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I. Introduction
1.1. General Introduction

One of the primary goals of this paper is to study various models of stochastic
control problems involving constraints on the state of the system (state con-
straints). And by following the dynamic programming approach this is equivalent
to study some nonlinear second-order elliptic equations. Then, the state con-
straints lead to highly singular boundary conditions. A typical example would be:
let Q be a bounded, smooth domain in R", we look for a solution ue C*) of

—Aut|VulP+Iu=f in Q 1)

where p>1,1>0, fis a given smooth function in £2, and the boundary condition is
given by

u(x)—»>+oo as dist(x,0Q)—0, 2

(in fact, this boundary condition will correspond to the case 1 <p=<2).

We will show in this paper how such nonlinear, boundary value problems
(1)2) can be solved and we will thus obtain existence, uniqueness and comparison
results leading also to a complete solution of the stochastic control problem we are
considering. It turns out that many cases have to be investigated and the results
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differ somewhat from one case to the other: typical behaviours involve the cases
1<p=2, p>2, f blowing up near 0Q, A going to 0. Let us also mention that the
methods introduced below allow us to treat more general nonlinear second-order
elliptic equations, like more general quasilinear elliptic equations, Hamilton-
Jacobi-Bellman equations, semilinear elliptic equations, first-order Hamilton-
Jacobi equations, Monge-Ampére equations: in all those examples, singular
boundary conditions may be encountered (and are even of a fundamental use) and
we refer to Brézis [6], Crandall and Lions [7], Urbas [30], Simon [26-28], where
such boundary conditions appear. And, our methods enable us to treat these
equations with boundary conditions like (2).

1.2. Description of the Stochastic Control Problems

The basic model problem we are considering is a stochastic control problem where
the state of the controlled system is a diffusion process and a typical example is the
solution of the following stochastic differential equation

dX,=adt+dB,, X,=xeRV, 3)

where B, is a standard Brownian motion [in some probability space (2, F, F,, P)...]
and where a, is the control process i.e. a progressively measurable stochastic
process that we may choose as we wish (taking possibly into account restrictions
on the controls such that, for instance, a, takes its values into a given set 4...). A
very important, particular class of controls is given by the so-called feedback
controls i.e., given a function a(-), one looks for a solution of

dX,=a(X)dt+dB,, X,=x. )

This general class of problems occur in many contexts: however, depending on
the particular examples of applications, it is possible to classify those problems in
the following categories. For some problems, the state process X, may take its value
in R¥ without any restriction while in other problems the state X, should remain in
some given region Q. In the latter case, the model is to be complemented with
boundary prescriptions in case the process reaches or crosses the boundary 0Q. Let
us immediately mention that if Q is bounded, and a, or a( - ) are bounded then for
all t>0 P(X,e 02)>0. The most usual models in stochastic control theory yield
the following boundary prescriptions: in the case of the so-called exit problems, one
considers the first exit time of X, from Q (or the first hitting time of X, on Q) and
the process is stopped at this time. The other standard model consists in a
boundary mechanism which prevents the state process from escaping from Q; the
simplest of which is the reflecting boundary condition.

Now, at least for deterministic problems, it is well-known that another way to
enforce state constraints (i.e. X, e Q) is simply to restrict our attention to controls
such that X, remains in  or in Q. In the case of (nondegenerate) stochastic models
like (3) or (4), this possibility does not seem to have been explored. And this is
precisely the type of problems we have in mind. In view of a remark made above, it
is clear enough that in order to constrain a Brownian motion in a bounded domain
Q we need to use unbounded drifts a, or a( - ): in other words, we will have to choose
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feedbacks controls which, roughly speaking, push back the state process inside Q2
when it gets near dQ and with an intensity which blows up at the boundary. To be
more specific, we will consider the class &/ of feedback controls i.e. of, say,
continuous functions on €, a(-) such that the solution X, of (4) stays in Q with
probability 1 for all t=0, (and for all initial points x € Q).

