going to show that &, > u, and that a, € /. Indeed,
for§>0let 2 =inf(t 20, X, ¢ Q;), we apply 1t6’s formula on [0, 7] with the process
X, corresponding to the control ay(x)= —p|Vii,|?~2Vu, and we find for all x Q;

i ()=E [ {—A40,(X)+ plVii, [P(X)+ Ay (X )}e ™ *dt + Eii(X g™+
0
hence from the equation (1) this yields
#,(x)=E | {f(X)+clagX)"e Hdt+ Ei (X, de ¢, VxeQ,  (89)
o
In particular, we may deduce from this quantity
(inf al> E[e *#]<C, VxeQ,
s

for some C independent of d.

Now, since #i;—~+o as d-0,, (inf ﬁl) —-+4+o00 as 0-0,, therefore
0025
E[e”**]—0 as 6—0,. Hence E[e”**]=0 for all xe @ and this precisely means
that aje .
In addition, we may also deduce from (89) that for  small enough and for x € Q;

BZE | {f0X)+clagX e dr
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since i, 20 for x e Q —Q;. Now, if we let J go to and if we use the fact that a, e o/
and thus ©2— + 00 a.s. as §—0, for all xeQ, this yields

dyx)2J(x,a0), VxeQ. (90)

We next show that i, = u,. If this is the case, (90) then implies that a, is optimal.
To show that i, =u,, we first recall from section that there exist w, subsolutions of
(1) in W>"(Q) (Vr<o0) such that w,»ii, uniformly on compact subsets of Q.
Therefore, if ae &/, we find using again Itd’s rule for all xe Q;

wa(x)SE tg {f(Xt)+cla(X,)I"}e'”dt+E[wn(th)e—m;Z] .

Now, if J(x,a)= + o0, we obviously have w,(x) <J(x, a), while if J(x,a)< oo, we
deduce from the above inequality letting 6 go to 0,

woSE T {f(X) +cla(X)le~*dt = J(x, a)

since 13— + o0 a.s. as -0, and thus
[E[wA(X e *#]| < sup |w,|E[e**]>0 as 50, .
2

Therefore, letting n go to + co, we finally deduce for all xe 2, ae .o/
(x) < J(x, a)
and our claim is proved. []

The uniqueness of the optimal control is a bit technical but very simple to
understand so we just sketch the argument: assume that a is optimal then applying
1t6’s rule we find for all >0, xeQ;

Tx:

u(x)=E :I: {f(X)—a(X) Vuy(X)—|Vu (X )P}e™"dt + Euy(X g™ *

<E | {f(X)+claX )% e ¥+ Eu,(X e 7.
0

But recalling that u,(x)=J(x, a) for all x e Q and using the Markov property of X,
we deduce that the above right-hand side is also equal to u,(x). Therefore, the
equality yields that for all xe Q;

a(X)=a,X,) forall te(0,7l) as.,

(where X, is the solution corresponding to a) and letting J go to 0, we finally find
that for all x € 2, a(x)=a,(x) (recall that a, a, are continuous on Q). [

VII.2. Superquadratic Hamiltonians

Theorem VIL2. Let fe L3 () be bounded from below, satisfy (41) for some f<p
and let p>2. Then, the value function u, given by (88) is the unique solution of (1) in
W2"(Q) (Vr< o) satisfying (62).
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Proof. We will approximate the Hamiltonian |£|? as follows: let R=1, consider
some Hamiltonian Hy such that Hy is convex on RY, H(&)=|¢P if |¢|<R,

Hg(&)|&]7% is constant for |&| large where &—9‘—1 >f and 1 <a<?2, Hy increases

uniformly on compact subsets to |£[? as R goes to + c0. And we denote by Lg() the
following convex function

—Lg(m)= inf (5 ¢+ Hg())
EeRN

so that Lg(n)=cln|? and Ly decreases uniformly on compact subsets to c|n|?
Then, because Hy = Cg|E|* for |&] large, it is not difficult to adapt the results and
the proofs of Sect.II to show that there exists a unique solution ug of

—Aug+Hg(Vug)+iug=f(x) in Q, ugeWZ"(Q) (Vr<oxn)

such that uz— 4 as d—0,.
And exactly as in the preceding section, we can check that

uplx)= inf E z (f(X)+Le(@X e, V¥xeQ.