Once, admissible control processes and thus state processes have been specified
we may now describe a typical example of the optimal control problems we want
to study. For each a € o/, we will consider for example the following cost function

J(x,0)=E [ { FX)+ % Iatl“} e~ Mdi, VxeQ, )
0

where g>1, f is a given function on Q say bounded from below and A>0is a
given parameter — the so-called discount factor, and where we denote by
a,=a(X,). Let us emphasize that this particular form of the running cost

1. . . . .
g(x,a)=f(x)+ a |a]? is by no means essential for the analysis which follows: it just

provides a simple but general enough model problem. Let us also mention that
this choice of cost functions corresponds to the so-called infinite horizon
problems and that other cases are considered in this paper.
Finally, we wish to minimize J i.e. we want to determine the value function (or
Bellman function):
u(x)= inf J(x,a), VxeQ ©6)

aced

and optimal (feedback) controls a such that u(x)=J(x, a).

I.3. Description of the Associated Boundary Value Problem

We want now, in this section, to follow the heuristic dynamic programming
approach to such optimal stochastic control problems: the dynamic programming
argument (which can be viewed as a modern, extended version of Hamilton-
Jacobi-Carathéodory theories for problems in the calculus of variations), leads to a
nonlinear partial differential equation. More precisely, the dynamic programming
principle, due to R. Bellman, indicates that the value function u given by (6) should
satisfy the following second-order, quasilinear, elliptic equation

1 1
-—EAu+E|l7u|"+lu=f in Q, (7

where p is the conjugate exponent of gi.e. p= q—qj_ In fact, such a claim, even if we
forget the heuristic aspect of Bellman’s derivation of (7) is by no means obvious
here, in view of the restriction to feedback controls and of the state constraints. But
nevertheless (7) is to be expected for the value function u. This equation is a very
particular case of the so-called Hamilton-Jacobi-Bellman equations. And at least
for problems like exit problems or the ones corresponding to reflecting boundary
conditions (as described in the preceding section), a rigorous derivation of the
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Hamilton-Jacobi-Bellman equation and the analysis of such nonlinear p.d.e. are
now available: see Fleming and Rishel [8]; Bensoussan and Lions [2,3]; Krylov
[11, 12]; Lions [16-18]; Lions and Trudinger [24, 25] and the bibliography
therein.

Let us add to this general description that the exit problems lead to Dirichlet
type boundary conditions like

u=¢ on £, (8)

where ¢ is the exit cost i.e. the price to be paid for hitting the boundary at a point x
of 0. On the other hand, reflecting type boundary conditions lead to Neumann
(or oblique derivative) type boundary conditions like for instance

du

- = 0Q, 9

5 =¥ on )
where n is the unit outward normal to 022 and v is the reflection cost i.e. the price to
be paid for reflecting on the boundary dQ at the point x.

Finally, let us mention that another aspect of Bellman’s dynamic programming

argument is a rule for finding an optimal feedback control which in the case of (7)
reduces to the choice

a(x)= —|VulP~2Vu(x) for xeQ. (10)

Now, we go back to the state-constraints problem described in the preceding
section and we ask ourselves the following question: what is the boundary
condition (or any other characterization at 0Q) we may expect for the value
function u given by (6)? From the above considerations it is tempting to say that to
discourage hitting the boundary we should impose an infinite exit cost or reflec-
tion cost i.e.

u(x)—>+oo as dist(x,2—-0 (11)

or
Ou .
n (x)»>+o0 as dist(x,0Q)—0 (12

[where n(x) is defined near 0Q by — V(dist(x,d2))]. More sophisticated formu-
lations, which are also very natural from the control viewpoint, are: u is the
maximum solution (or even subsolution) of (7); or: u is the upperenvelope of
bounded solutions of (7).... Finally, for readers experienced with viscosity
solutions, a possible form of the boundary condition could be

u—¢ achieves its minimum over (13)

for all peC*Q) [or C*'(Q), or C}Q), or even C*>}Q)]: this “viscosity
formulation” will be explained below in Sect. IVV, see also Lions [17, 29] for the
deterministic case.