Of course, uy decreases to the value function u, given by (88). On the other
hand, we remark that we may choose Hye C*(IR") such that

ID*HRN1E1*,  IDHRENIEISCo(HR(&)+1), VEeRM,
and
Hg(&)z[E*, VEeRM

for some C, independent of R. And we may adapt the a priori estimates in the
appendix (see also part 2) to deduce that ug is bounded in W,};* and thus in W%"(Q)
(Vr< o). Hence,u, € W,ﬁg'_(!)) (Vr < 00) and solves (1). But then by Corollary IV.1,u,

extends continuously to Q and we may apply Theorem V.2 to deduce that u, is the
unique solution of (1) satisfying (62). []J

The question of the optimality of the control ay = — p|Vu,|? " *Vu, is much more
delicate: in fact, if an optimal control exists, by a similar proof to the one made in
the preceding section, it has to be a, and if we know that a,e .o/ then g, is the
optimal Markovian control. Hence, the main problem is whether a € o/. We know
how to prove that a, € o/ only when (61) (or some easy variants) holds and we refer
the reader to Sect. IV.3 where a few cases when (61) holds are given. Indeed, if (61)
holds then we deal with a diffusion X, satisfying

dX,=)/2dB,+ay(X,)dt,
where a, satisfies
ag(x)d(x)—> —pn as d(x)-0.,, o1

with u=¢> 1. Then, we claim that for any diffusion process of the above form, if
(91) holds and p> 1, then X, never leaves 2 with probability 1, while if (91) holds
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and p<1, X, hots 0Q in finite time with propability 1. Indeed, if u> 1, we apply
1t6’s rule with —logd(x) and we find for all T < oo

AT (Ad  |Vd)? -Ad
—logd(x)=E l:—logd(X,,\T)+ g {—d— - l—dzl—— -2 7 } (Xs)ds]

(in fact we should replace t by t; for 6>0...). And we observe that
4d |Vd?*  a-vd

d d? d

. 1 . o
behaves like (u—1) 2 hear 02 and so this quantity is bounded from below on Q.
Hence, we obtain
E[—logd(X,,1)]< CT—logd(x)
therefore for all xe Q, P(t < T)=0 and we conclude since this holds for all T < co.

On the other hand if u <1 by a simple argument, showing that E[t,] < C for all
x e is easily done if we prove the existence of a supersolution of

—A4z—a-Vzze in Q, forsome £>0, zeC(Q), z=0 on Q.
But this is achieved by considering for pge(u, 1) the function
zp=d" T —po) T = dP2uo+ 1)} 7!

which satisfies in Q—Q, for some § small enough

1
—Azy—a - Vzy=pod " '—a-vdd "+ ——— {1+a-Vdd}
Ho+1

1
—d7#r AdZK>0
" {#0"’1 } B

for some K >0. Then, we consider the solution z, of

—A22~a'|722=1 il’l Q&, Z2=0 on 695.
Finally, we set z=z, in Q — Q;, =z|,o,+ 7z, in Q; where y is small enough so that
0z, _ 0z,
1>

" Z 7 O0 0€Q;. It is then easy to check that z satisfies the desired inequality

with e=min(K, ).

V11.3. Forced Constraints

We first observe that by the results and methods of the preceding sections (and the
interior estimates given in the Appendix), for any p>1 and for any fe L} (Q)
bounded from below there exists a solution ue W;%"(Q2) (Vr < o0) of (1) such that for
all ve W27(Q) (Vr < o) satisfying

—dv+|VoP+ S f in Q (92)
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thenv<uin Q. Of course, if 1 <p<2and f(x) < Cd(x)~ ! then (see Sect. I[) u— + 00
as d—0, and u is the minimum such solution, if p>2 and f(x) < Cd(x)~* for some
B < p then u is the unique solution of (1) satisfying (62) (see Sects. IV and V), while if
f(x)=cd(x)”# — C for some ¢ >0, f = max(p,q) then u— + o0 as d—0, and u is the
minimum solution of (1) bounded from below [and we have uniqueness if f
behaves like C,d(x) #]. In fact, if 1 <p<2, then y— + 00 as d—0, and u is the
minimum such solution.
We then have the following

Proposition VIL1. Let 1 <p<2,orletp>2and f Zcd~?—C for some c>0,C=0,
B = p. Then, the value function u, given by (88) is the above (“minimum explosive”)
solution u. In addition, ay(x)= —p|Vul?~2Vu is the unique optimal Markovian
control.

In fact, since u— oo as d—0,, the proof is exactly the same as the proof of
Theorem VI.1: one shows that u>u, and a, € <, then u<u, and a, is the unique
optimal Markovian control.

Remark VII.1. These results show that for any f bounded from below the formula
(88) yields a finite function (locally bounded) on Q. This may be proved directly by
a tedious probabilistic construction of a control a e &/ such that J(x, @) < oo for all
xeL.

VI1I14. Ergodic Control

We now want to explain in this section the control problems associated with the
asymptotic problems solved in Sect. VI. We begin with the cases when solutions go
to + oo as d(x) goes to 0.

Theorem VIL3. Let f € L}, () be bounded from below and satisfy (78), let 1 <p=<2.
We denote by (v, u,) the solutions given by TheoremV1.1. Then, we have the following
equalities: for any ae o, let 0, be a stopping time bounded by some arbitrary T =0
(independent of a), then

0a
v(x)=inf E | {f(X)+cla(X)}dt+v(X,)—0uy, VXxeQ, (93)
aedd 0
T
up= lim inf Ei [ {f(X) +claX)|9}dt, VxeQ 94)
T— o aesd T 0

and the controlay = — p|Vv|?~2Vv belongs to &/ and is the unique optimal Markovian
control where optimal means that (93)+(94) are equalities when we choose a=a,.

Theorem VIL4. Let fe L} (Q) satisfy (40) and let p>1. Denoting by (v,u,) the
solutions given by Theorem V1.2, Theorem V11.3 still holds.

Since the proof of Theorem VIIL.4 is very similar to the one of Theorem VII.3 we
will only prove the latter.

We first deduce from It6’s formula that if X2 denotes the process correspond-
ing to the choice a, then for all 6>0, xeQ

90/\13
o)=E [ {f(X?)+clag(X?)"}dt + (X7, ) — 0o A Tilo s %5)
1]



626 J. M. Lasry and P. L. Lions
where 0, stands for 6, and 7 is the first exit time from Q;. In particular for 6,=T,
we deduce

E(W(X%r.2)Sv(x)+CT, for some C=0.
Therefore, recalling that v is bounded from below, we obtain

(inf v) P[P <T]<v(x)+C1+T)

0025

and since v— + oo as d—0,, we deduce that g e «.
In addition, if we pass to the limit in (95) as é goes to 0., we find for all xe Q2

6o
ux)=E (I) {f(XD)+clagXD)}dt —0ouo+ lim E[o(X, 4 .o)]
00+
and

lim E[v(X5,A0)]2Z lim {E[(v+C)(X5)1g,<.]—C},
004 -0,

St

where C < inf v, and this last expectation increases to E[v(X§ )]. Hence, we finally

(2]
obtain for all xeQ
0o
ux)ZE (I) {f(XD)+clag(XD)|*}dt + v(Xg) — Otk - (96)
And taking 0,=T, we also deduce for all xe Q

Uo2 lim + E [ {F(X9)+ clag(XO)}dt ©7)
Tow I 0

since ElTv(X‘;)g— % —0as T—oo.

To complete the proof of Theorem VII.3, we basically need to prove the
complementary inequalities in (93)+94). This will be achieved by first introducing
some approximated problem: let (v?, u$) be the solution in W2;"(2°) x R (Vr < o0) of
(79) with Q replaced by 2° such that v’(x,)=0, v’— + 00 as d(x)—0,. With the
techniques of Sect. VI one can show that v’ fv as 6 goes to 0, and converges
uniformly on compact subsets of 2, while v | uy as 610,.

Using It6’s formula, we immediately obtain for all xe Q

(%)< aieni E ‘:j: {f(X)+cla(X )%} dt +v*(Xp,)— 0,u)
and letting & go to 0, we deduce since v’ v as 60,
(x)< aiil&f‘ E 9!: {f(X)+cla(X )|} dt +v(X, ) — O,u
and this combined with (96) yields (93). In addition taking 8,= T, we also deduce

T
@S inf B ] (f(X)+claX )i+ 2 sup |
T o T @

acd
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hence
u}< lim inf E— j {f(X)+cla(X )|}dt

T—o acsd
and letting J go to 0, the resulting inequality combined with (97) yields (94). This
also shows the optimality of a, and the uniqueness is easy to prove as in the
preceding sections.
By the same truncation argument as in the proof of Theorem VIIL.2, one
deduces the

Theorem VILS. Let p>2,let f € L, () be bounded from below and satisfy (40). We
denote by (v,u,) the solutions given by Theorem V1.2. Then, the identities (93)+(94)
still hold.