It turns out, and the precise results are given in the next section, that if the latter
formulations are always true, the choice between the boundary conditions (11) or
(12) requires some careful analysis and will in fact depend on the behaviour of f
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near 0RQ and on q. This can easily be “justified” by a vague economical argument: if
f blows up fast enough near 0Q of if g is large (remember that a has to blow up near
0Q) then the cost functions will blow up at 692 and so will u. Then, we should expect
(11). On the other hand, if £, say, is bounded and if ¢ is near 1 then it does not cost
much to drive the state off 02 and we may expect now u to be bounded on Q. On
the other hand, recalling Bellman’s rule (10) for the optimal control and the fact
that a cannot remain bounded if we want X, to stay in 2, we should expect that
some condition like (12) holds. Of course, the reason for which we insist on
conditions like (11) or (12) compared to a “maximum solution” characterization is
because of the specific information contained in those formulations (which could
turn out to be crucial for numerical purposes). Finally, note that p=1 is excluded
in the p.d.e. results (see next Sect.l.4). This corresponds to the fact that it is
impossible to force state-constraints with bounded controls. All these heuristic
considerations will find their mathematical counter parts in the results presented
in the next section.

1.4. Short Review of the Results

In this section, we present some of the results obtained in this paper on the simple
example of the model equation (1) [equivalent to (7) after an obvious scaling]. In
doing so, we follow the order of the sections below. To simplify the presentation we
will always assume at least that f e C1(Q), is bounded from below. We will denote
by d(x)=dist(x, 8Q) for all xe Q.

We begin with the case when the running cost f'is not too large, while the other
term in the cost function is quite large since we will assume 1<p<2ie. g=2.
Theorem L.1. Assume that 1 <p=2 and that f satisfies

lim { f(x)d(x)?/d(x)—>0,}=C, 20. (14)
Then, there is a unique solution ue C*(Q) of (1) such that u(x)— + oo as d(x)—0,.
In addition, any solution ve CXQ) of (1) satisfies: u=v on Q. Finally, if C, is
—p\? 2
the unique positive root of H Cc?— G’—_S—Z Co—C,=0if p<2, C3-C,
—C,;=0if p=2, then u satisfies

]im{u(x)d(x)zzr-;f/d(x)—>0+}=C0 if p<2 5

lim{u(x) |Logd(x)|~ /d(x)—»0,}=C, if p=2.| O
We now turn to the case when both terms in the running cost are not too large:
in particular we assume that p>2ie 1<g<2.
Theorem 1.2. Assume that p>2 and that f satisfies
lim{ f(x)d(x)/d(x)—>0,}=0, for some Be(0,p). (16)

Then, all solutions veCz(_Q) of (1) bounded from below are bounded and may be
extended continuously to Q. And there exists a maximum solution ue CXQ) of (1). In
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addition, u satisfies
liminf {u(y)—u(x)}|y—x|"*<0, forall xedQ 17)

ye,yox
where a=(p—2)/(p—1).
Furthermore, if liminf{ f(x)d(x)"/d(x)+0,}>0 for some ye(q,p), then (17)
holds with a=1—7y/p. O

Also, if additional assumptions on @ or f are made, we are able to sharpen (17)
or prove (12) [or even sharper estimates then (17) and (12)...].