Appendix: On Some Local Gradient Bounds
We want to show here some local gradient bounds for solutions of
—edu+|VulP+iu=f in Q, ueWZ'(Q) (Vr<ow), (A1)

where 0<e<1,0<A<1,1<p<oo,and fe[*(Q)oreven fe W!'*(Q)and Qis a
bounded open set in IR". These bounds are obtained by the method introduced in
[16, 19]. For related local bounds concerning different equations, we refer to
Bombieri et al. [4], Ladyzhenskaya and Ural’tseva [13], Simon [26-28]. Our main
result is the

Theorem A.1. For any 6>0, we set Q;={xe Q/dist(x, 9Q2)> }.
1) Let fe W' *(Q), then we have for all >0

Wu=Cs if xe, (A2)

where Cj depends only on bounds on |V f|, lower bounds on Au— f, 3, and p.
2) Let feL*(Q), then we have for all r< o0, §>0

[ Vu”Lr(Q,,) =C,, (A3)
where C; depends only on bounds on f, lower bounds on f—Au, d, p, and r.

Proof. We begin with case 1) i.e. when f € W' *(Q). In both cases, we will ignore
the fact that u is not assumed to be smooth and we will thus skip the tedious
approximation argument required to make the proof below complete. Then, let
0e(0,1) to be determined later on and let p € 2(Q2),05¢p<1in Q, p=1 on Q;, be
such that

l[4p|=Co°®, |Vo|’=Ce'™® in Q

for some C (depending only on 6, 6).
We next consider w=|Vu|?> and we compute easily on Suppg

v
—eA(@w)+p|VulP~2Vu- V(ew)+ 24pw + 2ep|D*u|? + 2¢ 9. V(ow)

Vol (A4)
=20V f - Vu+p|VulP 2(Vu-Vo)w—eVo)w+2e w
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Then, let x, € 2 be a maximum point of pw: we may assume that x, € Supp ¢ and
by the classical maximum principle we deduce from (A.4) the following inequality
where all functions are taken at x,

p+1

260|D%ul? S Cow"2 +Co’w 2 + Cep'w. (A.5)
Now, from Cauchy-Schwarz inequah'ty and (A.1)

ID2u|2> N w2 z(quI"+/1u Pz gz (Puf—0)?

and this combined with (A.5) yields
pt+t1

ewP < C + Cepw'* 4+ Ce®w 2 +Ce2¢w. (A.6)

3—p
—3 2 bl

max ew=@w(xy)=C.
Q

In case 2),i.e. when f € [°(Q2) we use integral estimates as follows: let m > 1, we
multiply (A.4) by (¢w)™ and we find

em [ |V(@w)|*(ow)™ ™ 'dx +p [ [Vul? =2V u- V(pw) (pw)"dx
Fef oDl puydx + o [olI7ul —C)*2gmumdx
+26[ " W V(@™ Wt ) (m+1)" ldx
S2{@m WV f -Vudx+ ij'w%q)”’"w"‘dx +Cef o™t owmdx.
We now want to bound the following terms

2[ @™ W f - Vudx < 2C [ @™ 'w™D2uldx +m | 0|V (w)] (pw)™* !
x |Vuldx + C | ™ *éwm* 12dx

Sef o™ 'wh|Durdx + % fo™ whdx+¢ le((pw)lz((pw)"' tdx
m . ti,m m+0, m+1/2 9+
+C;j'(p whdx+C ™ w dx;

pIIPUP~2Vu- Vigw)(pwidx < T [IF(ow)P(pwy™~'dx
2

14 m+1 m+pd .
_ X,
+8m[(p w

2e(m+ 1)—1 _(QD_IVQD‘ V((pm+1wm+l)dx§ m—(_::—f j¢m+awm+ Lix.
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And collecting all these bounds, we finally deduce

p+1

1 m
N J0UPuP =) 2mwmdx S C, W™ 7 g™ dx+ Cof g™ i

C
+CJ@ntOwmt U2y 4 = (@™ twrdx +C _’:_ [ @™ twmdx

Ce
m+1

2
m+6 m+ld 14 m+1 m+pd
fo™ W x+ e—mjgo W Pdx

2

To get rid of the last term, we choose m in jlpﬁ’ oo[ and we find

a2t
Jomtlwmtrdx <C+C W™ 2 om*idx.

And we conclude choosing 8= (m+p)~*{(p+1)/2+m(3 —p)/2}.
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