The next case concerns the situation when the running cost f is blowing up
near the boundary very fast. We have the

Theorem L.3. Assume that f satisfies
liminf{ f (x)d(x)f/d(x)>0,} >0, for some B=max(p,q). (18)

Then, any solution ve C*(Q) of (1) bounded from below converges to + oo as d(x)
goes to 0. In addition, such a solution is unique if (18) is replaced by

lim{ f(x)d(x)*/d(x)>0,}=C,>0, for some f=max(p,q) (18)
and this solution, denoted by u, satisfies
lim {u(x)d(x)*/d(x)—>0,} =C,, (19)

1/p
where d(x)* is replaced by |Logd(x)| ™ if f=p=q; o= —g —1and Cy= (%) if
B>max(p,q); Co=Ci” if B=p>2 Co=(1+Cy)"? if p=p=2. [

Roughly speaking, the combination of Theorems 1.1-1.3 cover all possible
situations. One way of unifying the above results is by the use of the viscosity
formulation of the various boundary conditions encountered above namely

u—¢ achieves its minimum over Q, for all @eC*Q). (20

Theorem L4. Assume that p>1 and >0 and that either f is bounded or f(x)d(x)?
converges to a positive constant as d(x) converges to 0O,. Then, there is a unique
ue CX(Q) solution of (1) satisfying (20). [

This is a nonexhaustive list of results since we will consider below many
related questions like the stochastic interpretation of the above solutions, the
existence of optimal controls, the ergodic problem, i.e. A—0_, the approximation
of such solutions, extensions to more general data f or Hamiltonians. Finally, we
will also briefly explain how the techniques we introduce allow us to treat similar
boundary conditions for other types of nonlinear equations.

L.5. Organization of the Paper

As usual in stochastic control problems, various strategies are possible. One can
use p.d.e. methods to derive the existence of a smooth solution of the associated
HIB equation — here a second order quasilinear elliptic equation with strong
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nonlinearities in the gradient and singular boundary conditions. The uniqueness
question may be solved directly by p.d.e. methods or by checking that any solution
is the value function. Finally, one builds an optimal control using, whenever it is
possible, the solution of the HIB equation. This is why some sections below deal
with purely p.d.e. questions while others are concerned with the stochastic
interpretation. Another distinction is made below between what we call the model
problem (1) and more general equations. This artificial distinction is made only to
simplify the exposition. In fact, in all sections below, we adopt a layered
presentation with gradual generalizations where we just explain the required
modifications of proofs.

II. Subquadratic Hamiltonians
We will be dealing here with (1) in the case when 1 <p<£2.

11.1. Bounded Data
We begin with the case of bounded data i.e. we assume that f e [°(Q).
Theorem IL1. There is a unique solution ue W2 ’(Q) (Vr<o0) of (1) such that

u(x)— + o as d(x)—0_. In addition, if Co=(p— 1)p 1(2 p)~ ! when p<2, Co=1
when p=2, then (15) holds. Finally, let ve L},(Q) satisfy

—Ao+plEP 2 Vo+ WS f+(p—DIEP in P'(Q), VieR" (21)
then v<u a.e. in Q; in other words, u is the maximum L, , subsolution. []

Corollary IL1. Let f,, f, € L*(Q) and let u,, u, be the corresponding solutions of (1)
which go to + o0 on 0Q. Then, we have

1
sup (u; —uy)* < 7 sup (f;—f2)". O
o o

1
Proof of Corollary I1.1. u,— 5 sup (fi—f»)* is a subsolution of (1) with f
Q

replaced by f, so by Theorem II.1 u; <u, + %sup (i—f)t 0O
2]

The proof of Theorem II.1 is unfortunately a bit longer and we split it into
several parts. First (step 1), we compute the explosion rate of such a solution and
this trivial computation leads to families of super and subsolutions. Next (step 2),
we build a minimum and a maximum “explosive” solution which have the same
leading behaviour near the boundary. Then (step 3), we prove the uniqueness and
(15). Finally (step 4), we prove the “maximal subsolution” property.

Step 1. It is reasonable to try to obtain the leading term in an expansion of a
solution of (1) blowing up at the boundary by the following ansatz near the
boundary: u(x) =~ Cyd(x)”* The most explosive term in [ — du+ |Vul? + Au— f] is

then
—Coa(a+1)d >~ 2+ ChaPd @+ 1ip



